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Executive Summary

The measurement of chlorophyll a in the coastal zone of the United Kingdom is necessary for 
monitoring the state of the aquatic environment. Multispectral aerial imagery provides a wealth 
of information about this region but the algorithms that have been developed for estimating 
chlorophyll a have been found to be useful only for very local regions over short periods of time.

This study investigated the ability of neural networks to develop algorithms for chlorophyll a 
prediction and found: __ _

• The neural network algorithms were significantly more successful than linear regression 
algorithms at predicting chlorophyll a in the same region as they were trained

• The relationship between water-leaving spectra and chlorophyll a is non-linear

• The FLH feature has the most linear relationship to chlorophyll a

• The blue wavelengths have a very non-linear relationship to chlorophyll a but hold a great 
deal of information about the chlorophyll a in water

• Non-linear algorithms performed better when applied to a new site

Although the algorithms were not successful at prediction chlorophyll a for different times or 
places, this study has found that neural network techniques are likely to provide the best means 
of producing the non-linear multiple regression algorithms necessary for the accurate prediction 
of chlorophyll a in the coastal zone.
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Glossary

Activation function..............  A function that scales values at each node (often of the form
of a sigmoid, or a linear scaling or even a thresholding function)

Back-propagation................  Process of adjusting the weights backwards through a neural
network during training

C A SI.....................................  Compact Airborne Spectrographic Imager
Feed-forward .......................  Process of passing the inputs to a neural network through the

internal weights and activation functions to derive an output 
FLH .......................................  Fluorescence Line Height
Hidden layer .......................  Layer of nodes in the network where the sum of the weighted

outputs from the previous layer is calculated and then passed 
through an activation function before being passed on to the 
next layer of nodes

M LP.......................................  Multilayer Perceptron
NIR..........................................  Near Infrared
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1 Introduction

Accurate estimates of chlorophyll a concentration are required for the assessment of coastal wa­
ters which are potentially subject to eutrophication. The EC Urban Waste Water Treatment 
Directive (91/271/EEC) requires the definition of these waters and the implementation of im­
proved sewage effluent discharged to these regions. The UK is also a signatory to the Oslo and 
Paris Commission (OSPAR) strategy on hazardous substances, eutrophication and radioactive 
substances. This initially requires the definition of all areas which are potentially subject to 
eutrophication and will subsequently require comprehensive studies to be carried out in these 
areas.

Traditional laboratory analysis of water samples was found to give inadequate spatial and tem­
poral density of sampling. The Environment Agency has therefore investigated the use of aerial 
remote sensing to measure chlorophyll a concentrations in coastal waters. Studies showed that 
accurate algorithms could be developed for specific sites, but that transferral of these algorithms 
to other geographical areas or different seasons introduced errors (Environment Agency 1997). 
This was considered to be due to inability of the regression techniques used to account for differ­
ing constituents within the water body and differences in atmospheric conditions. The Agency 
is continuing this investigation using a number of different techniques, one of which is described 
in this report.

1.1 Chlorophyll a in coastal waters

The waters around the coast of the United Kingdom have been classed as Case 2 waters, that is, 
waters for which the spectral signature is strongly affected by dissolved organic matter (DOM) 
or suspended sediment, or both (Gordon and Morel 1983). In addition to this, coastal areas 
are often subject to non-uniform atmospheric effects particularly when near industrial or urban 
zones which increase the aerosol load of the atmosphere (Tassan and Ribera d’Alcala 1993).

Traditionally the ratio of blue to green reflectance has been used to empirically determine chloro­
phyll a concentration (Gordon and Morel 1983; Kirk 1994). This ratio is a measure of the amount 
of absorption by chlorophyll a in the blue wavelengths compared to the region of little absorp­
tion in the green. Algorithms using this ratio work well for waters unaffected by sediment, 
DOM or a non-uniform atmosphere but have been found to operate poorly in Case 2 waters 
(Sathyendranath et al. 1989; Bukata et al. 1991).

For this reason other band difference and band ratio algorithms have been developed. At longer 
wavelengths, DOM absorption is minimized (Taylor and Smith 1967; Dekker 1993). Also, Quibell 
(1991) found that the effect of suspended sediment on water-leaving radiance at these wave­
lengths is equal. This has prompted the development of algorithms which utilize reflectance in 
the green, red and near-infrared wavelengths (Rundquist et al. 1996; Hoogenboom et al. 1998).

Neville and Gower (1977) suggested that alternative algorithms to those using band ratios could 
be derived using the peak in measured spectral response at 685 nm. This peak is probably 
chlorophyll fluorescence (Gitelson 1992), which results from the re-emission of energy that has 
been absorbed at about 675 nm (Rundquist et al. 1996; Gitelson 1992). Not only does this 
peak increase with an elevation of chlorophyll concentration, but several studies have also found 
that the peak appears to move to longer wavelengths as chlorophyll increases (Gitelson 1992; 
Matthews 1994). The peak can be quantified by measuring its height above a baseline which
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is drawn between two wavelengths or as the sum of the reflectance in the region of the peak 
(Gitelson et al. 1994).

Using the fluorescence peak to predict chlorophyll a has been found to have a number of draw­
backs. however. Particularly problematic is the fact that attenuation of light by water and the 
atmosphere is much stronger at longer wavelengths resulting in a very weak fluorescence signal 
(Bricaud et al. 1995). As a result, the detected fluorescence signal originates only in the top 2 
meters of the water (compared to the top 5 meters for shorter wavelengths) and hence is not 
a good indicator of chlorophyll a in the majority of the euphotic zone (Fischer and Kronfeld 
1990). Surface reflectance has also been found to strongly affect this signal (Neville and Gower 
1977).

Often the single feature algorithms have been found to hold too little information for accurate 
chlorophyll a detection and a number of authors have proposed that multiband algorithms may 
provide better results (Aiken et al. 1995). Sathyendranath et al. (1989) used a model of 
ocean colour to find a five waveband group which held almost as much information as the whole 
spectrum (also Wernand et al. 1997). New sensors with higher spectral resolution and more 
spectral channels provide a greater potential for success with multiband algorithms (Bricaud 
et al. 1995; Doerffer et al. 1995).

Most empirical algorithms developed to predict chlorophyll a concentration from water-leaving 
spectra assume a linear relationship. However, this assumption has often been found to be 
untenable over all but the shortest ranges of chlorophyll a concentration. This is due to the non­
linear way in which the optical signatures of the water constituents, and the optical properties 
of the water itself, interact (Sathyendranath et al. 1989; Fischer and Kronfeld 1990). Ideally, 
a non-linear regression model should be fitted to the data but standard non-linear regression 
methods require a priori knowledge of the data being modelled.

Neural networks present a method by which a non-linear function may be optimally modelled 
without any advance knowledge of the data structure. The remainder of this chapter will briefly 
discuss the basis for choosing neural networks for predicting chlorophyll a concentration and 
describe how one type, the Multilayer Perceptron, is used to model regression functions.
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1.2 Using neural networks for chlorophyll a prediction

Over the last decade, neural networks have shown a great deal of potential in remote sensing 
applications as scene classifiers. These applications use the spectra of each pixel to determine, 
usually, the land cover in the image (e.g. Hepner et al. 1990; Benediktsson et al. 1990; Heermann 
and Khazenie 1992; Gopal and Woodcock 1996). Clark and Canas (1993 and 1995) used neural 
networks to distinguish mineral spectra from mixtures of spectra.

More recently, land cover classifications have been performed'which used neural networks to
-  distinguish'the spectral classes within so-called ’mixed pixels’ . Initially, these networks were 

trained using pure examples of the class spectra (Civco 1993; Warner and Shank 1997) but 
better results have been achieved if examples of mixed spectra are use to train the network 
(Foody 1996; Foody et al. 1997).

Building on the success of these land-based uses of neural networks to derive regression algo­
rithms, Keiner and Yan (1998) and Keiner and Brown (1999) have used neural networks to 
estimate chlorophyll a in coastal waters. These studies report a much better prediction of 
chlorophyll a in water than with using linear multiple regression methods.

