64 NEWCLC (Boxi)

Environment Agency

User Manual for Available Resource Methodology (ARM) Spreadsheets

National Groundwater and Contaminated Land Centre

Environment Agency

User Manual for Available Resource Methodology (ARM) Spreadsheets

National Groundwater and Contaminated Land Centre 22 March 2000

Research Contractor:

Entec UK Ltd

Environment Agency National Groundwater and Contaminated Land Centre Olton Court 10 Warwick Road Olton Solihull West Midlands

B92 7HX

National Groundwater and Contaminated Land Centre Project

Project Reference: NC/99/68

Publishing Organisation: Environment Agency Rio House Waterside Drive Aztec West Almondsbury Bristol BS12 4UD Tel: 01454 624400

Fax: 01454 624409

©Environment Agency 2000 ISBN: 1 857 05358 3

All rights reserved. No part of this document may be produced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the Environment Agency.

The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servant or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained herein.

Dissemination status

Internal:	Final - Released to	Regions
External:	Final - Released to	Public Domain

Statement of use

This document describes a Framework for the assessment of acceptable abstraction impacts and water resources sustainability for a surface water or groundwater catchment area. It offers guidance for users of the spreadsheet tools which have been developed to provide optional support for the implementation of assessments within this Available Resource Methodology (ARM) Framework.

The information within this document is for use by Environment Agency staff and others involved in managing water resources.

Research contractor

This document was produced under a National Groundwater & Contaminated Land Centre Project by: Entec UK Ltd 162-164 Abbey Foregate Shrewsbury Shropshire SY2 6BZ Tel: 01743 342 000 Fax: 01743 342 010

Environment Agency's Project Manager & Project Board

The Environment Agency's Project Manager for this project was:

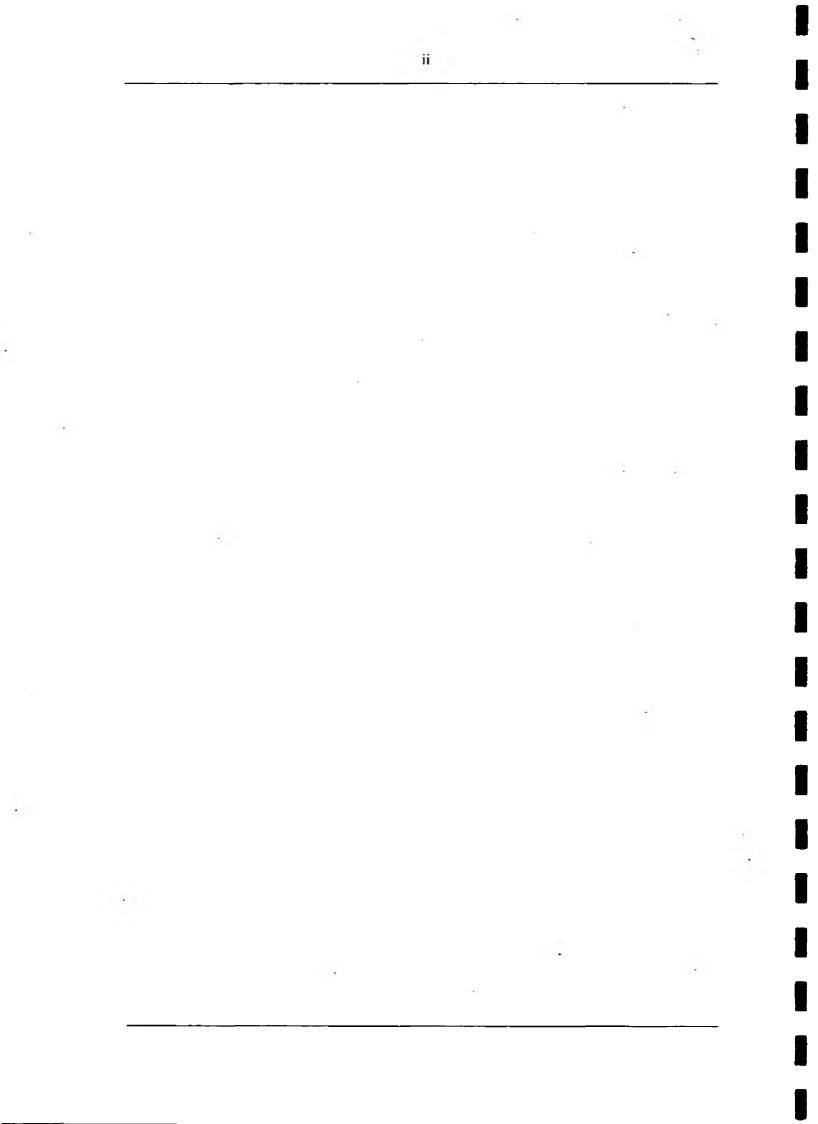
Mr Stuart Kirk – Environment Agency, National Groundwater & Contaminated Land Centre. The Project Board consisted of Mr Steve Fletcher, Dr John Aldrick and Mr Stuart Kirk.

Their active guidance, and the enthusiastic participation and constructive criticism of many other Agency staff consulted during the R&D process is gratefully acknowledged. National Groundwater & Contaminated Land Centre Project NC/99/68

Summary

This User Manual describes the spreadsheets which have been developed to provide optional support for the strategic assessment of water resources according to the Available Resource Methodology (ARM) Framework. The ARM has been developed with the Environment Agency to provide a Framework within which the water resources balance and sustainability of abstraction from an area can be assessed and presented. For most areas the ARM Framework provides a consistent format for resource assessment and countrywide comparison which optimises local knowledge and experience and can accommodate a variety of technical approaches (as already used by Agency staff), from first approximations to more sophisticated regional models.

i


Essential steps required are the delineation of the assessment area, the selection of an assessment year or hydrological scenario, the collation of river flow, abstraction and discharge data, and the recording of a conceptual understanding of the components of the hydrological cycle. River and environmental flow targets also need to be established through the Agency's internal and external consultation process. The main output is a statement of the surplus or deficit of available resources in the area compared with these pre-defined flow protection targets. This can be used to assign a sustainability status to the resources management of the area.

Assessments are based on outflow focused estimates of resources and the artificial impacts on these. Total river flows at a defined point (including both groundwater and surface water contributions) are preferred as the focus as these are often the main management issue. Groundwater-only assessments are also possible where appropriate (e.g. for confined or coastal aquifers) but (as with any approach) will be subject to much greater uncertainties.

An integrated approach to groundwater and surface water resources recognises that borehole abstractions may often affect the water available in the river and that river abstractions may rely upon a groundwater contribution. In order to adequately represent catchments which have a large seasonal resource variation, the Framework and associated spreadsheets enable the user to consider monthly average flows, abstraction impacts and targets in a selected assessment year.

After providing a brief overview of the ARM Framework the User Manual offers step-by-step guidance for anyone using the spreadsheets developed to facilitate its implementation. Worked examples for two trial areas are also presented and discussed. The blank and trial spreadsheets are included on disc and as hard copies in Appendices.

The main sections of the User Manual are signposted overleaf for ease of reference.

