NRA-South West 449

DEVON AREA INTERNAL REPORT

AN INVESTIGATION TO DETERMINE IF DEEP MOOR LANDFILL SITE IS CAUSING AN IMPACT DOWNSTREAM IN THE PEAGHAM STREAM.

FEBBUARY 1996 DEV/E/09/96

Author: P ROSE

National Rivers Authority South Western Region

NRA

G R Bateman Area Manager (Devon)

614-77 NAT

c. 1 so

AN INVESTIGATION TO DETERMINE IF DEEP MOOR LANDFILL SITE IS CAUSING AN IMPACT DOWNSTREAM IN THE PEAGHAM STREAM.

INTRODUCTION

The Peagham Stream rises south of Deep Moor at the Thornedown plantation (NGR SS 5290 2169). The stream flows south then west for approximately 5 km before its confluence with the River Torridge at Town Mills (NGR SS 5005 1831).

The Peagham Stream has a River Ecosystem Use (RE) Class target of 2. At present the river water is routinely chemically monitored at Town Mills (R29B050). Previous to 1996 there were three other routine chemical sites, Deep Moor Stream East (R29B019 at NGR SS 52202090), Deep Moor Stream North (R29B018 at NGR SS 52402090) and downstream at Leighty Water (R29B028 at NGR SS 52101980) (see Figure 1).

The Deep Moor landfill site has had problems historically which resulted in poor water quality in the stream. Discharges of leachate into the stream due to lagoons overflowing / collapsing during wet weather resulted in a general decrease in aquatic diversity and increase in sewage fungus downstream of the tip over the years.

During mid 1994 a new pre-treatment works and sewer line to Torrington Sewage Treatment Works were installed. It is hoped that the new scheme will reduce the likelihood of further inputs to the stream and result in a general increase in the water quality of Peagham Stream.

2. TERMS OF REFERENCE

2.1 **OBJECTIVES**

A request was received from theWater Quality Officer (WQO) for the area to investigate any impact the tip site at Deep Moor may be having on the downstream watercourse.

The aim of this investigation is to determine if Deep Moor landfill site is causing an impact on the Peagham stream during dry and wet weather regimes. This report is a documentation of the study.

2.3 **PROJECT TEAM**

T. Cronin (Project Leader)

P. Rose (Project Manager, author)

3. METHOD

- 1. Analysis of routine water quality data to establish any trends and / or relationships between water quality and other factors such as rainfall and drought.
- 2. Collection of water samples from the Deep Moor Landfill site area and downstream during dry and wet weather conditions.
- 3. Assess the Peagham stream at Leighty Water biologically during dry weather flows.

4. **RESULTS**

4.1 **HISTORIC DATA**

Analysis of routine water quality data from samples taken at Town Mills (R29B050) between the period of 01 January 1993 and 11 January 1996 and from Deep Moor Stream North (R29B018), Deep Moor Stream East (R29B019) and downstream at Leighty Water (R29B028) between the period of 01 January 1993 and 9 August 1995 (see APPENDIX I) show the following exceedances (using RE Class 2 EQS's, see APPENDIX II).

Site	Total no. of samples	Total Ammonia Exceedances	BOD exceedances	Associated with rainfall
R29B050	43	6	2	alt
R29B018	22	4	4	not particularly
R29B019	22	13	7	not particularly
R29B028	25	4	6	not particularly

Total Ammonia EQS = 0.6 mg/l as 95 %-ile BOD EQS = 4.0 mg/l as 95 %-ile

4.2 **INVESTIGATION DATA**

The investigation was split into two surveys. The first was carried out during a dry weather regime and included a chemical survey of the watercourse and a biological collection downstream of the landfill site at Leighty water (See APPENDIX III for results previously reported).

The second survey was carried out under wet weather conditions to assess the impact of run-off from the tip site; chemical samples were taken upstream of the tip, the tip area and downstream (see Figure 1 and Table 1).

5. **DISCUSSION**

The routine river water samples taken from the Town Mills site (R29B050) were not all taken on the same dates as those taken upstream making comparison / interpretations of the results difficult. The exceedances of the samples taken at the three sites upstream of Town Mills were probably due to leachate contamination (as identified during the dry weather survey) and surface run-off from the tip during wet weather.