1.3 The Multilayer Perceptron

The multilayer perceptron (MLP) is the neural network architecture most commonly chosen 
for remote sensing applications. Three stages are involved in its use: training, allocation and 
testing (Foody and Arora 1996). Training involves presenting patterns of spectral information 
(the inputs) and the corresponding desired outputs (for example, land cover type or chlorophyll 
a concentration) to the network so that it may ’learn’ the underlying transfer function. During 
the allocation stage a new set of inputs are presented to the network for it to predict the 
corresponding outputs. The testing stage measures the accuracy of this prediction in order that 
the reliability of the algorithm rnay be assessed.

A single-layer network and a two-layer network were chosen for this study. A single-layer network 
can only model linear functions; this architecture was used to test whether a linear function was 
an adequate model. A network with two or more layers can model increasingly complex non­
linear functions. Various spectral features were chosen as inputs. The output of the network was 
always chlorophyll a concentration in }ig/l. The following paragraphs briefly describe how such 
a neural network works. For a more complete explanation, refer to Bishop (1995) and Haykin 
(1994).

The perceptron may be visualized as two layers of nodes interconnected with a layer of weights. 
In the single-layer network, the input, and output layers of nodes are interconnected with one 
layer of weights. The multilayer perceptron (figure 1) has more than the one layer of weights. 
In the two layer MLP, a hidden set of nodes (h in figure 1) lies between the two layers of weights 
(wi and W2 in figure 1).

Observed values, such as spectral radiance values, are entered into the network at the input 
nodes. If two bands of spectral data were to be used for the regression, the MLP would have 
two input nodes. These values are then passed to the next layer of nodes by being multiplied by 
the interconnecting weights. At each node in the next layer, the sum of all the weighted inputs 
is calculated (indicated by £  hi figure 1). In a two-layer network, if there are i input nodes
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i

Figure 1: A two-layer MLP. i indicates 
the input nodes, in this case two features 
are being input to the network, wi is the 
first layer of weights by which the inputs
are .multiplied__The weighted" inputs'afe
then summed and passed over an activa­
tion function at h (in this case a sigmoid). 
The outputs from h are passed through the 
second layer of weights, W2, and summed 
at the output node o. Finally, this value 
is passed through another activation func­
tion, in this case a linear transform, and the 
output value is the network’s prediction of 
the values being determined.

and h hidden nodes, then each of the i inputs will be multiplied by h weights. Effectively, the 
i-dimensional input space is transformed to h-dimensional space.

In the case of the linear, one-layer network, the sum of the weighted inputs is then passed 
through an activation function. This may be either a linear function, if a continuous output 
(such as concentration) is desired, or a threshold function if a binary output (as in classification 
problems) is required. The resulting values are the output of the network.

For the two-layer case, the h inputs to the hidden set of nodes are scaled by an activation 
function. Usually this is a non-linear function such as a sigmoid or tanh. The scaled outputs 
of these nodes are then passed on to the next set of nodes via another set of weights, summed 
at each node and then passed through another set of activation functions to form the output to 
this network.

Initially, the network needs to be trained with patterns of known inputs and outputs. In this 
study, the network was trained with spectral features as inputs and measured chlorophyll a 
concentration as outputs. This is achieved by feeding the input information forward, as described 
above and then assessing the error in the output by comparing it with the measured values. The 
error can then be ’back-propagated5 through the network and the weights changed according to 
the magnitude of the error. This feed-forward/back-propagation process is repeated, iteratively 
adjusting the weights, until either a predetermined number of iterations are reached or the 
reduction in error with each iteration is below a desired amount.

The multilayer perceptron has a very simple operation, however, its use can be complicated by 
the many parameters which may be adjusted to achieve a better performance. These parameters 
are necessary because the neural network does not make any a priori assumptions about the 
data. The most basic parameters are summarized in table 1. It has also been shown in some 
studies that the weights at the initialization of training can have a significant effect on the 
performance of the network (Paola and Schowengerdt 1997) and so a number of runs of each 
network may be necessary to ensure that the optimum performance has been achieved for that 
set of parameters.

_ h -  -
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Parameter Possible values Purpose
number of layers 1,2,3, ... Control the complexity of the functions being 

modelled. One layer results in a linear function, 
increasing the number o f layers results in 
increasingly complex, non-linear functions

number of inputs 1,2,3, ... Can be any number of measurements, or 
combinations of measurements

number of hidden 
nodes

1,2,3, ... Control the complexity of the functions being _ . 
-modelled* -

number of iterations 1, ... ,10, ... , 
1000, ...

Generally, the training error decreases with the 
number of iterations. Too few iterations, and the 
network will not have converged well. However, 
if training continues for too long, the network 
may over-fit the function to the training data 
causing a loss of generalisation of the function

activation function linear, sigmoid, 
tanh, threshold

Control the value of the output from each 
node

learning rate tj 0< Tf <1 controls the magnitude of each weight change
momentum term (.i 0< \i <1 changes the effect of the learning rate depending 

on the change in error between iterations

Table 1: The main parameters used for setting up a neural network.

If all possible parameters were to be adjusted and tried in combination with all other variations 
of parameters then several thousand runs of the network would be required. For this reason, this 
study made a number of assumptions about the effect of changing each of the parameters based 
on a few preliminary trainings of the networks. Details of these assumptions and the training of 
the multilayer perceptron are given in the section 5.2.
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2 Aims and objectives

The aim of this study is to investigate the potential for using neural networks to derive the 
concentration of chlorophyll a in coastal waters. The specific objectives are as follows:

1. To investigate the ability of neural network-derived algorithms to predict chlorophyll a 
from spectral information using a set of in situ _chlorophy 11 a measurements .as-training-

- - data - - - - - - -

2. To investigate the robustness of these algorithms in the same coastal region over time

3. To investigate the robustness of these algorithms in other locations around the UK coast
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3 Data

The Environment Agency’s National Centre for Environmental Data and Surveillance have an 
archive of imagery and in situ samples. These data were originally obtained for their ’’ Case 
Study 1” (Environment Agency 1997). From this, three locations were chosen for this study 
which will be referred to as Norfolk 31/05/96, Norfolk 11/08/96 and Holdemcss 19/08/96.

The first- set- comprised -three 7-2- band CASI images in- enhanced spectral~iriode~(see'appendix 
A). These had been flown over the north Norfolk coast on 31st May 1996. Concurrent with 
these overflights, a cruise took underway fluoromcter measurements and several samples of water 
along the cruise track. The water samples were then processed in the laboratory to determine 
the chlorophyll a concentration of the water in fig/1. These data were used to develop the 
algorithms as well as to test them.

The second data set, also of the north Norfolk Coast, had two 72 band CASI images flown on the 
11th August 199G. Four coincident water samples were also taken and processed for chlorophyll 
a concentration. These data allowed the assessment of the validity of the algorithms over time.

The third data set contained two 72 band CASI images of the Holderness Coast for 19th August 
1996. There were 17 water samples taken during the simultaneous cruise which were processed 
for chlorophyll a concentration. These data were used the assess the portability of the algorithms 
around the coast.

All three data sets conform to the quality standards set out by the Environment Agency which 
are detailed in (Environment Agency 1997). Table 2 summarizes the data sets.

Data set Images

Number of 
fluorometer 

measurements

Number of 
laboratory 

samples
Norfolk
31/05/96

imagl875 
i mag 1876 
iinagl877

3142 17

Norfolk
11/08/96

irnag2334
imag2335

4

Holderness
19/08/96

imag2356
imag2369

--- 17

Table 2: The three data sets used in this study

3.1 Atmospherically corrected data

Atmospherically corrected formats of the above images were considered for this study. These 
data were processed using the atmospheric correction algorithms developed by Plymouth Marine 
Laboratory as part of the COAST project (Aiken et al. 1995). This requires subsampling the 
72 channel imagery to 15 channels of up to 25 nm width before applying the algorithm. It was 
found that the fiuoresccnce peak around 685 nm became more prominent as a result of this 
correction. However, the data were noisy with many pixels having zero values in one or more 
bands. A previous study using this data had found a slightly reduced accuracy for chlorophyll
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a algorithms developed from it (Environment Agency 1997). After some consideration it was 
decided that only the original imagery would be used for the study, since this would allow us to 
explore whether algorithms that did not require the extra stage of atmospheric correction could 
be developed.
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4 Compiling the data sets for the study

To train and test the algorithms, sets of spectra and their corresponding chlorophyll a concen­
trations needed to be compiled. The fluorometer readings were to be used as the measure of 
chlorophyll a concentration for the Norfolk 31/05/96 data. This required calibrating the fluo­
rometer using the 17 laboratory samples as is described in section 4.1. All the data sets then 
had the spectral information extracted from the images_at_the site_of_each_ chlorophyll a data 
point (section 4.2 and section 4.3).