Glossary

Key Terms and Abbreviations

TERM/ABBREVIATION	DEFINED AS:	
Abstraction	Removal of water from a source of supply (surface or groundwater).	
Acceptable Abstraction	The abstraction impacts which are considered acceptable given target outflows in the specified year.	
	= Natural Outflows – Target Outflows, or	
	= (Surplus or Deficit) + Existing Abstraction Impacts.	
ARF	The analytical 'Aquifer Response Function' which can be used to derive the groundwater outflow or 'baseflow' response to recharge.	
ARM Framework	Available Resource Methodology Framework.	•
(C)AMS or (L)AMS	(Catchment) or (Local) Abstraction Management Strategy.	
Artificial Impacts	Combined impacts of consumptive abstraction and discharge on outflows from the assessment area.	
Assessment Area	The area to which the assessment applies, defined in the ARM Framework according to its outflow e.g. surface catchment and associated groundwater catchment to a river gauge, or groundwater catchment to coastal discharge boundary.	5
BFI	Base Flow Index as defined by the Institute of Hydrology baseflow separation from a daily average river flow hydrograph.	
Consumptive abstraction	Proportion of the abstracted water which is not returned to the environment close to the point of abstraction i.e. water evaporated or transferred elsewhere.	
De-naturalisation	Process of converting a natural outflow to an estimated existing or scenario outflow by adding consumptive abstraction and discharge impacts.	
Discharge	Release of water returned to river within the Assessment Area.	
Existing Abstraction and Discharge Impacts	The amount by which all the abstractions in the area reduced natural outflows from it, taking into account the consumptiveness of the use, the location of any effluent return and any lags or smoothing between abstraction and outflow impact. Based on estimated actual abstraction rates.	
Existing Outflows	The flows which actually left the Assessment Area in the specified year.	
Groundwater Catchment	The area from which recharge to the aquifer would naturally discharge to a defined point of a river, or over a defined discharge boundary.	
GW	Groundwater.	
GWABS	Groundwater Abstraction.	
Hydrological Scenario	The hydrological scenario being used to assess resource availability. Maybe a specified year or drought return period or simulated scenario.	
IGARF	'Impact of Groundwater Abstractions on River Flows' R&D Project managed by NGCLC.	
loH	Institute of Hydrology.	

iii

ų,

-

TERM/ABBREVIATION	DEFINED AS:
Maximum % Abstraction	An indicator of the maximum abstraction impacts relative to natural outflows in the specified year.
	= <u>Abstraction Impact_x 100</u> Natural Outflow
Mi/d	Megalitres per day.
Natural Outflows	The flows which would naturally leave the Assessment Area in the specified year in the absence of any artificial impacts.
Naturalisation	Process of converting gauged flows to natural flows by removing consumptive abstraction and discharge impacts.
NGCLC	The Environment Agency's National Centre for Contaminated Land and Groundwater.
Q95	Flow exceeded during 95% of period over which flow data are being considered.
S ·	Aquifer storage.
Scenario Abstraction and Discharge Impacts	The amount by which all the abstractions in the area reduced natural outflows from it, taking into account the consumptiveness of the use, the location of any effluent return and any lags or smoothing between abstraction and outflow impact. Based on an assumed abstraction and discharge scenario (e.g. full licensed rate, deployable output etc).
Specified Year	The year chosen to assess monthly flows and target flow implications e.g. a recent drought year of a known return period.
Surface Water Catchment	The area from which runoff would naturally discharge to a defined point of a river, or over a defined boundary.
Surplus or Deficit	How much more or how much less abstraction impact is acceptable in the specified year on a monthly or annual basis.
	= Existing Outflows – Target Outflows.
	Can be expressed as a % of the Natural Outflows and summarised as annual minimum and average values.
SW	Surface Water.
SWABS	Surface Water Abstraction.
SWALP	Surface Water Abstraction Licensing Procedure.
SWDIS	Surface Water Discharges.
т	Aquifer transmissivity.
Target Outflows	The minimum outflows from the area required to protect downstream environmental objectives and protected rights e.g. in-river flow needs based on downstream abstractors or ecological criteria, or groundwater flow to prevent saline intrusion. In the ARM Framework this is expressed as 12 monthly average flows, optionally based on a defined minimum monthly flow plus a % of the natural flows above this minimum.
Trialling	Application of a proposed methodology to an Assessment Area as part of its testing and development.
Utilisation	Proportion of licensed entitlement that is actually abstracted (sometimes referred to as 'uptake').

iv

.

.

1 Summary of the ARM Framework

2 Arm Spreadsheet Aims, Overview, Formats and General Guidance Notes

3 Conceptual Understanding Spreadsheet

4 River Outflow Calcs Spreadsheet in RIV.XLT

5 GW Outflow Calcs Spreadsheet in GW.XLT

6 Conclusions and QA Spreadsheet

7 Optional Spreadsheets to Estimate Natural Flows

8 Assessing Alternative Assumptions, Management Scenarios, Target Flows and Years

9 Worked Examples in Trial Areas

10 Conclusions from ARM Spreadsheet Trials and Recommendations for Further Consultation

User Manual Contents

Summary

Glossary

1.	Sumr	nary of the ARM Framework	1
	1.1	Introduction	1
	1.2	ARM Framework Overview	1
	1.3	Principal Steps	3
	1.3.1	Assessment Area Definition and Conceptual Description	3
	1.3.2	Specify Assessment Year or Hydrological Scenario	4
	1.3.3	Estimate Resource as Natural Outflows	4
	1.3.4	Estimate the Impacts of Abstractions and Discharges	5
	1. 3 .5	Calculate Outflows for the Scenario Assessed	6
	1.3.6	Define Target Outflows	6
	1.3.7	Calculate Surplus or Deficit Profile	7
	1.3.8	Interpret Sustainability Status	7
	1.4	Other Calculation Steps and Plots	8
	1.5	Background to the ARM Framework and Related Research	9
	1.5.1	ARM Framework Trials and Development	9
	1.5. 2	Other Related Research and Guidance	9
2.	ARM	Spreadsheet Aims, Overview, Formats and	
	Gene	ral Guidance Notes	11
	2.1	Aims, Outputs and Definitions	12
	2.2	ARM Spreadsheet Implementation Overview	14
	2.3	Staff, Data, Software, Hardware and Time Requirements	16
	2.4	Data Collation and Entry on Spreadsheets	18
	2.4.1	Pragmatic Data Collation	18
	2.4.2	Spreadsheet Formats, Audit Trails and Uncertainty	18
3.	Conc	eptual Understanding Spreadsheet	21

v

.