The impact of Deep Moor landfill site on the general water quality of the Peagham Stream at Leighty Water downstream of the site was shown to be minimal during dry weather conditions (see APPENDIX III). However, two inputs into the stream on the tip site were identified, of which one appeared to the grossly contaminated with leachate, the other not so much.

On the day of the wet weather survey 11 January 1996, there was 14 mm of rain with 24.7 mm over the previous 4 days. Chemical impact was not detected at the Townmills or Leighty Water sites. However, there were marginal exceedances of the ESQ's for BOD and Total Ammonia at 6 sites at the landfill area complex (see Table 1 & Figure 1). Of the total ammonia exceedances, one originated from the small stream identified in the dry weather survey as being grossly contaminated with leachate (site 9). Concentrations of total ammonia and BOD levels at this site were much lower during the wet weather survey than those reported during the dry weather survey. Since the dry weather survey, Devon Waste Management (DWM) have undertaken work in this area which may account for the apparent improvement in quality (dilution factor may also be partly responsible).

The origin of the high total ammonia concentration at site 6 was not found. No discernable inputs were identified between this and the next site upstream. Since the downstream concentration of total ammonia was 0.51 mg/l and the upstream was 0.62 mg/l, the high concentration of 3.0 mg/l at site 6 may be the result of sampler or laboratory error.

The second input containing high concentrations of total ammonia was identified as coming from the silt traps by the side of the road (site 14). Coloured run-off water from the newly grassed landfill areas was flowing along the road, picking up more suspended solids matter and flowing into the traps. At the start of the survey, all the traps were full and overflowing into the stream.

The outflow from the silt traps was still high in suspended solids of which, a high proportion was mineral based (92 % mineral fraction). The organic fraction probably accounted for the high BOD levels. Once the grassed areas have become fully established, the suspended solids content of the run-off during wet weather will very probably reduce.

Concentrations of total iron at the tip site were very high (greatest concentration 57.0 mg/l, EQS applied 1.0 mg/l). No other metals analysed for exceeded the standards. High concentrations of iron were detected at site 14 (silt trap), site 9 (previously the 'grossly contaminated with leachate') and upstream of the tip area at site 15. High concentrations at site 15 undoubtedly come from a breakers yard which is upstream of the landfill site at the headwaters. The rest of the inputs were from run-off (silt traps) and probable leachate contamination (site 9).

During the wet weather survey, the stream substrate at site 2 (Leighty Water) looked poor. At first sight what looked like sewage fungus cover was a very fine covering of silt over diatomous growth. Although no EQS's of the determinands analysed for were exceeded at this site, it is possible that the finely divided fraction of suspended solids from the tip run-off was reaching the site giving rise to poor aesthetic quality. In order to continue the general increase in the water quality of the Peagham stream it would be prudent to increase the effectiveness of the silt/suspended solids barriers at the landfill site.

CONCLUSIONS

6.

- 1. During dry weather conditions Deep Moor landfill site was not causing an impact at Leighty Water.
- 2. Deep Moor landfill site was not causing a chemical impact at Town Mills or Leighty Water during wet weather conditions
- 3. The work carried out by DWM on a small tributary contaminated with leachate appears to have resulted in increased water quality of the tributary at the time of sampling although BOD levels and total ammonia concentrations were still marginally above EQS's.

- 4. During wet weather conditions surface run-off containing BOD levels and total ammonia concentrations marginally above the EQS's from the landfill area and associated tracks was entering the watercourse via inadequately designed silt-traps.
- 5. The high suspended solids content of the run-off from the Deep Moor landfill site is probably contributing to the poor visual aspect of the stream substrate at Leighty Water.
- 6. High concentrations of total iron are entering the watercourse via run-off from the tip and from possible leachate contamination during wet weather.
- 7. The high concentration of total iron in stream water above the landfill site during the wet weather was likely to have originated from a breakers yard at the headwaters of the stream.

7. **RECOMMENDATIONS**

1. The WQO to be aware of the inputs to the Peagham Stream from the Deep Moor landfill site under wet weather conditions.

Action: WQO

- 2. The WQO to visit the breakers yard upstream of the tip site with a view to preventing high concentrations of iron entering the stream during wet weather.
 - Action: WQO
- 3. The WQO to be aware of the possible aesthetic impact that finely divided suspended solids from Deep Moor landfill site run-off may have on the stream bed downstream.