4.1 Calibration of the fluorometer data

The Through-fiow Fluorometer measured solar-induced fluorescence. This needed to be cali­
brated to chlorophyll a in f.ig/1 using the 17 water samples which had been processed for chloro­
phyll a. It was assumed that a linear relationship existed between the fluorometer readings 
and the chlorophyll a concentration of the water and that the relationship remained constant 
throughout the course of the cruise.

A fluorometer reading was found for each laboratory datum using the time fixes provided with the 
both sets of measurements. Four of the laboratory data were discarded because no fluorometer 
reading could be found within a short time interval, or because no fix had been provided. The 
geographical position at which the water sample had been taken was then assumed to be the 
same as the corresponding fluorometer reading.

A number of different buffers were used around the calibration points to determine if a better 
correlation between measured chlorophyll a and fluorometer readings could be gained. Buffer 
sizes of 50, 100, 150, 200 and 250 metres were used (see appendix B) but it was found that 
increasing the buffer around the data point decreased the correlation. Therefore the fluorometer 
was calibrated using only those fluorometer readings that lie at the locations of the calibration 
data points.

Figure 2: Calibration of the fluorometer 
data using the laboratory water samples. 
The calibration data set and the fluorom­
eter data have a correlation coefficient of
0.6640 which, for 13 data points, is signifi­
cant at the 10% level.

A first-order polynomial was fitted to the 13 data points using the least squares method. The 
relationship

fluoro =  4.342Chla +  9.403 (1)

was found where fluoro indicates the fluorometer reading and Chla indicates the chlorophyll a

Chlorophyll 4 concentration (MG/l)
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concentration in fJ-g/L Inverted, this produces the calibration

Chla{(tg/l) =  0.230fluoro -  2.163 (2)

as illustrated in figure 2. This relationship was used to calibrate all 3142 data points to chloro­
phyll a in fig/L For the rest of the study, for the Norfolk 31/05/96 data set, the fluorometer 
leadings will be referred to as chlorophyll a measurements.

4.2 . _ Extraction-of spectral information

A number of preliminary tests were performed to determine the most appropriate method for ex­
tracting the reflectance values corresponding to each chlorophyll a measurement. Three possible 
methods were proposed:

1. Extract the reflectance value in the pixel nearest to the position of the fluorometer reading

2. Extract the median of each band within a window of a predetermined size

3. Extract the weighted mean of each band within a window of a predetermined size

It is usual to use some form of buffer when extracting information from images of water scenes 
because current and tidal effects cause uncertainty in the true location of the chlorophyll a 
measurement in the image. However, the study should account for the underlying scale of 
variation of chlorophyll a in the water which is often of the order o f a few tens of metres in 
coastal regions (Steele and Henderson 1979; Yoder et al. 1987).

Assessing the validity of various window sizes for the latter two methods was considered very 
computer-intensive and so the median pixel value and the weighted mean value was calculated 
for five bands and four window sizes only for image 1876. The weighted mean method used a 
two-dimensional Gaussian curve to weight the pixel values thus biasing the mean to the values 
at the centre of the window. The correlations for both methods and for each band and window 
size are shown on appendix C.

Generally as the window size increases, there is an increase in the correlation of chlorophyll 
a measurements with spectral data obtained from the window. This is consistent with the 
findings of the Environment Agency in their study using this data (Environment Agency 1997). 
There is also a slight improvement with the use of the weighted mean method. It was therefore 
determined that the spectral data to be used in the rest of this study would be extracted from 
the imagery using the weighted mean method and a window of 21 by 21 pixels - this is equivalent 
to about 200 meters on the ground.

4.2.1 Norfolk 31 /0 5 /96

Using the weighted mean method described above, the value of each band was calculated for 
each chlorophyll a measurement. The three sets of spectral values, corresponding to the three 
images, were then concatenated. Because the images overlap, some data points were removed 
by giving priority to the data which had a shorter time interval between the overflight and the 
in situ sampling. This resulted in pixels from image 1875 having a higher priority to those in 
image 1876 where they overlap, and image 1876 having priority over image 1877.



Several more data points were removed because they fell outside of the image range and others 
were removed because the window around the data point lay partly outside the image. This 
resulted in 2354 chlorophyll a measurements (calibrated fluorometer readings) with correspond­
ing spectral readings in each CASI band. These were randomly separated into three sets - a 
training set on which to create the algorithms, a validation set to be used in training the MLP 
and a testing set to test the accuracy of the algorithms. These sets are summarized in table 3.

4.2.2 Norfolk 11/08/96^ _________ __ _  -  -  ---------------------------------------------------

Of the four chlorophyll a data points available for this site, only one was found to lie in the 
regions covered by the images. Therefore, each pixel in the images of this set was processed 
using the weighted mean method. The algorithms would be validated by applying them to the 
images as a whole and making a qualitative assessment of the resulting chlorophyll a images. 
The statistical properties of this data set are assumed to be similar to those of the four data 
samples for this location. The chlorophyll a concentration for this site is very low, and appears 
to have a very low range (table 3).

4.2.3 Holderness 19 /08 /96

Using the weighted mean method described above, the value of each band was calculated for 
each chlorophyll a measurement. Twelve of the 17 chlorophyll a points lay within the images. 
Again there w;is quite an overlap and so spectral data was chosen from the image whose flight 
time is nearest to that of each chlorophyll a sample. All samples were within two hours of the 
overflights. This data set also has low chlorophyll a values and a low range of values (table 3).
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set

number 
of data 
points

Chlorophyll a f^gjl
standard

minimum maximum mean deviation
Norfolk 31/05/9G

training
validation

testing

687
484

1183

3.15 22.62 8.86 4.63 
3.14 22.16 9.02 4.76 
2.91 22.60 8.98 4.73

Norfolk 11/08/96
testing

based on the four chlorophyll a measurements made at this location 
— 1.07 1.83 1.52 0.34

Holderness 19/08/96 
testing 12 0.71 3.15 1.77 0.78

Table 3: Statistics of the data sets which will be used to train and assess the algorithms.

4.3 Extracting a subset of spectral features

The volume of spectral information was reduced by picking out a number of spectral features 
from which to develop the algorithms. Bands were chosen from each section of the spectrum
- 1)hie.green,red and near infra-red (NIR) - according to their correlation with chlorophyll a
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(figure 4.3), their correlation as ratios with chlorophyll a (appendix E) in the training set, and 
their correlation with each other (appendix D) and also bands close to known features in the 
spectrum were considered. This resulted in a subset of eight bands (table 4) being extracted

Figure 3: Correlation of bands with Chloro­
phyll a for the training set. With 687 data 
points, all correlations above ~ 0.1 may be 
considered significant. The highest corre­
lations are for red wavelengths, especially 
around 690 nm. A trough in correlation is 
evident in the green wavelengths, bands 15
- 28. The lower correlation in bands 1 to 4 
may be due to the high noise level evident 
here.

Band
number

Wavelength t 
(nm) Comments

6 441 (blue) Close to chlorophyll a absorption peak and has one of the 
highest correlations with chlorophyll a in the blue.

20 540 (green) Close to green reflectance peak and is within a minima in the 
correlation of green wavelengths with chlorophyll a . One of the 
better correlations with chlorophyll a as a ratio with band 6.

27 589 (green-red) Ratio of band 27 and 29 gives the highest, correlation with 
chlorophyll a of whole training set.

29 604 (red-green) Ratio of band 27 and 29 gives the highest correlation with 
chlorophyll a of whole training set. Low response to chlorophyll a .

39 675 (red) Chlorophyll a absorption peak. Also one of highest 
correlations of ratios (with band 41).

41 689 (red-NIR) Good correlation with chlorophyll a as single band and in ratio 
with band 39.

44 711 (NIR-red) Highest red band correlation with chlorophyll a . Close to peak in 
reflectance.

47 732 (NIR) Low correlation with chlorophyll a in the NIR.
*sec appendix A for full details

Table 4: The subset of eight bands chosen for algorithm development. There are numerous 
methods available to allow an intelligent choice of spectral features. This method was based on 
characteristics of the training data set as well as on an understanding of chlorophyll a spectra.