4.	River	Outflow Calcs Spreadsheet in RIV.XLT	25
5.	GWC	Outflow Calcs Spreadsheet in GW.XLT	29
6.	Сопс	Iusions and QA Spreadsheet	33
	6.1	Summarising Headline Results and Interpreting Abstraction Sustainability Status	33
	6.2	Interpreted Management Action Required	34
	6.3	Review, Approval and Version Control	34
7.	Optio	nal Spreadsheets to Estimate Natural Flows	35
	7.1	GAUGE.xIt Spreadsheet to Naturalise Gauged Flows	35
	7.2	ARF.xit Spreadsheet for Natural Flows from Monthly Effective Rainfall	37
8.		ssing Alternative Assumptions, Management arios, Target Flows and Years	41
	8.1	Groundwater Abstraction Impact Assumptions	41
	8.2	Abstraction and Discharge Management Scenarios	43
	8.3	Target Flows	43
	8.4	Assessment Years and Suggested Filenames	43
	8.5	Recommended Scenarios to Consider	43
9.	Work	ed Examples in Trial Areas	45
	9.1	ARM Development Trial Locations	45
	9.2	River Thet at Melford Bridge Assessment	47
	9.2.1	Area Delineation, Description and Issues	47
	9.2.2	Workbook Selection and Names	48
	9.2.3	Assessment Years	48
	9.2.4	Key Assumptions	48
	9.2.5	Presentation and Discussion of Results	52
	9.3	Brighton Chalk Block Groundwater Assessment	53
	9.3.1	Area Delineation and Description	53
	9.3.2	Workbook Selection, Assessment Year and Filenames	53
	9.3.3	Key Assumptions	54

vi

I

	9.3.4	Discussion of Results	56
10.		usions from ARM Spreadsheet Trials and Imendations for Further Consultation	59
	10.1	Applicability of the ARM Spreadsheets	59
	10.2	Recommendations for Further Consultation	61
44	Riblio	ranhy	63
11.	Biblio	Jiapiiy	03
		2 - 3 2	
	Table 2.1	Definitions	13
	Table 2.2	Staff, Data and Software Requirements	17
	Table 9.1	ARM Trial Locations and Reports	45
	Figure 1.1	ARM Framework Overview	10
	Figure 1.2	Interpreting Abstraction Sustainability Status	10
	Figure 1.3	Possible Presentation of ARM Framework Results (Ribble Catchment Example)	10
	Figure 2.1	Overview Flow Diagram of ARM Spreadsheets	20
	Figure 2.2	Extract from ARM Spreadsheet Illustrating Data Entry Calculation and Plot Formats	20 24
	Figure 3.1	Using the 'Conceptual Understanding' Spreadsheet Using the 'River Outflow Calcs' Spreadsheet	24 28
	Figure 4.1 Figure 5.1	Using the 'GW Outflow Calcs' Spreadsheet	32
	Figure 6.1	Using the 'Conclusions and QA' Spreadsheet	34
	Figure 7.1	Using the Optional 'Gauge.xlt' Spreadsheet to Naturalise Gauged River Flows	40
	Figure 7.2	Using the Optional 'ARF.xlt' Spreadsheet to Estimate Natural Outflows from Effective Rainfall Using the Aquifer Response Function	40
	Figure 8.1	Alternative 'Extreme Assumptions' to Estimate the Impacts of Groundwater Abstraction on River Flows	44
	Figure 9.1	ARM Framework Trial and Development Areas	46
	Figure 9.2	Rivers Little Ouse and Thet Assessment Areas Sketch Plan and Cross Sections	52
	Figure 9.3	Brighton Chalk Block: Conceptual Sketch Plan and Sections	58
	Appendix A Appendix B	Software (Blank Spreadsheet and Worked Examples on Disc) Hardcopies of Worked Examples in Trial Areas	• ••

.

.

vii

 	viii	
•		
r.	:	
		Q.
	¥.)	

1. Summary of the ARM Framework

1.1 Introduction

This Section of the Spreadsheet User Manual introduces the Available Resource Methodology (ARM) which has been developed for the Environment Agency (the 'Agency') to provide a consistent Framework within which the water resources balance and sustainability of abstraction from an area can be assessed. The Framework is intended to provide a consistent basis for countrywide comparison whilst retaining the flexibility to permit optimum use of local understanding and experience. It has grown and broadened out of earlier R&D work to establish the available resources or 'reliable yield' of groundwater dominated units, and recent trials suggest that it now also works well on surface water dominated catchments.

1

Section 1.2 presents an overview of the Framework and what it is intended to achieve. Section 1.3 outlines the main steps within it and discusses the issues and appropriate approaches which might be relevant to each. Other optional elements which can provide useful supplementary insight into the water resources balance are described in Section 1.4. Finally Section 1.5 summarises the development of the Framework and indicates were further guidance on related approaches can be found.

The remainder of the Manual is dedicated to spreadsheets which have been developed to facilitate assessments according to the ARM framework. Section 2 lists the spreadsheets, describes what they are for and introduces their requirements (data, hardware, software, staff time etc) and plot formats. Sections 3 to 7 provide step-by-step guidance for the use of each of the four available spreadsheets. Section 8 describes how the spreadsheets may be used to investigate alternative scenarios or assumptions. Worked examples for two trial areas are presented in Section 9 and recommendations for further consultation on the wider application of the Framework and spreadsheets are drawn together in Section 10.

1.2 ARM Framework Overview

The ARM has been developed as a consistent but flexible Framework to help the Agency manage water resources sustainably across a wide variety of areas in England and Wales. It outlines the principal steps required to assess whether or not the resources management (i.e. abstraction and discharge control) of an area is sustainable given in-river and other environmental water needs. The main output from such an assessment should be a statement of the surplus or deficit of resources in the area compared with these pre-defined flow protection targets. It should then be possible to compare these surplus or deficit results between different areas, interpret and classify their degree of sustainability, prioritise remedial action and set out policy for future management.

Figure 1.1 is an overview of the principal steps within the ARM Framework. The options within each step are discussed in Section 1.3 - the following paragraphs summarise the whole process.

Assessments are based on outflow focused estimates of resources and the artificial impacts on these. Total river flows at a defined point (including both groundwater and surface water contributions) are preferred as the focus as these are often the main management issue. Groundwater-only assessments are also possible where appropriate (e.g. for confined or coastal aquifers) but (as with any approach) will be subject to much greater uncertainties.

The first step in the assessment must be to qualitatively describe the conceptual understanding of the river catchment or groundwater area in question including the hydrological processes and management issues within it. Previous studies should be reviewed and the level of understanding indicated. Thereafter the Framework requires estimation and plotting of monthly average flows and impacts for one or more specified assessment years or hydrological scenarios in order to represent seasonal variation in the resource balance

Resources are defined by estimates of average monthly natural river or groundwater outflows for the specified year. Such estimates may be based on a wide variety of commonly applied techniques such as gauge flow naturalisation, river flow models like microLOWFLOWS or regional groundwater flow models. In river outflow assessments, the natural baseflow may also be defined as a separate groundwater resource although this is not essential.

The surface water abstractions ('SWABS') and discharges ('SWDIS'), the groundwater abstractions ('GWABS') and any other artificial influences (e.g. reservoirs) which make up the management regime are then stated and their impacts estimated in order to calculate the 'scenario' outflow. These artificial influences are defined for the management scenario being assessed and may differ from the 'estimated actual' influences used in any gauged flow naturalisation process to derive natural flows. Particular care is required when considering the seasonal distribution of groundwater abstraction impacts on river flows (see Section 8.1).