Action: WQO

Table 1. Deepmoor tip Chemical Investigation during wet weather 11 January 1996.

Site	pH	Conductivity	Turbidity	BOD	Dissolved Oxygen	Ammonia	Sus. solids	Sus. Solids	Hardness	Cadmium	Zinc	Copper	Iron
		uS/cm	FTU	mg/l	% Sat.	total mg/l	mg/l 105°C	mg/l 500°C	total mg/l	total µg/l	total mg/l	total mg/	total mg/l
1	7.65	197	13	1.2	93	0.04	10	NR	60.5	<0.1	0.006	<0.0025	0.38
2	7.50	205	18	1.5	95	0.06	13	NR	61.3	<0.1	0.014	<0.0025	0.54
3	8.10	266	3800	5.1	94	0.51	2410	2200	600.0	1.4	0.292	0.0640	57.00
4	6.75	176	328	1.4	NR	0.07	211	191	47.1	<0.1	0.028	0.0070	5.50
5	6.70	361	10	1.0	NR	< 0.03	<3	NR	132.0	0.2	0.088	<0.0025	< 0.05
6	8.05	261	3950	5.2	NR	3.00	2620	2410	610.0	1.2	0.188	0.0440	31.20
7	7.55	195	922	1.4	NR	< 0.03	485	447	65.5	0.1	0.033	0.0130	8.10
8	8.15	237	4200	5.6	NR	0.62	2780	2560	631.0	1.4	0.224	0.0540	26.00
9	8.30	145	4130	5.8	NR	1.10	2630	2450	131.0	0.5	0.141	0.0520	30.80
10	8.10	261	3400	5.4	NR	0.36	2360	2180	672.0	1.3	0.210	0.0470	22.80
11	7.90	299	1095	3.1	NR	0.36	663	606	192.0	0.3	0.066	0.0170	8.10
12	6.60	157	20	2.3	NR	0.16	14	NR	36.8	<0.1	0.008	0.0040	0.64
13	7.70	323	526	2.6	NR	0.27	363	332	138.0	0.2	0.047	0.0120	5.60
14	8.10	267	2950	5.0	NR	0.84	2000	1840	589.0	1.2	0.220	0.0500	31.20
15	7.35	236	18	2.1	NR	0.07	10	NR	71.4	<0.1	0.012	0.0030	0.46
16	6.25	150	48	1.7	NR	0.09	28	22	27.7	<0.1	0.018	0.0050	0.74
17	7.05	195	23	2.1	NR	0.03	16	NR	63.5	<0.1	0.006	0.0030	0.49
18	6.75	261	79	<1.0	NR	0.17	46	40	88.7	<0.1	0.011	0.0030	0.84

Environmental Quality S	tandards							
Dissolved Oxygen	80 % sat. as a 10 %	%-ile						
BOD (ATU)	4.0 mg/l as 95 %-il	е						
Total Ammonia	0.6 mg/l as 95 %-il	B						
рН	6 - 9 as 5 %-ile & 95 %-ile							
Dissolved Iron	1.0 mg/l as annual average							
Total Cadmium	5.0 µg/l as annual	average						
Total Hardness mg/l	Total Zinc mg/l as 95 %-ile	Dissolved Copper mg/l as 95 %-ile						

пдл	111y1 do 30 70-110	111y1 as 33 10-
=< 10	0.03	0.005
>10 and =<50	0.20	0.022
<50 and =<100	0.30	0.040
> 100	0.50	0.112

2.55 = Standard exceeded.

NB. Dissolved metals results were not possible due to inability to filter very tubid samples. Standards for the dissolved metals have been applied to the total metals results.

APPENDIX I

.