The fluorescence feature near 685 nm was also extracted. The peak is not very clear in the CASI 
spectra but a drop in reflectance is almost always evident from band 40 (682 nm) to band 41 (689 
nin). The fluorescence line height (FLH) feature is usually measured above a baseline described 
by two bands either side of the peak. Several baselines were tried and the correlation coefficient 
of the FLH measurement with chlorophyll a was used to determine which FLH measurement for

from the training, validation and testing sets.



use in algorithm development (table 5).
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Name of 
FLH measure reference

Baseline 
wavelengths t

Baseline
Bands

Correlation
coefficient

Gitelson92 
Gitelson94a 
Gitelson94b 
FischerK90a 
FischerK90b _

(Gitelson 1992)
(Gitelson et al. 1994) 
(Gitelson et al. 1994) 
(Fischer and Kronfeld 1990) 

. (Fischer and Kronfeld 1990)

675 730 
650 715 
670 730 
645 725 
645 ' 670'

39 47 
36 45 
38 47 
35 46 

"35“ '"38

0.7282
0.5308
0.7227
0.5646 _____
0.6671

tsee appendix A for full details

Table 5: Trials of different FLH measurements. Fluorescence height was measured at band 40 
above a straight baseline described by two bands in the spectrum.

The baseline described by bands 39 and 47 (Gitelson92) had the highest correlation of 0.7282 
and so was chosen for the rest of the study. This feature was subsequently calculated for the 
validation and testing sets.
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5 Training the algorithms

The algorithms were produced using the Norfolk 31/05/96 training data with the testing data 
kept aside to test the algorithms. The neural network also required the validation set to deter­
mine the value of some of the parameters in its architecture.

5.1 Linear regression analysis ________ __ - - ---------------- ------------------

Using the subset of bands defined in section 4.2 several sets of band ratios were produced. A 
simple linear regression using the least squares method was produced for each ratio. This was 
then inverted to produce the algorithm which would predict chlorophyll a concentration from 
the ratios. The resulting linear agorithms are summarized in table 6 and illustrated in figure 4.

Feature Description
Correlation 
with Chi a Gradient Intercept

blue-green ratio band (5 
band 20 0.1273 489.1263 -484.8864

red-NIR ratio band 41 
band 47 0.1608 584.2633 -746.2736

green-red ratio 1 band 39 
band 20 0.4987 554.9866 -303.2480

green-red ratio 2 band 29 
band 27 0.7698 480.7465 -439.2500

red-red ratio band 41 
band 39 0.7362 795.4905 -G32.0558

FLH see section 4.3 0.7282 0.9920 -19.3429

Table G: The least-squarcs approximation of the relationship feature  = f (Chl)  is calculated 
(this is illustrated in figure 4). This is then inverted to find the relationship in the form Chi =  
Gradient * fea tu re4- Intercept which best predicts chlorophyll a from the spectral information 
from the training data.

5.2 Training the M L P

Training a multilayer perceptron can prove complicated because there are so many adjustments 
that can be made to the network to improve the training. A few preliminary trainings were 
performed and tested against the validation set (section 4.2) and assumptions were made on the 
outcomes as to the best activation functions and learning rate to be used throughout the course 
of this study. For the two-layer network, it was determined that a tanh activation function was 
to be used at the hidden nodes and a linear function used at the output nodes. For both types 
of network, the learning rate would remain 0.001 through the study. It was also verified that 
the value of the initial weights does not effect the training of the network and so each network 
only needed to be initialized once.

A smaller subset of spectral features than for the linear regression model was used to train the
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Figure 4: These figures show the value of the six spectral features used for the linear regression 
analysis plotted against chlorophyll a concentration. The straight line illustrates the line of 
least-squares fit to the data.

network. These features were: bands 6, 20. 41 and the FLH measurements. With only these four 
features. 15 combinations of inputs were possible. The number of nodes in the hidden layer was 
varied for each possible combination of input. The possible numbers of nodes were: zero (the 
one-layer network), two, six or 10. By manipulating only these two parameters of the network, 
GO networks were set up for training.

The validation data set was then used to estimate the ideal number of iterations for training the 
networks. At the end of each iteration the first 1001 of the validation data points were passed 
through the network and the output error of this calculated. Because only the training error is 
back-propagated through the network, it is expected that the validation error will decrease for 
a number of iterations, then increase when the network begins to over-train. The number of 
iterations at which the validation error is minimum was then be assumed to be the ideal number 
of iterations.

The (JO networks were all trained for 2000 iterations and then retrained to the number of it­
erations at which the validation set displayed the minimum error. These networks were then 
used to compare the algorithms developed vising a neural network model, to those using linear 
regression.

’ By dividing the data using a random method (section 4.2), the statistical properties of the training, testing 
and validation sets were very similar. A subset of the validation set was chosen arbitrarily for training the network 
so that, if the network was to reduce the training error by predicting the mean chlorophyll a for every pattern, 
an increase in error would be evident for the validation set.
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6 Results

Thu algorithms developed in the previous section were tested by comparing their predictions 
of test set chlorophyll a values with the measured values. Two measures were used for this 
comparison. The first is the correlation between the predicted output and the desired output 
which is calculated as:

p =  - « ) ( * - * )  (3) 

_______________(*« -- * )2- 2fer(®« ~ * ) 2- ---------------------------------------------------
where x\ is the ith point in the testing set, x.{ is the prediction for this point, x  is the mean of 
chlorophyll a measurements in the testing set, x  is the mean of the predictions of these mea­
surements and n is the number of data in the testing set. This measurement is the normalized 
covariance of the predicted and desired values and increases with the ’similarity’ of the corre­
sponding values. The second measure is the Root Mean Squared Difference (RMSDIF) which is 
calculated as:

£ =
n . . i=i

(4)

This measurement increases with the error of the prediction. If the mean value were always 
predicted the RMSDIF would be equal to the standard deviation of the desired values.

6.1 Testing with the Norfolk 3 1 /0 5 /9 6  test set

The linear and neural network algorithms were applied to the 1183 testing data points and the 
correlation and RMSDIF between the predictions and the measured values were calculated.

6.1.1 Linear regression

Table 7 gives the correlation and RMSDIF of the chlorophyll a values predicted by the linear 
algorithms.

Feature P e
blue-green ratio 
red-NIR ratio 
green-red ratio 1 
green-red ratio 2 
red-red ratio 
FLH

0.1594
0.1625
0.4993
0.7641
0.7613
0.7600

34.7824
27.8989
8.3975
4.0862
4.2775
4.2703

Table 7: The correlation and RMSDIF for the Norfolk 31/05/96 testing set. p is the correlation, 
£ t he RMSDIF.

There quite a distinction between the performances of the first and second three algorithms. 
The blue-green, red-NIR and green-red 1 ratios have not performed well, the first two having 
error values which indicate that predicted chlorophyll a is well outside the range of measured 
values. The second green-red ratio, the red-red ratio and the FLH measure gave the better
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results, with errors below the standard deviation of the chlorophyll a for this set (4.73 fig ft) 
and good correlations. These algorithms are based on features which are close to each other 
in the spectrum. It is possible that these ratios performed better than the more conventional 
ratios because the influence of the atmosphere, DOM and suspended sediment is approximately 
uniform over the shorter spectral range (Neville and Gower 1977).

Looking at the plots of the spectral features against chlorophyll a concentration (figure 4) it is 
clear to see why a good prediction was not found for some of the conventional band ratios. The 
blue-green ratio displays three distinct ’filaments’ in this figure and the red-NIR ratio has two 
of these._The relationship between the ratio and chlorophyll a‘ is therefore ex treTnelylion-linear. 
These filaments can be associated with precise regions in the coastal zone (appendix F). This 
illustrates the very site-specific nature of algorithms based in these measures.

6.1.2 Neural network models

The number of iterations to which each of the GO networks was trained to is given in appendix G. 
The simpler networks reached a validation error minimum much sooner than the more complex 
networks. A training neural network will always produce a linear model in the initial iterations. 
Those networks which required the fewest iterations tended to have FLH as an input. This 
indicates that FLH has a near-linear relationship with chlorophyll a.