The next key step in the Framework is to define the target flows which the Agency considers are required to meet in-river or environmental needs. There is, as yet, no nationally accepted method for establishing these target flows (see Section 1.3.6 for options). The criteria for determining appropriate targets will vary widely so this step may require extensive consultation within the Agency and with the public and major stakeholders to achieve consensus. With the use of pre-defined target flows the sustainability of the scenario can be assessed. If target flows have not been defined, it is still possible to express the artificial flow impacts as a percentage of natural flows but no conclusions as to the acceptability of these can be inferred.

The final calculation is simply to subtract the target flows (i.e. the river or environmental needs) from the scenario flows (i.e. the outflows for the scenario) to determine the surplus or deficit of resources available for further abstraction. If monthly flows, impacts and targets have been estimated throughout, as advocated by the Framework, then a monthly surplus or deficit profile will result which will reflect seasonal variations in resource availability for the year assessed (Figure 1.2).

Alternative years may be considered in the same way e.g. to investigate the balance for a 1 in 10 year drought or for an 'average' year. The surplus or deficit can also be expressed as a percentage of the natural outflow resource in order to make comparisons between different rivers or areas. The assessment results may then be used to assign a sustainability status based on the surplus or deficit profiles according to national guidelines if this is required (as illustrated in Figure 1.2).

The Framework is not intended to replace any part of the existing process for the determination of individual abstraction licence applications. The results of an ARM assessment apply to the whole area assessed and do not consider the distribution of abstraction stresses within it. Licence applications will remain subject to detailed scrutiny of local impacts regardless of whether or not there are surplus resources in the general area.

Assessments can be carried out within the Framework using various techniques at different levels of sophistication to produce results in a consistent format which can be readily compared. However, because it is not prescriptive in setting out exactly how each of the principle steps is to be carried out, the consistency of assessment outcomes does rely on the establishment and application of best practice throughout the Agency in areas such as flow naturalisation and target flow setting.

In summary, the ARM Framework provides a strategic overview of water resources management and abstraction sustainability focussed on river or groundwater outflows. It advocates an integrated approach to groundwater and surface water management and can take account of seasonal variations in the resource balance and in abstraction impacts. The understanding and organisation of information which is derived from a Framework assessment can also help prioritise further study, monitoring or investigations to reduce key uncertainties which are hampering effective management.

1.3 Principal Steps

This Section outlines the key issues and options relevant to each of the principal steps illustrated in Figure 1.1 which are the basis for the spreadsheets described in the remainder of the Manual.

1.3.1 Assessment Area Definition and Conceptual Description

River flow assessments are carried out for the combined surface water and groundwater catchments to a point on the river. These catchments do not have to be coincident. Although not essential, assessments should take advantage of available gauging stations wherever possible as measured flows will generally be more reliable than estimated or modelled flows and flows can be monitored against targets. For such assessments groundwater catchment delineation is only relevant to identify which groundwater abstractions are wholly or partially considered to impact flows over the gauge. The size and number of sub-catchments considered may vary from river to river according to the sensitivity of the resource management issues.

Groundwater-only assessment areas may be delineated on the basis of geological or coastal boundaries rather than surface water catchments but some understanding of the location and rate of natural groundwater outflow from the catchment area must be defined.

A qualitative description of the area is an essential starting point for any assessment. This should include a conceptual understanding of hydrological processes such as recharge, surface runoff, and factors influencing groundwater – surface water interaction. It should reference previous studies and provide an overview of historical resource development, hydrological trends and current key management issues. Sketched plans and cross-sections illustrating the main features described can be invaluable and the use of some consistent symbol and line types can facilitate understanding between regions. The uncertainties within this description should be indicated

1.3.2 Specify Assessment Year or Hydrological Scenario

The resources available to sustain any given abstraction and discharge management scenario will vary from year to year. The choice of assessment year or hydrological scenario will therefore at least partly determine the surplus or deficit profile which results. Care is therefore needed to ensure that there is consistency within and between Regions and it is recommended that the Agency identify national guidelines with this in mind.

Assessments of the same abstraction and discharge management scenario can be repeated for different years to obtain a broader view of its sustainability. Possible candidates to consider include:

- A 'long term average' (LTA) year where monthly flows are averaged over a standard period. This is useful for general resource comparisons between areas. However, unless the averaging process takes into account variations in the timing of seasonal peaks and troughs, an LTA year will smooth out seasonal variability so that resulting summer surpluses are overestimated;
- An 'average' year chosen as an historical year with river flow close to the long term average;
- An historical drought year of pre-defined return period;
- A synthesised hydrological scenario consistent with that used for the determination of source deployable outputs.

The ready availability of key river flow, abstraction and discharge data should be an important consideration if an historic year is selected. This may often pragmatically limit assessments to recent years (e.g. after 1980) when these data are more widely available within standard Agency databases.

1.3.3 Estimate Resource as Natural Outflows

A key feature of an ARM Framework assessment should be that the availability and timing of natural water resources are estimated as outflows from the area (i.e. river flow or groundwater outflow) rather than as inflows (i.e. effective rainfall or recharge). This is helpful because the timing of outflows evident from a monthly average profile includes within it information on catchment response and storage, and also so that resource management objectives may be focussed on measurable targets.

There are many standard techniques for the estimation of natural river flows which can be accommodated within the Framework:

- Gauged flow naturalisation (an optional spreadsheet for monthly average gauge flow naturalisation for use in association with the main ARM spreadsheet is described in Section 7.1);
- microLOWFLOWS;
- region specific river flow or groundwater models;
- other hydrological techniques.

Such approaches are in regular use within the Agency and are the subject of national guidelines which experienced staff can apply to ensure consistency. It may often be useful to compare and reconcile different estimates of natural river flow before proceeding with the assessment.

Natural groundwater outflows from coastal or confined aquifers are much more difficult to quantify. Leakage to a confined aquifer may be partly dependent on the pumped drawdown so that the basic assumption of a natural outflow reduced by abstraction is not valid. In the absence of groundwater models estimates may be based on hydraulic gradients and transmissivities or on simple models of the aquifer's discharge response to recharge. One such simple analytical function (the 'Aquifer Response Function') has been developed in a spreadsheet which can optionally be used to simulate monthly natural outflows from effective rainfall (see Section 7.2). These estimates should be viewed with caution and resources management will inevitably be based on monitoring of groundwater quality and levels as indicators of change.

1.3.4 Estimate the Impacts of Abstractions and Discharges

The assumptions of the management scenario should be clearly stated. It is likely that the Agency will be seeking to assess the sustainability of the current abstraction licence ledger although the acceptability of a potential future changes might also be considered. Abstractions can be seasonally profiled according to licence restrictions as average monthly rates to take account of and represent both summer spray irrigation and winter pumped storage. Abstraction rates may be based on either:

- The annually licensed rate regardless of any licence restriction clauses;
- The deployable output determined for the source as defined in the relevant UKWIR/Agency R&D Reports; or
- An estimate of the actual abstraction rate.

Here again, national guidelines could provide consistency.

Whichever option is chosen to estimate the abstraction rate, the consumptiveness of the licence use with regards to local return of water to the catchment should be taken into account (e.g. spray irrigation is 100% consumptive, fish farming is 0% consumptive). In order to take account of bulk water transfers it is recommended that public water supply abstractions be treated as fully consumptive and that sewage treatment works discharges are accounted for separately. Such discharge rates are likely to be poorly measured and associated with a high degree of uncertainty.