2

Town Mills (R29B050)

ANALYTICAL SUMMARY OF :--

PEAGHAM STREAM AT TOWN MILLS

		Туре		AMMO IA	N-	BOD ATU		DXYGEN DISS	SOLIDS SUSP	CADMI- UM	COPPER TOTAL	ZINC TOTAL	HARDN TOTAL
Date	Time	Furp	Mat	MG/L	N	MG/L	0	% SATN	MG/L	UG/L 、	MG/L	MG/L	MG/L
120293	1430	SQMR	2F	Õ.	02	< 1	<u>،</u> ٥٨	95	Э				
190293	1045	SOMR	2F	Ó.	02.	(1	.03	95	Э	0.204	0.001	(0.002(78.
250293	1050	SQMR	2F	Ο.	02 -	(1	.3	'98'	· 8				
150898	1130	SOMR	25	О.	02 -	< 1	.3	103	5				
230393	0915	SOMR	2F	Ο.	02	(1	.9	99	7	0.20(0.002	0.011	65.
080493	1405	SQMR	25	Ο.	02	(1	.6	93	9				
240493	1420	SOMR	2F	Ŏ.	02	(1	.E.	109	6	0.200	0.002	0.005	62.
120593	1350	SOMR	27	Ο.	02	(1	.8	96	5				
260593	0355	SOMR	2F	Ο.	OΞ	2	.8	94	21	0.204	C0.003	0.009	65.5
250693	1355	SQMR	2F	О.	1Ξ	1	.6	95	4	0.200	0.001	0.003	· 76.;
260793	1100	SOMR	2F	Ο.	02	< 1	.5	98	2 ·	0.200	0.001	0.002	70.3
Type "(C" to	Cont	inue, "	P" fo	r ç	previ	JUS	screer	ר, "Q" ו	to Quit	()		-
1									TYPE		LINE	READY	

ANALYTICAL SUMMARY OF :-

PEAGHAM STREAM AT TOWN MILLS

		Tura		AMMON-	BOD		OXYGE	ΞN	SOLI)S	CADMI-	COPPER	ZINC	HARDN
		Туре		18	AIU	_	D122		505F		Um	IUTAĻ	TUTAL	LUTAL
Date	lıme	F'urp	Mat	MG/L N	MG/L	. 0	% SA1	٦N	MG/L	-	UG/L	MG/L'	MG/L	MG/L
070993	1355	SOMR	2F	0.02	< 1	.5	9	94		з	0.200	(0.001 ·	0.004	67.
280993	0925	SQMR	2F	0.02	< 1	. e	9	96		5	0.200	0.002	0.005	76.
291093	0350	SOMR	2F	0.02	< 1	2	2	98.	;	23	0.200	(0.002	0.006	70.4
031193	1125	SOMR	2F	0.02	(·	2.7		38		Ξ				
151193	1010	SOMR	2F	0.02	< 1	7	9	97.		8		- ÷		
251193	1120	SOMR	2F	ം .o2	< 1	.5	9	38		8	0.204	0.001	0.004	62.5
171293	1305	SOMR	2F	0.78	. 8	2.5	9	38	2	21	0.20	-0.002	0.011	68.0
200194	1045	SQMR	2F	0.13	. 1	.5		99		4	0.204	0.001	(0.005	61
100294	1040	SOMR	2F	·0.30	1	.8		i i		4	0.204	(0.001	0.007	62.3
030394	1130	SQMR	2F	0.15	1		ç	96		6	0.20	0.001	0.003	60.3
310394	1350	SQMR	2F	0,96	. 4	.4		98	3	30	0.200	('0.002	0.011	63.4

Type "C" to Continue, "P" for previous screen, "Q" to Quit () TYPE ONLINE READY

Town Mills (R29B050)

ANALYTICAL SUMMARY OF :--

PEAGHAM STREAM AT TOWN MILLS

				f	AMMON-	BOD		0)	XYGEN	SOLIDS	CAEMI-	COPPER	ZINC	HARDN
		Type			[A	ATU		$\mathbf{L}(\mathbf{I})$	ISS	SUSP	UM	TOTAL	TOTAL	TOTAU
Date	Time	Purp	Mat	ł	1G/L N	MG/L	0	%	SATN	MG/L	UG/L	MG/L	MG/L	MG/L
050594	i135	SOMR	2F		3.60	12	.2		85	10	0.20	(0.001	0.009	104.
280694	0940	SOMR	2F		0.02	(1	. O		98	4	0.20	< 0.001	0.004	63.
250794	1215	SQMR	2F ·		0.03	1	. O -	<	94	3	0.20	(0.018	0.002	< 71.
260894	1315	SOMR	2F		0.02	1	. 7		106	7	0.20	(0.001	0.004	72.
101094	1230	SQMR	2F		Ŏ.02	< 1	. O -	Ç.	94	Э	0.20	(0.001	< 0.002	(63.
311094	1215	SOMR	2F		0.39	2	. Ē		92	44	0.20	< 0.002	0.012	53
171194	1300	SQMR	2F		0.03	1 1	.2		98	7	0.20	(0.001	0.004	60.
071294	1015	SQMR	2F	1	0.08	1	.8		101	82	0.20	(0.004	0.014	59.
250195	1245	SQMR	2F	1	0.13	2	"O		106					
150295	1145	SOMR	2F		1.30	Э	. 3		97					
230395	1520	SOMR	2F		0.03	< 1	.2		100					