The testing set was passed through the trained networks and the outputs compared to the mea­
sured chlorophyll a values. Appendix H gives the correlation and RMSDIF for all 60 networks. 
Three parameters were varied during the training and testing of the neural network - the num­
ber of inputs, the features passed into the network and the number o f hidden nodes. Table 8 
summarizes how varying these parameters affected the output of the network.

The top left table shows how the average correlation and RMSDIF change with the number of 
input nodes. There is a very clear increase in correlation and decrease in error with more input 
features, indicating that each input added more useful information.

The top right table compares the number of hidden nodes. Where no nodes were used (a one- 
layer network), the predictions are not as good. However, increasing the number of nodes in a 
two-layer network does not appear to have had a strong effect on the prediction. From this we 
may infer that, although the relationship between the spectral information and chlorophyll a is 
non-linear, it is not particularly complex.

The two bottom tables indicate the effect that particular bands have on the outcome of the 
model, and whether certain bands compliment each other in the model. The greatest difference 
here is that band 20 does not appear to contribute as much to the model as the three other 
bands. Band 6 in combination with FLH or with band 41 appears t;o produce much better 
models than any other combinations of features.

Overall, the best correlations and error values were always achieved for the networks with all four 
inputs, indicating that it is the inputs that have the greatest effect on the resulting algorithm. 
The best overall network was the one using all four inputs and which had 10 hidden nodes.

Three of the trained networks were used to predict the chlorophyll a the whole images of the 
Norfolk 31/05/96 data (appendix I. The range of chlorophyll a predictions is acceptable for 
most of the images. Overestimates are likely in the north of the region, possibly where edge
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Number 
of inputs E P e

Number of 
hidden nodes E P £

1 16 0.6359 3.7394 0 15 0.6802 3.5424
2 24 0.7447 3.2135 2 15 0.7743 2.9587
3 16 0.8567 2.3947 6 15 0.7875 2.8177
4 4 0.9167 1.7514 10 15 0.7862 2.8329

Input
includes band E P e
6 ---------- — -32- 0.8096 2.5928'
20 32 0.7536 3.0115
41 32 0.7902 2.8166
FLH 32 0.8251 2.7367

Input
includes bands E _ P - . . £- -
6 20 16 0.8335 2.4185
6 41 16 0.8777 2.1167
6 FLH 16 0.8834 2.1492
20 41 16 0.7957 2.7426
20 FLH 16 0.8318 2.6463
41 FLH 16 0.8401 2.5582

=  The number of network’s results that the mean correlation and RMSDIF 
were calculated from, p =  Mean correlation coefficient, £ =  Mean RMSDIF

Table 8: These tables summarize the goodness of the neural network predictions for Norfolk 
31/05/96. The top left table finds the mean correlation and RMSDIF for networks with a given 
number of inputs. The top right table finds these means for networks with a given number of 
hidden nodes. The bottom left table finds the means for all the networks which have a particular 
spectral feature (a band or FLH) as an input and the lower left table finds these means for all 
the networks for which a combination of two spectral features are found as inputs.

brightening has effected the images. The two more complex networks appear a little more 
sensitive to noise in the images whereas MLP 22b (two inputs, 2 hidden nodes) has produces a 
smooth chlorophyll a prediction.

6.2 Portability over time - the Norfolk 1 1 /0 8 /9 6  test set

Because only one measurement of chlorophyll a could be obtained for this set, the algorithms 
were applied to the images. The three best linear regressions (green-red 2 ratio, red red ratio 
and FLH) were compared to three of the neural networks (MLP 22b, MLP 36c and MLP 410a). 
The resulting images are shown in appendix J.

6.2.1 Linear regression

The ranges of values predicted by the linear algorithms were:
Green-red ratio =  < — 90 to > 200 (ig/l 
Red-red ratio =  1 to 101 fig ft 
FLH =  < -1 0  to >  200 pg/1
The negative values are clearly inaccurate and the ranges of chlorophyll a values are much higher 
than those measured at the location. These predictions are not reliable.
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6.2.2 Neural network models

The ranges of values predicted by the neural networks are:
MLP 22b =  2 to 42 ng/l 
MLP 36c -  1 to 27 pg/l 
MLP 410a =  -1 0  to 21 p.gjl
The predictions are probably too high for the region but are more realistic than the linear re­
gression predictions. The images do show some interesting structure which may result form 
chlorophyll a in the water. Patches of high or_ low chlorophyll-a-are-quite clear;' This'struc-~

- ture is' visible in* tile CASI imagery as brighter patches in the water, particularly in the green 
wavelengths.

6.3 Portability over space - the Holderness 1 9 /0 8 /9 6  test set

The 12 Holderness data points were applied to all the linear regression algorithms and all the 
trained neural networks and the correlation and R.MSDIF between the predicted and measured 
values were calculated.

6.3.1 Linear regression

Table 9 summarizes the results of this test.

Feature P £
blue-green ratio 
red-NIR ratio 
green-red ratio 1 
green-red ratio 2 
red-red ratio 
FLH

-0.8459
0.7586
0.7965
0.5142
0.1128
0.7718

26.9219
123.9834
42.6846
15.5455
8.3482

32.3012

Table 9: The correlation and RMSDIF for the Holderness 19/08/96 testing set. p is the corre­
lation, e the RMSDIF.

Although there are some good correlations between predicted and measured values, the error 
values are all poor, especially considering the standard deviation for this set is only 0.7S fig/l. 
The linear regressions have predicted values ranging over several orders of magnitude.

The two lowest RMSDIFs result from the green-red 2 and red-red ratios - the two ratios chosen 
because they had a good correlations with chlorophyll a in the Norfolk 31/05/96 training set. 
The FLH algorithm performs quite well but consistently over-estimates chlorophyll a, suggesting 
that the algorithm may be rescaled to produce a better chlorophyll a estimation. Again, the 
better performance was achieved by the last three algorithms although the predictions are too 
poor for the algorithms to be considered reliable.



6.3.2 Neural network models

Table 10 summarizes the correlation and RMSDIF of the neural network tests.
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Number 
of inputs E P £
1 16 0.3071 13.6284
2 24 0.2088 14.9294
3 16 0.2962 14.0766

-4 --------------- ' 4 "0:2889" 13.6898

Number of 
hidden nodes E P £
0 15 0.6083 21.8699
2 15 0.1132 11.3943
6 ___________ .15. .0.1882- -11.-7698-
10 15 0.1450 12.0557

Input
includes band E P £
6 32 0.1251 14.0519
20 32 0.2332 14.3325
41 32 0.3154 14.7292
FLH 32 0.3818 14.0544

Input
includes bands E P £
6 20 16 0.1510 14.0648
6 41 16 0.1900 14.1764
6 FLH 16 0.2058 14.0860
20 41 16 0.3763 14.4324
20 FLH 16 0.3897 14.0228
41 FLH 16 0.3224 14.3762

E  = The number of network’s results that the mean correlation and RMSDIF 
were calculated from, p = Mean correlation coefficient, e =  Mean RMSDIF

Table 10: These tables summarize the goodness of the neural network predictions for Holderness 
19/08/96.

The number of inputs appears to have a slight effcct on the reliability o f the prediction - slightly 
lower RMSDIFs were achieved by networks with one or four inputs.

The best errors are achieved when a network with 2 or 6 hidden nodes is used. Again, this 
highlights the non-linear nature of the relationship between spectral information and chlorophyll 
a concentration. The high errors resulting from using the linear networks are associated with 
high correlations, as with the linear regression. The error actually increases as the number of 
hidden nodes increases above 2, possibly because the more complex models that result are over­
fitted to the training data and that a better generalisation was achieved with the two-layer, two 
hidden node network.

No real conclusions can be drawn from the last two tables in table 10. There is a very slight 
improvement when using blue or FLH as an input, but this is tiny compared to the magnitude 
of the error.

Looking at the individual results for each network, the three best networks (mlpl2d, m lpl6a 
and rnlpllOa) are all produced using only one input (either FLH or blue). As with the linear 
regression, these algorithms may be more robust to the effects of sediment and the atmosphere 
through the spectrum because they do not rely on the relationship between spectrally-distant 
bands.