Surface water abstractions and discharges can be safely assumed to impact on river outflows at the same monthly rate as they are pumped (unless they are upstream from a reservoir).

The same assumption cannot be made for groundwater abstractions. Having estimated the monthly profile of groundwater abstractions from the catchment it is recommended that a separate estimate be made of the impact of these abstractions on river flows. Analytical approaches might predict delayed and smoothed impacts related to both the aquifer properties and borehole's distance from the river but the seasonal recharge dependant effects of aquifer storage may be more significant. Boreholes close to a river in a highly karstic aquifer may be considered to 'impact river flows as they pump' and can therefore be treated as surface water abstractions. However, for many aquifers the river flow reductions due to abstraction may be

less in summer than in winter, and also less in drought years than in wetter years. Estimates of groundwater abstraction impacts should take into account any local experience of low flow recovery when boreholes have been turned off.

Section 8.1 discusses some simple alternative assumptions which can be used to estimate groundwater abstraction impact distribution within the ARM spreadsheets. Agency R&D on this issue is ongoing.

The existence of runoff dependent or pumped storage reservoirs and of groundwater storage based river support schemes may also be accounted for within the ARM Framework where relevant.

1.3.5 Calculate Outflows for the Scenario Assessed

Having estimated artificial impacts these are simply applied to the natural outflows to calculate the scenario outflows.

1.3.6 Define Target Outflows

One of the principal objectives of the Framework is to assess water resources status with reference to flow protection targets based on environmental and in-river needs, downstream protected rights and effluent dilution requirements. These flow targets may take into account amenity, navigational, landscape aesthetics, fisheries and eco-hydrological needs and may require wide consultation within the Agency and beyond. Such consultation should be initiated early on as its conclusions will critically affect the outcome of an assessment

The ARM Framework calls for monthly average flow targets to be established so as to enable the protection of a seasonally variable flow regime if appropriate. The natural QN95 or the gauged Q95 are commonly used as a basis for setting 'hands off flows' for surface water abstraction licences. The failure to maintain such minimum flows during severe droughts should be expected and accepted unless river support schemes are considered to be part of a sustainable resource management policy. An additional proportion of the natural flows exceeding the defined monthly minimum can also be optionally protected, in a manner similar to the principles set out in the Agency's Surface Water Abstraction Licensing Procedure (SWALP).

Framework assessments should aim to establish consensus around realistic flow targets, set in the light of estimated natural and measured existing flows (where available), and should clearly show the implications of these targets both in terms of abstraction restrictions and environmental benefits.

It is important to note that monthly flows cannot be measured – they can only be calculated retrospectively. Monthly targets are not appropriate as an operating constraint for surface water abstractions which will still require a daily flow-duration curve approach as advocated SWALP.

For groundwater-only assessments the prevention of saline intrusion may be a particular concern. As for natural groundwater outflows, targets will be difficult to define and should be associated with large uncertainty.

1.3.7 Calculate Surplus or Deficit Profile

The surplus or deficit for each month of the year assessed is simply calculated by subtracting the target flow from the scenario flow (Figure 1.2). This profile represents how much more or less abstraction impact can be considered acceptable to maintain the target flows set. Many assessments show a small surplus or a deficit during summer with large surpluses during the wetter months. In order to compare catchments of different sizes it is useful to express the same profile as a percentage of the natural outflow and the overall sustainability of abstraction management can be simplified further down to two numbers – the average surplus or deficit %, and the minimum surplus or deficit %.

1.3.8 Interpret Sustainability Status

Figure 1.2 shows monthly flow and surplus or deficit plots for a catchment in three resource exploitation conditions. In all three conditions the estimated natural and target flows for the assessed year are the same – it is only the scenario outflow which varies and results in a progressively depleted surplus profile as resources become more committed. When there are clear surpluses throughout the year there is the potential for further surface water or groundwater abstraction (subject to local impact assessment). Smaller summer surpluses may imply that groundwater abstraction should be frozen although there may be potential for further seasonally or flow restricted surface water abstractions (e.g. winter storage schemes).

In the final over-committed condition deficits are apparent in the summer months and some reduction in abstraction impacts is required. This might be achieved by reductions in groundwater abstraction throughout the year or could be realised by cutting back surface water spray irrigation abstraction. Alternatively, if groundwater abstractions are considered to have a smaller impact on river flows in the summer than the equivalent surface water abstraction, it may be appropriate to advocate a switch from surface to groundwater abstraction.

It is understood that a fivefold classification of abstraction sustainability based on such profiles is currently under consideration by the Agency as follows:

- Lightly to Moderately Licensed: (Blue) Considerable surplus of water available in all months.
- Significantly Licensed: (Green) Surplus of water available. Possibly slight surplus in summer months. Clear surplus in winter months.
- *Fully Licensed*: (Yellow) Little or no surplus available. No significant summer surplus or deficit. Possibly some slight surplus in winter months.
- Over-Licensed: (Orange) Deficit in water availability exists on the basis of licensed resources but not due to actual abstractions. Deficit in most or all summer months, possibly some winter months.
- Over-Abstracted: (Red) Deficit exists on the basis of both licensed and actual abstractions. Actual deficit in most or all summer months.

Whilst the presentation of an annual average surplus or deficit is helpful for comparative purposes, it is also essential to quote the minimum surplus (or the largest deficit) as this more closely reflects the groundwater resource position. Reliance on a single annual average result

fails to address seasonal aspects of resource availability and could be misleading unless critical periods are considered.

If possible, errors and uncertainties in all the estimates used to derive the surplus or deficit profile should be accumulated through the calculations to enable this final profile to include a simple representation of uncertainty (Figure 1.2). The incorporation of uncertainty in this way is a key feature of the ARM spreadsheets described in Sections 2 to 7. It allows management decisions to be made cautiously with some understanding of the possible errors involved. It also enables assessments to be carried out at different levels of sophistication from simple, broad-brush approaches based on limited data (large error bars) to more costly regional modelling approaches with more effort to collect and collate monitoring data (smaller error bars).

1.4 Other Calculation Steps and Plots

Although not essential, there are a number of further calculation steps and useful plotting representations which have been built into the ARM spreadsheets based on the data already collated during the assessment process. These include:

- Calculating the total 'acceptable abstraction impacts' as the difference between the natural and target flows (e.g. Section 4, Step 9). This represents a ceiling below which the Agency is aiming to manage the impacts of consumptive abstraction;
- Comparing groundwater abstraction impacts with natural baseflow if this has been separately defined for a river flow assessment (e.g. Section 4, Step 11);
- Combining all the monthly scenario flows and impacts as stacked histogram plots against a common MI/d flow axis to illustrate the relative importance of the different impacts and therefore help to effectively prioritise management intervention (e.g. Section 4, Step 10);
- Stacked histograms can also be expressed in mm/month by dividing by the catchment area assessed (the surface catchment area is most convenient for river flow assessment). These plots are particularly helpful for comparison between small and larger areas. Differences between them may relate to variations in basic effective rainfall resources (e.g. Anglian Region low, North West Region high) or to local variations in groundwater catchment area (e.g. Section 4, Step 12);
- It may be useful to represent the scenario flows and impacts for a discrete reach of a river system, excluding inflows from an upstream sub-catchment. This may help to focus attention on the areas of greatest abstraction stress (e.g. Section 4, Step 12).