Type "C." to Continue, "P" for previous screen, "Q" to Quit () TYPE ONLINE READY

ANALYTICAL SUMMARY OF :-

PEAGHAM STREAM AT TOWN MILLS

		Type		•	AMMON- I	BOD ATU	OXYGEN DISS	SOLIDS	CADMI-	COPPER	ZINC	HARDN
Date	Time	Purp	Mat		MG/L N	MG/L O	% SATN	MG/L	UG/L	MG/L	MG/L	MG/L
050495	1030	SOMR	2F		0.03(1.6	100					
270495	1030	SQMR	2F		0.034	1.5	102					
240595	0905	SQMR	2F		0.03(1.3	97					19 ac
150695	1600	SQMR	2F		0.03(1.6	96					1
050795	1015	SQMR	2F		0:03(1.04	100			1.5.1		
080895	0905	SQMR	2F		0.034	1 . 1	78	· .				а. 1
140995	1505	SOMR	2F -		0.03(1.8	92					
191095	1420	SQMR	2F.		0.03(11	104					
091195	0850	SOMR	2F		0.034	1.6	91	')				
110196	1507	SOMR	2F		0.04	1.04	(99					
050596	0937	SQMR	2F		0.03(1.2	102					
					1							

Type "C" to Continue, "P" for previous screen, "Q" to Quit () TYPE ONLINE

, ANALYTICAL SUMMARY OF :-

READY

PEAGHAM STREAM AT TOWN MILLS

AMMON- BOD OXYGEN SOLIDS CADMI- COPPER ZINC HARDN Type IA ATU DISS SUSP, UM TOTAL TOTAL TOTAL Date Time Purp Mat MG/L N MG/L D % SATN MG/L MG/L MG/L MG/L MG/L 190296 1002 SDMR 2F 0.03(1.6 101 Leighty Water (R29B028)

-

ANALYTICAL SUMMARY OF:-

DEEP MOOR TIP - DOWNSTREAM

(D.C.C. NORTH AREA)