Overall, the predictions made of this data set were poor. One possible reason is because the 
chlorophyll a concentration of the site is below that of the training data, so the algorithms 
are attempting to extrapolate the values. Another possible reason may be that the effects of 
suspended sediment, DOM and the atmosphere are different to those at the training site, so the



algorithms are unable to correct for them.
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7 Discussion

The neural networks proved a simple way of combining several features and of modelling non­
linear regression functions. Although the networks were rather complicated to initiate, once 
trained they proved efficient at predicting chlorophyll a concentration. Moreover, the results of 
the multiple runs allowed some insights into the nature of the data being modelled.

From the improved performance with the two-layer networks, we _may conclude that a non­
linear relationship, does .exist between spectral "qualities and chlorophyll a, which explains the 
poor performance of the linear regression functions. The networks also provided information 
about which features are useful for chlorophyll a prediction.

As has been found in several studies, the FLH measure gave good predictions for the linear 
regressions. In fact, the relationship between this and chlorophyll a seemed to be the most 
’linear’ because the single-layer networks which had FLH as an input always gave better results 
than other single-layer networks. This idea was supported by the short training time required 
by networks with FLH as an input. Of the other linear regressions, those ratios produced from 
spectrallv-close wavebands gave better performances.

The performance of the blue band was more of a surprise. Many recent studies have avoided 
this part of the spectrum because of the interference of DOM and the atmosphere and this study 
certainly found that the blue-green linear algorithm was a very poor predictor. However, this 
input provided good predictions as an input to non-linear regressions. This non-linear behaviour 
was highlighted by the plots of blue-green ratios against chlorophyll a.

The neural networks performed better than the linear regression algorithms for the Norfolk 11/ 
08/96 data. Non-linear algorithms developed in this manner therefor show some promise with 
predicting chlorophyll a at a site over time. However, none of the algorithms showed much 
promise for predicting chlorophyll a at a different site (Holderness). This is to be expected since 
the inputs chosen for training the algorithms, and the training data itself, was all based on the 
characteristics of a very different site.

Several points can be noted of the performance of the algorithms when applied to the Holderness 
19/08/96 data. Firstly, the algorithms that performed the best only had one input. This may 
be similar to the finding that linear regressions with spectrally-close bands gave better results. 
It is likely that environmental factors, such as sedimentary and atmospheric conditions were 
quite different at the Holderness site. Hence, the algorithms that perform best are those that 
are more robust to differing effects of these factors across the spectrum.

In general, the more complex non-linear algorithms performed best when predicting chlorophyll 
a for data for the same place and time as the data on which it was trained. However, less 
complex but still non-linear algorithms performed better when making predictions for new data 
sets.

7.1 Future work

The major drawback of this study was the shortage of suitable data from other sites. To develop 
this research further, datasets containing imagery and in situ measurements of chlorophyll a for 
several different regions would be required.
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The choice of features and the non-linearity of the algorithm were found to be the dominant 
factors in the algorithms5 effectiveness. The relationship between features and chlorophyll a 
changed between sites, however, so using a single site to develop an algorithm for the whole 
co;ist is unlikely to be successful. Clearly, more portable algorithms would be best developed 
using data from many different environments.

With data that are more representative of the whole UK coast, it is recommended that a 
comprehensive analysis of spectral features should be undertaken to determine which are most 
suitable for an algorithm which will estimate chlorophyll a for the whole,set. - -The -method - 
is cho_sen_ for .this should-take-into-account the'no’n-linearity of the relationship found between 
spectral features and chlorophyll a. Neural networks themselves make possible several methods of 
non-linear feature extraction such as non-linear principle component analysis (Bishop 1995) and 
the comparison of the performance of networks trained with different combinations of features 
as demonstrated in this study.

Whatever method is chosen for feature selection, it is unlikely to be exhaustive because so many 
spectral features are possible with the enhanced spectral mode CASI imagery. It will therefore 
be important that the resulting algorithm makes the most of those features chosen. In this study, 
several algorithms have been developed and compared to each other. A future study could use 
a neural network to combine several algorithms, including those produced by linear regression 
and other techniques, in a committee network. This utilizes the ability of a neural network to 
automatically weight and assign reliability measures to algorithms and produces an algorithm 
with better generalisation than any of its component algorithms (Bishop 1995).

This study has found that there is potential for improved chlorophyll a prediction algorithms 
to be developed using neural networks and has provided a useful basis for further research into 
this subject.
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8 Conclusions

A number of conclusions may be drawn from this study:

1. There is non-linearity in the relationship between spectral information and chlorophyll a 
in water. Hence, linear algorithms will not predict chlorophyll a well for all but very short 
ranges of chlorophyll a.

___ 2._ An increase-in the number of input’ features to the algorithm provides a better prediction 
of chlorophyll a and so multiple regression algorithms should be considered where possible.

3. Neural networks provide a simple means of developing non-linear, multiple regression al­
gorithms.

4. The reliability of algorithms over time and space could not be satisfactorily assessed, 
however preliminary results appear to demonstrate that algorithms should be developed 
using many data from differing environmental conditions to ensure a good generalisation.

5. The FLH feature gave good predictions of chlorophyll a and, although its relationship to 
chlorophyll a is non-linear, it was the most suitable of all the features when only linear 
modelling is possible.

(j. The blue wavelengths should not be ignored. Blue appeared to have a very non-linear 
relationship to chlorophyll a, but this relationship was strong and the blue waveband 
enabled some good predictions of chlorophyll a.

7. With an adequate provision of suitable image and in situ data, there is great potential for 
using neural networks in future studies of chlorophyll a around the coast o f the UK
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Appendices



A The CASI enhanced spectral handset

Band number Lower Limit (nm) Centre (nm) Upper Limit (nm) Band Width (nm)
1 401.6 405.7 409.8 8.2
2 408.6 412.7 416.8 8.2
3 415.6 419.7 423.8 8.2
4 422.6 426.7 430.8 8.2
5 429.7 433.8 _ ^  -437.9-------- --------- ' 8:2"

____ Jj______ - -  -  -436:7 " "440.8 444.9 8.2
7 443.7 447.8 451.9 8.2
8 450.8 454.9 459 8.2
9 457.8 461.9 466 8.2
10 464.9 469 473.1 8.2
11 471.9 476 480.1 8.2
12 479 483.1 487.2 8.2
13 486 490.1 494.2 8.2
14 493.1 497.2 501.3 8.2
15 500.1 504.3 508.5 8.4
16 507.1 511.3 515.5 8.4
17 514.2 518.4 522.6 8.4
18 521.3 525.5 529.7 8.4
19 528.3 532.5 536.7 8.4
20 535.4 539.6 543.8 8.4
21 542.5 546.7 550.9 8.4
22 549.6 553.8 558 8.4
23 556.7 560.9 565.1 8.4
24 563.8 568 572.2 8.4
25 570.9 575.1 579.3 8.4
26 578 582.2 586.4 8.4
27 585.1 589.3 593.5 8.4
28 592.2 596.4 600.6 8.4
29 599.3 603.5 607.7 8.4
30 606.5 610.7 614.9 8.4
31 613.6 617.8 622 8.4
32 620.7 624.9 629.1 8.4
33 627.9 632.1 636.3 8.4
34 635 639.2 643.4 8.4
35 642.1 646.3 650.5 8.4
36 649.3 653.5 657.7 8.4
37 656.4 660.6 664.8 8.4
38 663.6 667.8 672 8.4
39 670.7 674.9 679.1 8.4
40 677.9 682.1 686.3 8.4

Continued on following page



Band number Lower Limit (nm) Centre (nm) Upper Limit (nm) Band Width (nm)
41 685.1 689.3 693.5 8.4
42 692.2 696.4 700.6 8.4
43 699.4 703.6 707.8 8.4
44 706.6 710.8 715 8.4
45 713.8 718 722.2 8.4
46 720.9 725.1 729.3 8.4
47 728.1 732.3 736.5 8.4
48 735.3 739.5 743.7 _ .A -4 - ______

. ... 4 9 _____ ----------742.5- -  - - - -746.7- " 750.9“ 8.4
50 749.7 753.9 758.1 8.4
51 756.9 761.1 765.3 8.4
52 764.1 768.3 772.5 8.4
53 771.3 775.5 779.7 8.4
54 778.6 782.8 787 8.4
55 785.8 790 794.2 8.4
56 793 797.2 801.4 8.4
57 800.2 804.4 808.6 8.4
58 807.5 811.7 815.9 8.4
59 814.7 818.9 823.1 8.4
60 822 826.2 830.4 8.4
61 829.2 833.4 837.6 8.4
62 836.5 840.7 844.9 8.4
63 843.7 847.9 852.1 8.4
64 851 855.2 859.4 8.4
65 858.3 862.5 866.7 8.4
66 865.5 869.7 873.9 8.4
67 872.8 877 881.2 8.4
68 880.1 884.3 888.5 8.4
69 887.4 891.6 895.8 8.4
70 894.7 898.9 903.1 8.4
71 902 906.2 910.4 8.4
72 909.3 913.5 917.7 8.4