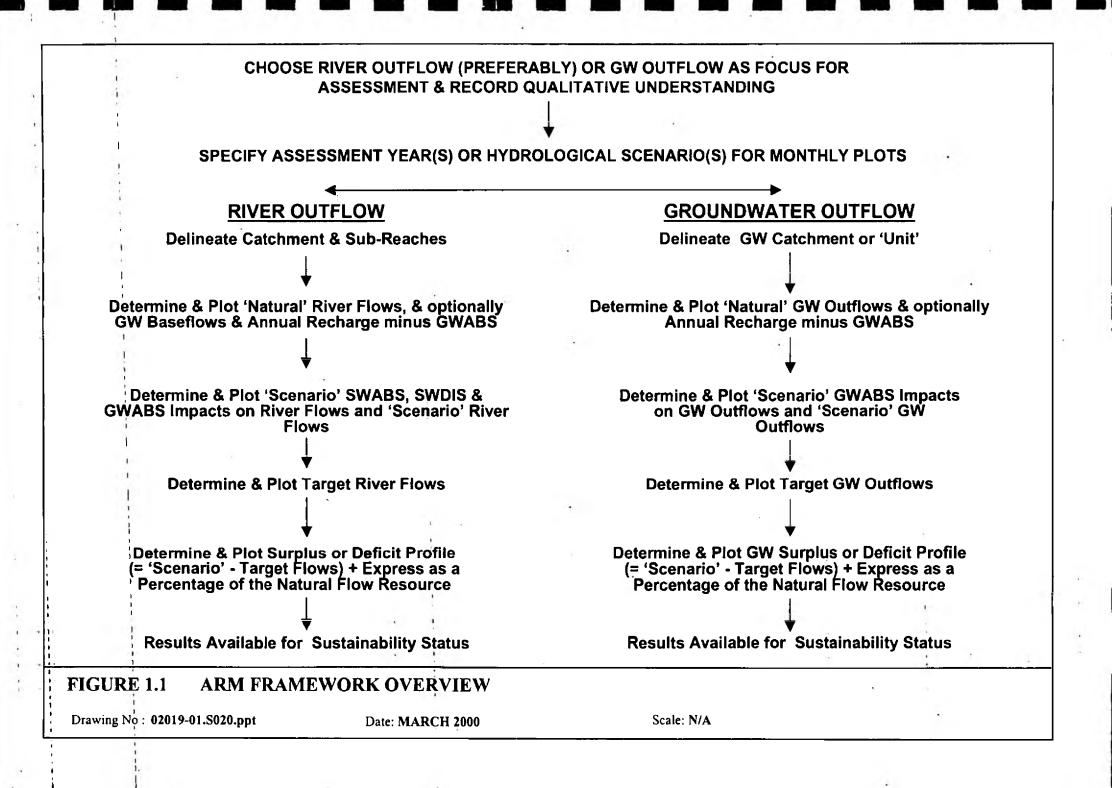
1.5 Background to the ARM Framework and Related Research

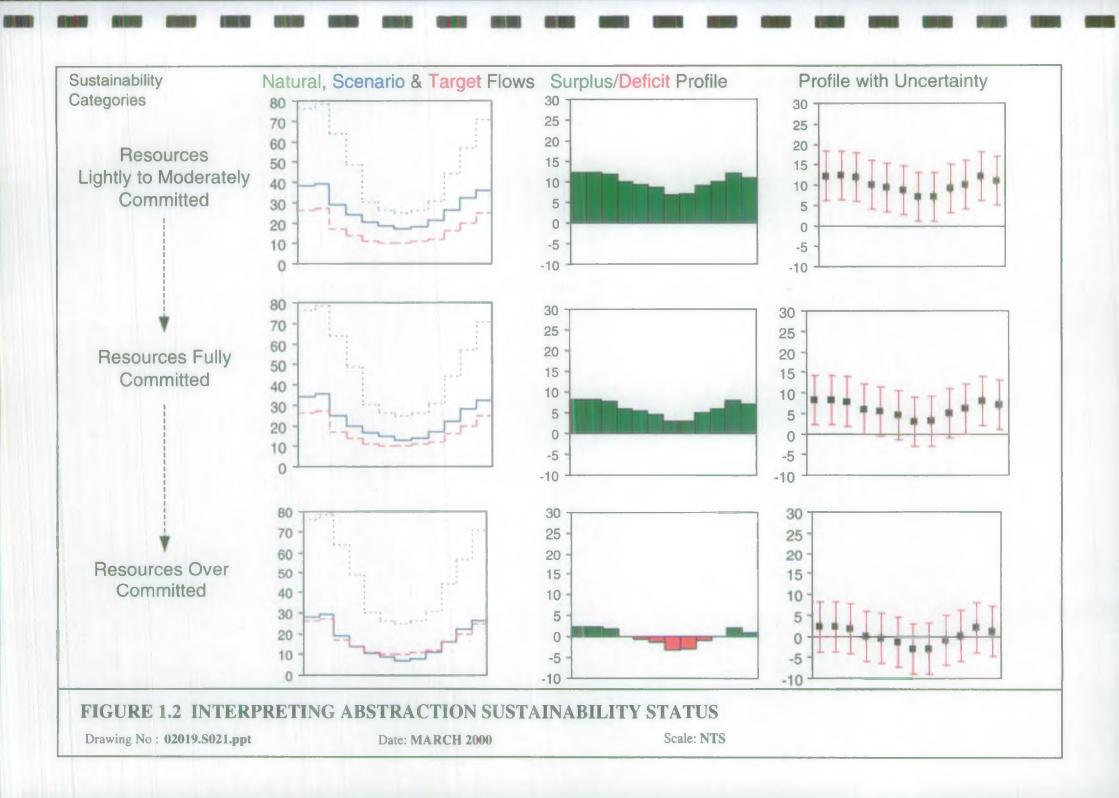
1.5.1 ARM Framework Trials and Development