				<u>6 M</u>	ман	505		0 VV	OT N		CONMI			T T E 1775	LIASSIE
Date .	Time	Type Furp	Mat	AM IA MG	MUN-	ATU MG/I	_ 0	DIS % S	S ATN	SUSP MG/L	UM UG/L	- СО ТО МС	IPPER ITAL I/L	TOTAL MG/L	HARDNE TOTAL MG/L
150192 020392 010592 040992 061092 101192 260193 230393 240493 260793	1425 1030 1210 1525 1155 1315 0955 1400 1400 1410 0840 1020	SAUD SAUD SAUD SAUD SAUD SAUD SAUD SAUD	2 F F F F F F F F F F F F F F F F F F F		0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		1.0 2.7 4.1 5.6 1.0	<	97	3 15 24 90 3 10 36 3 4 3) 200) 200	<pre>(0.100 (0.100 (0.100 (0.003 (0.200 (0.200 (0.200 (0.100 (0.100 (0.100</pre>	
Туре "С	°" to	Cont	inue, '	"P"	for (orev	iou	s sc	reer	י , "Q" TYPE	to Qui	t (ONLI) NE	READY	•
-					Al	NALY.	TIC	AL 5	UMMA	ARY OF:	-				
	DE	EP MO	DR TIP	- D	OWNS:	TREA	М			(D	.с.с.	NORT	'H ARE	EA)	
Date	Time	Туре Ригр	Mat 4	AM IA * MG	MON- /L N	BOD ATU MGVI	LO	OXY DIS % S	'GEN IS IATN	SOLIDS SUSP MG/L	CADMI UM UG7L	— СС ТС МС	DPPER NTAL N/L	ZINC TOTAL MG/L	HARDNS TOTAL MG/L ¥
280998 251198 200194 030894 280694 250794 260894 101094 211094 230395 050495	1435 1020 1210 1105 1410 1145 1425 1140 1135 1430 1050	SAUD SAUD SAUD SAUD SAUD SAUD SAUD SAUD	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.50 0.50 1.40 0.50 0.50 0.50 0.50 2.80 0.50	<pre>< 14 < 14 < 4 < 4 < 4 < 14 </pre>	1.0 2.2 0.1 1.0 4.3 1.7 1.0 3.8 2.2 1.1	< > <	0	3 12 7 4 6 2 5 2 44 6 3	< <).200).200).200).200).200).200).200).200).200).200).200).200).200	(0.100 (0.400 (0.300 (0.100 (0.100 (0.100 (0.100 (0.100 (0.100 (0.100 (0.050	< < < <
Type "C	C" to	Cont	inue,	"F"	for	prev	iou	s sc	ree	n, "Q" TYPE	to Qui	t .{ ONLI) NÉ	READY	
Į							* * ~ ~	A)					-		1
		1			н 		IIC	AL 2	UMM	ARY, OF :	_				
	DE	EF' MOI	OR TIP	τ D	OWNS.	TREA	M -			(D	.C.C.I	NORT	TH AR	EA)	
Date	Time	Type Purp	- Mat	AM IA MG	MON- /L N	BOD ĄTU MG/	L O	DXY DIS % S	GEN SS SATN	SOLIDS SUSP MG/L	CADMI UM UG/L	— СС ТС МС	DPPER DTAL 3/L	ZINC TOTAL MG/L	HARDNS TOTAL MG/L
240595 150695 090895 Type	0935 1520 1025	SAUD SAUD SAUD CAND	2F 2F iRue,	"F"	0.50 0.50 9.50 9.50	< < prev	1.1 2.3 3.4	s sc	reel	3 3 זדי¶9,7	< to Qui		0.200 0.200 0.200	(0.100 (0.100 (REABY	< < < ·
8	. /						÷					C		- - (

Deep Moor Stream North (R29B018)

ANALYTICAL SUMMARY OF :-

PEAGHAM STREAM BELOW DEEP MOOR LANDFILL TORRINGTON DEEP MOOR

						1	/				2
				AMMON-	BOD	OXYGEN	SOLIDS	CADMI-	COPPER	ZINC	HARDNS
	•	Type		IA	ATU	DISS	SUSP	UM	TOTAL	TOTAL	TOTAL
Date	Time	Furp	Mat	MG/L N	MG/L O	% SATN	MG/L	UG/L	MG/L	MG/L	MG/L
		-									- 7-
150192	1445	SAUD	5K	0.504	(1.0	<	2	(0.200	0.100	< 🕘 💼
020392	1020	SAUD	60	0.504	(1.0	<	2		0.200	0.100	<
010592	1150	SAUD	.ec	0.504	(1.3		9		0.200	< 0.100	<
200792	1445	SAUD	6C	0.504	(4.7		188		0.200	 0.100. 	.< _
061092	1255	SAUD	6C	0.504	(1.3		6		0.200	0.200	<
101192	1010	SAUD	6C	0.50	(1.5	÷	31		0.100	< 0.200	<
260193	1420	SQMR	2F	0.04	1.4	94	3	0.20	< 0.001	< 0.004	7
150293	1355	SOMR	2F	0.02	1.0	< 95	2	0.20	(0.001	< 0.003	
190298	1130	SOMR	2F	0,03	1.0	< 92	2	0.20	< 0.001	< 0.003	
240493	0355	SQMR	2F	0.36	1.1	98	з	0.20	< 0.00i	0.007	
260798	1005	SOMR	2F	4.70	4.8	78	- 4	0.20	< `0.002	0.006	60.3
					1.11						