B The fluorometer calibration data

Sizci of buffer (meters) 250 200 150 100 50
Laboratory Fluorom«tcr

n » lastin g Northing Chlorophyll reading at N* N* TV* N*
“  (ms/ 0 data point

1 637916 334383 8.79 39.78 10 39.10 8 39.25 6 39.32 4 39.25 2 39.08
2 627234 342133 7.19 30.34 11 31.37 9 31.49 7 31. G7 4 31.69 2 31.06
3 609448 347257 5.92 38.97 12 38.80 9 39.04 6 39.48 4 39.29 2 39.40
4 589185 349454 14.54 95.57 12 96.86 10 97.08 8 97.17 4 97.31 2 96.28
a 5G1126 348043 15.04 35.29 23 34.73 17 34.89 13 34.82 8 34.73 3 35.17
9 5G8869 346080 11.95 59.85 6 CO.37 7 60.58 G 60.80 4 60.65 3 __ -6 0 .7 3  -
10 585398 349595 13.G6 100.90 10 98.92 8 99.13 7 _ 99.63 -  5 "  "  99.34 3 99.47
i i 605690 347793 ■1.90 37.51 _7_ . - -  37 4 9 - 6 '  ~ 37.38 5 37.31 3 37.21 2 36.98
12 632086 339701 * -  — 9.52 ' _ 34.20 6 32 05 5 32.49 4 33.01 3 32.73 2 33.07

- I S ­ -6 5 1 1 8 2 318615 6.55 27.80 6 29.40 5 28.89 4 28.43 3 28.00 2 27.71
IS 605171 345716 13.33 70.46 2G 64.86 23 67.98 20 71.37 17 73.00 8 72.35
16 605306 346226 6.20 41.73 18 41.30 14 40.30 9 40.45 5 41.27 3 41.63
17 606449 350076 6.46 48.98 8 49.98 7 50 .1G 5 49,38 4 49.61 2 49.98

correlation 0.6640 0.6454 0.6559 0.GG37 0.6637 0.6648

t Number of fluorometer readings, * Mean flnorometer read ng, W Data point number

Comparison of different buffer sizes aronnd calibration data points. The correlation between 
mean fluorometer readings within the buffer and the chlorophyll a measurement improves with 
smaller buffer size.

C Comparison of different buffer sizes around fluorometer data 
points

Median for CASI band: Weighted mean for CASI band:
s ’ 15 20 30 40 60 | 15 20 30 40 60 /i*

1 0.5080 0.5323 0.6863 0.6852 0.4318 j
7 0.6497 0.6276 0.7116 0.7252 0.5354 0.6502 0.G305 0.7114 0.7267 0.5410 0.6509

11 0.6427 0.6350 0.7088 0.7249 0.5462 0.6483 0.G339 0.7103 0.7265 0.5468 0.6523
15 0.6396 0.6386 0.7068 0.7262 0.5593 0.6477 0.6352 0.7096 0.7270 0.5515 0.6642
21 O.G413 0.6431 0.7057 0.7258 0.5575 0.64G3 0.6364 0.7090 0.7273 0.5540 0.6546

0.6526 1 0.6535

^ Size of sides of window in pixels (one pixel has an edg s of approximately 20m). Mean correlation coefficient for cach window
sizi!. ® Mulin correlation coefficient for all window sizes for each method ol averaging values in the window

Correlation coefficients of different sized windows using two different methods o f combining 
the values within the window. The first method finds the median value within the window, 
the second finds the mean of the values winch are weighted using a Gaussian function. Using 
the values within a window of any size improves the correlation and generally there is a slight 
improvement with larger window sizes. The Gaussian weighting also gives a slightly better 
correlation overall.



D Correlation of training band with each other



de
no

m
in

at
or

 b
an

d

Correlations are for ratios in the Norfolk 31/05/96 training data set only.

E Correlation of training band ratios with Chlorophyll a
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F The different water bodies within the Norfolk region

Eattng
[ 10*



MLP training mean squared error

M LP
name

Input
bands

N umber 
of hidden 
nodes

Training 
MSB  
at 2000

Validation 
M SE  
at 2000

Lowest 
validation 
M SE at:

TYaining
M SE
at this point

Validation
M SE
at this point

m lpla 6 0 17.1570 3.3830 13 17.2314 3.1208
m lplb 20 0 17.4713 5.3474 10 18.0630 4.3608
m lplc 41 0 14.3462 5.3040 16 14.3744 5.2350
m lpld FLH 0 10.0575 109864 7 13.2581 7.6730
m lpl2a 6 2 0.6105 0.0664 172 0.6591 0.0366
m lpl2b 20 2 0.7282 0.3039 110 0.7171 0.2227
m lpl2c 41 2 0.4263 0.4388 10 0.6403 0.2274 _______
m lpl2d FLH 2 0.3633 0.4804 j r .  _ _______ 0 .5442 "  " 074456
m lpl6a 6 6 _______- -0  6219------ -0 :i 0 5 6 115 0.6630 0.0338

-ralpl6b - - 2 0 "  - '6 0.7402 0.3239 131 0.7164 0.2184
m lpl6c 41 6 0.4257 0.4366 8 0.6448 0.2211
inlpl6d FLH 6 0.3618 0.4910 6 0.5097 0.4526
m tpl10a 6 10 0.6192 0.0983 115 0.6655 0.0332
inlpl 10b 20 10 0.7288 0.3031 99 0.7183 0.2217
ml pi10c 41 10 0.4256 0.4351 6 0.6847 0.2269
m lpllO d FLH 10 0.3618 0.4893 4 0.5774 0.4591
mlp2a 6,20 0 16.9167 3.6551 14 16.9654 3.4699
■nlp2b 0,41 0 14.3617 5.1752 14 14.4894 4.7835
mlp2c 6,FLH 0 9.9126 8.8655 9 11.2301 6.9917
mlp2d 20,41 0 10.5211 9.6166 12 13.4466 4.4229
mlp2e 20,FLH 0 10.0518 10.8472 8 12.1053 7.8029
m lp2f 4 1 ,FLH 0 9.8724 9.2292 9 11.2888 7.6961
mlp22a 6,20 2 0.6067 0.1025 463 0.6330 0.0735
mlp22b 6,41 2 0.2488 0,0618 >2000 0.2488 0.0618
mlp22c 6,FLH 2 0.3192 0.2434 8 0.5094 0.2328
mlp22d 20,41 2 0.3764 0.3987 8 0.6726 0.2214
mtp22e 20, FLH 2 0.3430 0.4880 8 0.5188 0.3244
mlp22f 41, FLH 2 0.2910 0.4152 5 0.4857 0.2894
mlp26a 6,20 6 0.4769 0.0684 1780 0.4984 0.0634
mlp26b 6,41 6 0.2310 0.0598 1351 0.2369 0.0587
mlp2Cc 6, FLH 6 0.220S 0.0634 >2000 0.2208 0.0634
mlp26d 20,41 6 0.3721 0.3799 5 0.7023 0.2223
mlp26e 20 ,FLH 6 0.3184 0.5135 5 0,5617 0.3434
m)p26f 4 1 ,FLH 6 0.2782 0.3973 4 0,4854 0.3006
m!p210a 6,20 10 0.4907 0.0881 >2000 0.4907 0.0881
m)p210b 6,41 10 0.2283 0.0586 >2000 0.2283 0.0586
in!p210c 6,FLII 10 0.2243 0.0727 >2000 0.2243 0.0727
mlp210d 20,41 10 0.3727 0.3644 5 0.7058 0.2158
inlp210e 20.FLH 10 0.3189 0.5102 4 0.5248 0.3261
mlp210f 41.FLH 10 0.2820 0.4218 4 0.5509 0.3027
mlp3a 6,20,41 0 9.4785 6.2830 15 12.4302 3.3058
mlp3b 6,2 0 ,FLH 0 9.8235 8.6167 9 11.1597 6.8509
inlp3c 6 ,4 1 ,FLH 0 9.8632 8.7347 10 10.7658 7.4115
■nlp3d 2 0 ,41 ,FLH 0 8.7713 11.5411 9 10.9406 8.2164
inlp32a 6,20,41 2 0.1624 0.1262 >2000 0.1624 0.1262
tnlp32b 6 ,2 0 ,FLH 2 0.2052 0.1264 >2000 0.2052 0.1264
mlp32c 6 ,4 1 ,FLH 2 0.1621 0.1017 >2000 0.1621 0.1017
mlp32d 20 ,41 ,FLH 2 0.2832 0.4344 7 0.5264 0.2718
mlp36a 6,20,41 6 0.1432 0.1136 >2000 0.1432 0.1136
mlp36b 6,20 ,FLH 6 0.1341 0.1478 518 0.1803 0.1035
n)lp36c 6,41, FLH 6 0.1164 0.0803 >2000 0.1164 0.0803
mlp36d 20,41, FLH 6 0,2548 0,3638 4 0.5330 0.2613
m)p310a 6,20,41 10 0.1322 0.0876 >2000 0.1322 0.0876
ni]p310b 6,2 0 ,FLH 10 0.1340 0.1658 631 0.1908 0.1408
m]p310c 6 ,4 1 ,FLH 10 0.1090 0.0583 >2000 0.1090 0.0583
mlp310d 2 0 ,41 ,FLH 10 0.2577 0,3532 4 0.5253 0.2688
mlp4a 6,20,41, FLH 0 8.2217 8.1801 10 10.2596 7.2131
m)p42a 6 ,2 0 ,4 1 ,FLH 2 0.1279 0.0989 >2000 0.1279 0.0989
mlp46a 6 ,2 0 ,4 1 ,FLH 6 0.0813 0.0459 >2000 0.0813 0.0459
m)p410ft 6,20,41 ,FLH 10 0.0694 0.0279 1640 0.0746 0.0269