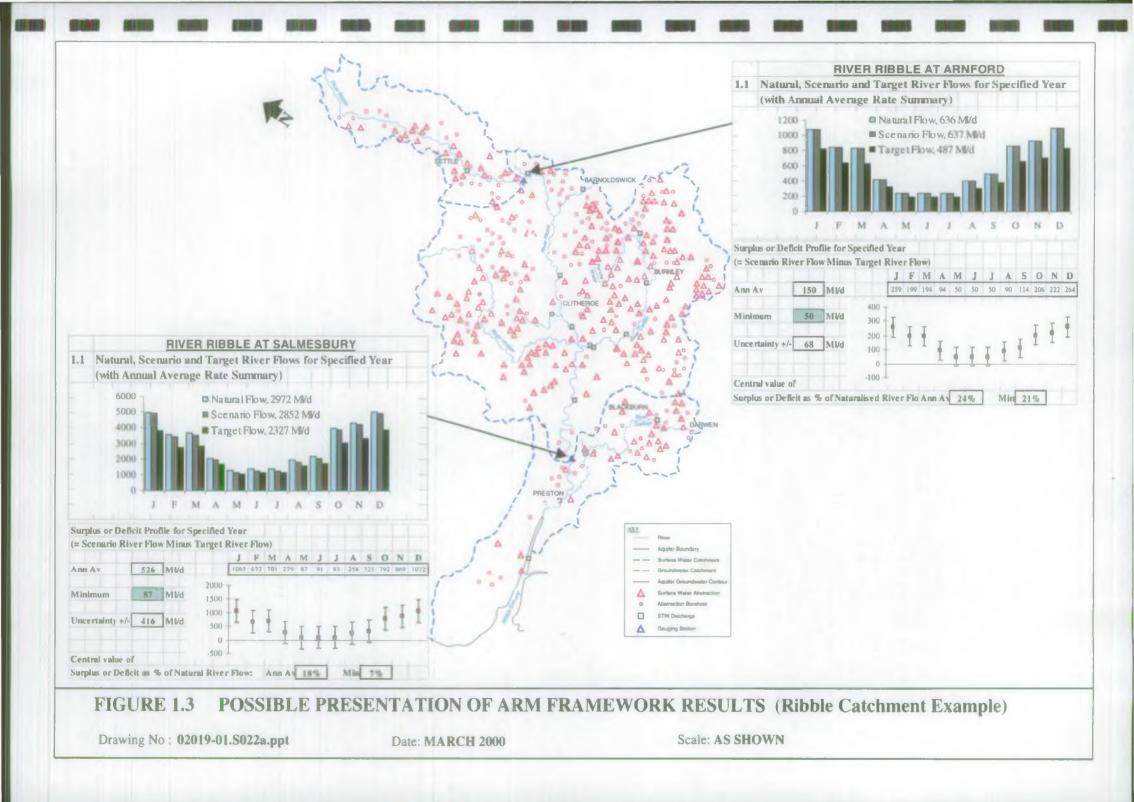
The ARM Framework has been developed following extensive review of existing practice and research and in consultation with Agency staff from all regions through a programme of intensive workshops and trialling. The trial areas are described in Section 9 together with worked spreadsheet examples from two of the areas (the River Thet and the Brighton Chalk Block). Figure 1.3 illustrates how the outputs from the principal calculation steps outlined above (Section 1.3) can be derived and presented using the ARM spreadsheets (the example shown is taken from trials carried out at two locations on the River Ribble).

The need for an integrated resource assessment Framework and the process of trials and consultation by which the ARM has been developed are detailed in three main reports as follows:

- A Framework for Assessing Water Resource Availability and Acceptable Abstraction Impacts: Report and User Manual, May 1999. National Groundwater and Contaminated Land Centre Project Reference NC/06/01;
- Available Resource Methodology Assessments in Catchment Abstraction Management Strategy Trial Areas, March 2000. National Groundwater and Contaminated Land Centre Project Reference NC/99/68;
- Project Record for the Development of the Available Resource Methodology: A Framework for Assessing Water Resources and Abstraction Sustainability, March 2000. National Groundwater and Contaminated Land Centre Project Reference NC/99/68.


1.5.2 Other Related Research and Guidance


Related research which has been referred to during development of the ARM Framework and which provides useful guidance for some of the calculation steps includes:


- The Surface Water Abstraction Licensing Procedure (SWALP);
- Low flow studies research and microLOWFLOWS software;
- flow naturalisation guidelines;
- ongoing R&D into the impact of groundwater abstractions on river flows (IGARF); and
- UKWIR Deployable Outputs (surface water and groundwater sources).

A bibliography of key documents referred to during the development process is included in Section 11 of this User Manual.

2. ARM Spreadsheet Aims, Overview, Formats and General Guidance Notes

Sections 2 to 8 are written as a practical guide for users of the ARM spreadsheets. First time users are recommended to read Section I to gain an overview of the ARM as a Framework for resource assessment.

The style of these sections is deliberately sparse with emphasis on step-by-step instructions and notes to explain the assessment process. It includes the following sections:

Section	Title	Contents
2.1	Aims, Outputs and Definitions	What the assessment is for, what the calculation results are and what they mean
2.2	Spreadsheet Overview	A flow diagram and description summarising the assessment calculation steps and associated Excel spreadsheets
2.3	Staff, Time, Data, Software and Hardware Requirements	Who should do the work, how long it may take and what they need to do it
2.4	Data Entry, Audit Trails and Confidence Limits	Spreadsheet formats for entering information and how to incorporate data error bars to reflect uncertainties
2.6	Estimating Natural Outflows from Rainfall	General guidelines on options for estimating natural river or groundwater outflows from rainfall
3	Spreadsheet for Conceptual Understanding	Notes on how to use this spreadsheet to set out a . simple conceptual understanding of the area
4 & 5	Two Spreadsheets for Calculating Surplus or Deficit and Impacts	Flow diagrams and calculation notes for areas where 4. river flows are important 5. outflows are as groundwater (rivers not considered)
6	Conclusions and QA Spreadsheet	Notes on presentation and interpretation of headline results and on review, approval and updating the spreadsheets
7	Optional Spreadsheets to Estimate Natural Flows	 Flow diagrams and calculation notes on optional spreadsheets for estimating natural flows based on: Gauged flow naturalisation; and Effective rainfall using a simple analytical model.
8	Assessing Alternative Assumptions, Scenarios and Targets	How to use the spreadsheets to investigate the implications of alternative GW abstraction impact assumptions, management scenarios or flow protection targets in different assessment years

2.1 Aims, Outputs and Definitions

A full listing of key words and abbreviations used in this guide is provided in the Glossary at the front of the report. **Definitions** which are particularly central to the ARM spreadsheets are given in Table 2.1.

The aims of carrying out a water resource assessment using these spreadsheets are:

- To record the developed **conceptual understanding** of the water resources of the Assessment Area in a simple and nationally consistent format;
- To calculate, for the area in a specified year (or years), the surplus or deficit availability of water for further abstraction according to a defined management scenario and given target flows set to protect the environment and downstream flow needs;
- To express both the surplus or deficit as an average and minimum percentage of natural flows in order to facilitate comparison between areas;
- To assign a sustainability status (see Section 1.3.8) to the area based on this surplus/deficit profile and percentages;
- To calculate, for the area in a specified year, the total acceptable abstraction impacts given natural and target flows;
- To consider and represent **uncertainty** in calculated outputs and prompt further investigation when required.

The principal calculation outputs from an assessment for any area should therefore be:

- Availability of water for further abstraction in the specified year expressed as 12 monthly surplus or deficit values in Ml/d (and as percentages of natural flow) with associated uncertainty bands;
- An interpreted sustainability status for the area;
- Total acceptable abstraction impacts in the specified year expressed as 12 monthly values in MI/d with associated uncertainty bands;
- The maximum scenario and acceptable monthly abstraction impact in the specified year expressed as percentages of the natural outflow from the area.