Type "C" to Continue, "P" for previous screen, "Q" to Quit () TYPE ONLINE READY

ANALYTICAL SUMMARY OF :-

PEAGHAM STREAM BELOW DEEP MOOR LANDFILL TORRINGTON DEEP MOOR

		Type		AMMON- IA	BOD ATU	OXYGE DISS	N SOLI	DS C L	CADMI-	COPPER TOTAL	ZINC TOTAL	HARDN
Date 🗐	Time	Furp	Mat	MG/L N	MG/L O	% SA1	N MG/	լ՝ լ	JG/L	MG/L	MG/L	MG/L
280998	1415	SOMR	2F	0.09	1.1	9	IQ.	4	0.20(0.001	0.004	45.1
251193	1000	SQMR	2F	°.12	1.6	Ģ	ŬŬ	E.	0.204	0.002	0.005	48.
200194	1200	SQMR	2F	5.90	34.7>	. <u>e</u>	O ·	20	0.200	0.002	0:021	66.
030394	1040	SOMR	2F	0.i5	1.04		14	5	0.20(0.001(0.005	41.
250794	1120	SOMR	2F	1.30	3.00	5	З	4	0.20(0.001<	0.005	< 91.
260894	1430	SOMR	2F	0.29	1.7	10	1	5	2.00	0.0104	0.020	(69.
311094	1110	SQMR	2F	2.30	10.1	- 9	0	47	0.204	0.004	0.021	. 88.
220395	1440	SAUD	2F	0.05	1.0	9	5	5	0.50(0.0020	0.005	(35.
050495	1110	SAUD	2F	 0.12	1.2	ç	2	З<	0.50(0.0020	0.005	(37.
240595	0945	SAUD	2F	 0.06	1.0	(9	14	3(0.504	0.0020	0.005	< 50.
150695	1525	SAUD	2F	0.03	(` 1.4	10	5	4	0.500	0.0020	0.005	(47.

Type "C" to Continue, "F" for previous screen, "Q" to Quit () TYPE ONLINE REABY

1 .

Deep Moor Stream East (R29B019)

ANALYTICAL SUMMARY OF :-

FEAGHAM STREAM ABOVE DEEP MOOR LANDFILL TORRINGTON DEEP MOOR

									-		
	- 81 - 5	-		AMMON-	BOD	OXYGEN	SOLIDS	CADMI-	COPPER	ZINC	HARDNS
		lype		IA	ATU	DISS	SUSP	UM	TOTAL	TOTAL	TOTAL
ate	Time	Purp	Mat	MG/L N	MG/L O	% SATN	MG / L	UG/L	MG/L	MG/L	MG/L
50192	144O	SAUD	5K	0.90	1.4		23	1	0.200	(0.100)	(
50392	1015	SAUD	60	0.504	(10.0	<	23400		0.800	0.800	
10592	1155	SAUD	6C	0.50	3.1		i 8		0.200	(0.100	<
00792	1455	SAUD	60	0.70	5.2		3720		0.200	(0.200	
61092	1250	SAUD	60	0.504	(1.0	<	- 4		0.200	(0.200)	(
01192	1005	SAUD	6C	0.90	3.8		34		0.100	(0.200 -	(
60193	1415	SQMR	2F	0.10	1.0	(96	3	0.20	(0.001	0.008	
50293	1350	SOMR	27	0,56	1.6	95	5	0.20	<0.002	0.010	
90293	1125	SOMR	2F	1.70	2.4	93	17	°.20	(0.002	0.012	
40493	0850	SOMR	2F	0.08	1.4	104	. 4	0.20	< 0.001	0.007	-
60793	1010	SQMR	2F	0.44	8.0	89	7	0 5. O	< 0.001	0.007	102.0
							a'	4.1			