H MLP testing correlation and error for Norfolk 31 /05 /96

MLP
iiamet Correlation RMSDIF
m lpla 0.4919 4.1362
m lplb 0.4635 4.2796
m lplc 0.611 3.7548
m lpld 0.76 3.5307
m lpl2a 0.6277 3.6828

— m ipl2b. .0.5701____ J3.8896
m lpl2c 0.6732 3.6924
m lpl2d 0.7667 3.397
mlplCa 0.6259 3.6916
inlplGb 0.5709 3.8882
tnlplfic 0.657 3.703
m lpl6d 0.766 3.2639
m lpl 10a 0.6248 3.6961
m lpl10b 0.5689 3.8956
m lpl10c 0.6346 3.8236
m lpllOd 0.7626 3.5049

inlp2a 0.4998 4.1108
mlp2b 0.G105 3.7746
tnlp2c 0.7675 3.2252
mlp2d 0.6659 3.6343
tnlp2e 0.7611 3.3637
mlp2f 0.7686 3.2352

mlp22a 0.6455 3.614
m!p22b 0.8789 2.284
inlp22c 0.7701 3.2432
inlp22d 0.629 3.7893
m)p22e 0.7637 3.2889
mlp22f 0.7915 3.1753
inlp2Ga 0.7306 3.3269
mlp26b 0.8845 2.2447
inlp26c 0.8959 2.129
mlp26d 0.6074 3.8786
mlp26c 0.7617 3.4378
mlp26f 0.7797 3.1578

inlp210a 0.7554 3.2873
inlp210l> 0.8929 2.1876
mlp210c 0.8934 2.1556
mlp210d 0.5959 3.8876
mlp210e 0.7588 3.2988
tn)p210f 0.7656 3.3938
mlp3a 0.7009 3.472
mlp3b 0.7698 3.213
mlp3c 0.7693 3.1549
mlp3d 0.7781 3.1821

m)p32a 0.9278 1.7694
mlp32b 0.9175 1.9356
mlp32r. 0.9305 1.7569
mtp32(! 0.7752 3.3213
mlp36a 0.9347 1.6871
mlp3f>b 0.923 1.8451
mlp36c 0.9526 1.462
mlp3Gd 0.7564 3.3377
mlp310a 0.9398 1.618
mlp310b 0.9246 1.8115
mlp310c 0.9538 1.4498
mli>310d 0.7528 3.2994

mlp4a 0.785 3.0689
mlp42a 0.9464 1.541
mlp46a 0.9669 1.2117

1 mlp410a 0.9685 1.1838
|  ̂ refer t.o appendix G



I Testing with Norfolk 31 /05 /96  imagery

Three of the trained neural networks 
were used to produce the following 
three images. These neural networks 
increase in complexity:
MLP 22b with two inputs (bands 6 and
41) and two hidden layers
MLP 36c with three inputs (bands 6
and 41 and FLH) and six hidden nodes
MLP 410a with four inputs (bands 6,
20 and 41 and FLH) and 10 hidden
nodes.

(a) MLP 22b at 2000 iterations



(b) MLP 36c at 2000 iterations (c) MLP 410a at 1640 iterations



J T esting w ith N orfolk  1 1 /0 8 /9 6  im agery

(b) Red-red ratio linear regression



(c ) FLH linear regression



(f) MLP 410a at 1640 iterations



K MLP testing correlation and error for Holderness 1 9 /0 8 /9 6

MLP 
name* 
m lpla  
m lp lb  
m lp lc 
m lpld  

in lpl2a 
i nip 12b 
m lpl2c 
tnlpl2d 

'm l pi 6a 
mlplGb 
tnlplGc 
nilplGd 
m ipllO a 
m lpllO b 
m ipl10c 
m lpllO d 

inlp2a 
mlp2b 
inlp2c 
mlp2d 
mlp2e 
m lp2f 

mlp22a 
mlp22b 
mlp22c 
m!p22d 
mlp22e 
m!p22f 
mlp26a 
inlp26b 
inlp26r, 
m!p26d 
inlp26e 
mlp26f 

mlp210a 
:nlp210b 
mip210c 
mlp210d 
inlp210c 
mlp210f 
m!p3a 
inlp3b 
mlp3c 
mlp3d 
inlp32a 
mlp32b 
mlp32c 
m!p32d 
inlp36a 
mlp3Gb 
mlp36c 
mlp36d 
mlp310a 
mlp310b 
m!p310c 
mlp310d 
rnlp4a 

rnlp42a 
mlp46a 

mlp4 10a

Correlation
-0.0416
0.2214
0.6731
0.7718
0.2039
-0.2163
0.2607

__ 0.6733__
0.1798
-0.1666
0.4105
0.7378
0.1452
- 0 .1 8 5 3
0.4624
0.7831
0.0584
0.6534
0.7434
0.7372
0.7658
0.7614
-0.0238
0.0238
0.1006
0.0279
0.2137
0.1920
-0.7344
0.0237
-0.1168
0.3011
0.5819
0.4673
-0.7732
-0.6213
0.1037
0.3657
0.5845
0.5764
0.7256
0.7471
0.7532
0.7846
-0.0240
0.0867
0.0239
0.1770
-0.0173
0.1078
0.2153
0.4165
0.9318
0.1757
-0.8034
0.4385
0.7704
-0.0219
0.4160
-0.0087

RM SDIF 
20.0204 
21.8871 
25.9261 
19.0196 
10.1033 
12.2833 
11.7600 

3 .5 6 4 0 - 
9.1556 
11.0668 
12.8977 
10.4710 
8.6018 
11.0810 
13.9542 
10.2627 
21.8042 
25.2623 
20.8475 
23.3738 
19.8851 
21.8844 
12.2422 
11.8202 
11.0806 
11.8039 
11.7998 
11.6167 
15.2366 
11.5753 
13.4522 
12.5611 
11.8194 
12.8340 
11.8033 
11.2505 
14.7085 
13.7228 
13.0308 
12.8911 
23.0442 
20.1116 
21.8135 
21.5967 
11.4302 
10.6448 
11.9357 
11.5012 
10.6606 
11.0955 
10.8469 
12.4516 
10.2745 
11.9305 
12.1493 
13.7382 
21.5725 
11.3278 
10.4227 
11.4360

t refer to appendix G