ype "C" to Continue, "P" for previous screen, "Q" to Quit () TYPE ONLINE READY

ANALYTICAL SUMMARY OF :-

PEAGHAM STREAM ABOVE DEEP MOOR LANDFILL TORRINGTON DEEP MOOR

				AMMON-	BOD	OXYGEN	SOLIDS	CADMI-	COPPER	ZINC	HARDINS
		Type		IA	ATU .	DISS	SUSP	UM	TOTAL	TOTAL	TOTAL .
ate	Time	Furp	Mat	MG/L N	MG/L O	% SATN	MG/L	UG/L	MG/L	MG/L	MG/L 1
								14.1			1
280993	1420	SQMR	2F	1.40	68.8	83	33	0.20	C0.003	0.029	171.0
51198	0955	SOMR	2F	1.10	29.8	90	103	0.20	0.007	0.041	154.0
:00194	1 150	SQMR	2F	6.20	35.93	> 88	70	0.20	0.004	0.063	143.0
230394	1045	SQMR	25	0.75	2.3	91	38	0.20	0.003	0.008	66.7
80694	1420	SOMR	2F	2.80	6.7	90	14	0.20	(0.002	0.008	177.03
50894	1440	SQMR	2F	0.74	- 3.9	73	15	2.00	(0.0104	0.020	(252.04
311094	1120	SOMR	5Ł	0.12	1.4	89	18	0.20	(0.002	0.008	40.6
80395	1450	SAUD	2F	1.60	1.5	92	5	0.50	(0.0024	0.007	66.3
50495	1115	SAUD	2F	1.30	1.4	91	. 10	C 0.50	(0.002)	0.006	79.5%
240595	0950	SAUD	2F	-53.00	65.2	4O	34	0.50	(0.003	0.164	201.0 1

ype "C" to Continue, "P" for previous screen, "Q" to Quit () TYPE ONLINE READY

e se competent e . .

TABLE I : STANDARDS FOR THE FIVE RIVER ECOSYSTEM USE CLASSES

Use Class	DO % sai 10%ile	BOD (ATU) mg/l 90%ile	Total Ammonia mgN/1 95%ile	Un-ionised Ammonia mgNA 95%ile	pH S%ile & 95%ile	Hardness mg/l CaCO,	Dissolved Copper µg/1 95%ile	Total Zinc µg/l 95%ile	Class Description
l	80	2.5	0.25	- 0.021	6.0 - 9.0	≤10 >10 and ≤50 >50 and ≤100 >100	5 22 140 112	30 200 500	Water of very good quality suitable for all fish species
2	70	4.0	0.6	0.021	60-90	0 2 0 = 0 = 0 2 0 = 0 = 0 = 0 0 = 0 = 0	5 22 40 112	30 200 300 500	Water of good quality suitable for all fish species
3	60	60	13.	0 021	60.90	≤ 10 > 10 and ≤ 50 > 50 and ≤ 100 > 100	5 22 40 112	300 700 1000 2000	Water of fair quality suitable for high class coarse fish populations
4	50	8.0	2.5		6.0 • 9.0	≤ 10 > 10 and ≤ 50 > 50 and ≤ 100 > 100	5 22 40 112	300 700 1000 2000	Water of fair quality suitable for coarse fish populations
5	20	15.0	9.0	· · ·		1		-38	Water of poor quality which is likely to limit charse fish populations

APPENDIX III

÷

...

MEMORANDUM

To:	Chris Westcott
From:	Peter Rose Investigations Technician Devon Area
Extn:	2037
Our ref: Your ref:	DEEP1

Date: 7 August 1995

DEEPMOOR TIP INVESTIGATION

Just to keep you informed on the progress into the possible leachate problems with the tip.

A biological collection carried out at Leighty Water above the septic tank discharge indicated good water quality; only a trace of sewage fungus was found. The water sample taken did not exceed Environmental Quality Standards (see Figure 1). No further D/S sampling was deemed to be necessary.

At the tip site water levels were very low; no biological samples could be collected. The results of the water samples are given in Figure 2. The main area of concern lies at site DMSP9L, a small pipe from under the track leading to a wet gully which enters the stream. From the chemical samples taken (including a GCMS scan showing a number of organic purification by-products), the results indicate leachate contamination. Impact of this discharge was still apparent D/S at the boundary of the site; it must be stressed that at the time of sampling, the flow of both discharge and receiving stream was very low and at points the watercourse appeared to be just ponding.

At site DMW8, a sample contained an elevated total ammonia concentration. The culvert just upstream of this site crosses a leachate pipe and it is possible there is slight contamination.

The conclusions at present include:

- 1. The tip was not causing an impact at Leighty Water at the time of sampling (May 1995).
- 2. Discharge from a pipe (DMSP9L) from the tip area is contaminated with leachate which in turn is entering the watercourse.
- 3. A culverted stream (DMW8) may be slightly contaminated by leachate.

This is just an out-line of what has been identified so far. The aim is to carry out an extensive investigation when the rains finally come to assess run-off, possible increased leachate production and greater flows in the stream. All the above information will be presented in the final report.

PETER ROSE Investigations Technician Devon Area