Table 2.1 Definitions

E

Term	Defined as:	Expressed as:
Assessment Area	The area to which the assessment applies, defined according to its outflow e.g. surface catchment and associated groundwater catchment to a point on a river, or groundwater catchment to coastal discharge boundary.	A sketched map, schematic cross- section and description
Specified Year	The historic year or hydrological scenario chosen to assess monthly flows and target flow implications e.g. a recent drought year of a known return period.	Calendar Year
Actual Flows	The flows which actually left the Assessment Area in a specified historic year (e.g. gauged river flows).	Tweive monthly averaged flows, January – December, in Ml/d +/- uncertainty
Natural Flows	The flows which would naturally have left the Assessment Area in the specified year in the absence of any artificial influences.	Twelve monthly averaged flows, January – December, in Ml/d +/- uncertainty
Scenario Flows	The flows which would have left the Assessment Area according to the abstraction and discharge management scenario being assessed.	Twelve monthly averaged flows, January – December, in Mi/d +/- uncertainty
Target Flows	The minimum outflows from the area required to protect downstream environmental objectives and protected rights e.g. in-river flow needs based on downstream abstractors, effluent dilution, navigational, amenity or ecological criteria, or groundwater flow to prevent saline intrusion.	Twelve monthly averaged flows, January – December, in MI/d with associated uncertainty
Abstraction Impacts	The amount by which all the abstractions in the area would reduce natural flows from it, taking into the consumptiveness of the use, the location of any effluent return and any impact redistribution related to aquifer storage and transmissivity. Can be based on the impacts of estimated actual abstraction rates (e.g. for gauge naturalisation) or on the impacts of the management scenario being assessed.	Twelve monthly averaged flows, January – December, in Ml/d +/- uncertainty
Surplus or Deficit	How much more or how much less abstraction impact is acceptable in the specified year for the scenario being assessed.	Twelve monthly averaged flows, January – December, in MI/d +/- uncertainty
	= Scenario Flows – Target Flows	
Surplus or Deficit as % of Natural Flows	Indicators (or full monthly profile) of the surplus or deficit relative to natural outflows in the specified year which are useful for comparison with other areas and to assign sustainability status.	An annual average % and a minimum %.
Acceptable Abstraction	The abstraction impacts which are considered acceptable given target flows in the specified year.	Twelve monthly averaged flows, January – December, in MI/d +/- uncertainty
Impacts	= Natural Flows – Target Flows, or	universamey
	= (Surplus or Deficit) + Scenario Abstraction Impacts	
Maximum % Abstraction Impact	An indicator of the maximum abstraction impacts relative to natural outflows in the specified year.	A single % for whichever month shows the maximum % impact.
	= <u>Abstraction Impact x 100</u> (use either scenario or acceptable impacts)	

~ ~ ~

2.2 ARM Spreadsheet Implementation Overview

Figure 2.1 provides an overview of the Excel spreadsheets available to implement the assessment steps laid down in the ARM Framework (as previously illustrated in Figure 1.1). Preparatory guidelines on who should do the work, the information and time required, and calculation and plot entry formats are provided in Sections 2.3 and 2.6. Each of the spreadsheets shown on Figure 2.1 is considered in more detail in Sections 3 to 7 - the following paragraphs summarise the whole process.

ARM Framework assessments for river flows investigate natural and target flows in the river at a defined point, preferably a gauging station (if one exists), and all the upstream artificial impacts on these flows. The boundaries of a river Assessment Area can therefore be drawn according to surface water and natural groundwater catchments although these need not be coincident. For many assessments however, the groundwater catchment area need only be delineated to identify which of the groundwater abstractions are considered to impact the river flows being assessed. If the main natural outflows would be as groundwater to the sea or an estuary, or if any surface flows can be ignored, then the ARM assessment area should be delineated by the groundwater catchment to the outflow boundary.

The first step of any assessment is to make a simple record of the conceptual understanding of the hydrological cycle in the area. The user, in consultation with colleagues from complementary disciplines, answers largely qualitative questions collated on the *Conceptual Understanding* spreadsheet. The core of this understanding is presented as sketched maps and plans which illustrate essential surface and groundwater features and locate the main abstractions and discharges. Further details can be found in Section 3.

The next task is to calculate the **surplus or deficit** profile and **acceptable abstraction impacts**, for the area, as defined in Table 2.1. One of two ARM spreadsheets is chosen according to the definition of the area:

- Total river flows, and both abstraction and discharge impacts considered *River Outflow Calcs* spreadsheet in the **RIV.XLT** workbook (Section 4); or
- Groundwater (GW) outflows and GW abstraction impacts only considered GW Outflow Calcs spreadsheet in the GW.XLT workbook (Section 5).

Despite their differing data requirements, both spreadsheets have common elements and steps:

- defining natural flows;
- defining the abstraction and discharge management scenario;
- estimating scenario flows;
- setting flow protection targets;
- calculating surplus/deficit and acceptable abstraction impact profiles;
- plotting the scenario flows and artificial impacts as stacked histograms.

Whichever spreadsheet has been used for the calculations, results are summarised to a common format in the *Conclusions and QA* spreadsheet. At this stage, interpretation is required to

assign a sustainability status (see Section 1.3.8) to the area and the user is required to seek the review and approval of Regional Agency staff with appropriate hydrological and hydrogeological responsibilities. Further details can be found in Section 6.

The definition of natural river flows or groundwater outflows is a vital first step in both ARM spreadsheets and the user is free to derive these using any appropriate approach. Possible options include the use of microLOWFLOWS, river or groundwater flow models which include the assessed area and gauge flow naturalisation. An optional spreadsheet (GAUGE.XLT) has been developed to facilitate gauged flow naturalisation for use in ARM assessments which is described in Section 7. Section 7 also introduces a spreadsheet (ARF.XLT) which uses a simple analytical function (the 'Aquifer Response Function') to derive monthly natural flows from a series of monthly effective rainfall data according to pre-defined groundwater and surface water catchment areas, aquifer parameters and an assumed recharge/runoff split. This can be tried as a further optional alternative for estimating natural flows.

Having entered data and assumptions for one assessment of an area, alternative scenarios can easily be investigated. These may consider the implications of alternative target flows, abstraction management scenarios or calculation assumptions as described in Section 8.

2.3 Staff, Data, Software, Hardware and Time Requirements

Table 2.2 provides a summary of the suggested staff inputs, data requirements and possible sources, calculation method options and software requirements needed for each step of the assessment process. This should be viewed as a guide rather than as a prescription.

A water resource assessment within this framework requires the collaboration of Agency staff from a range of disciplines and responsibility levels. Regional hydrogeologists and hydrologists should agree on the delineation of Assessment Areas and years and should prioritise the order in which the areas are considered. Experienced staff should also have a key review role at least over the description of conceptual understanding and the assumptions used to simulate natural outflows and to estimate groundwater abstraction impacts. River flow objectives will be an essential requirement for most assessments. Input from ecological and conservation staff will be needed to help set appropriate target flows. It is recommended that the completed assessment and the key output -a sustainability status -be reviewed and approved by the appropriate line managers including the Regional Water Resources Manager.

Much of the data collation and spreadsheet entry can be done by junior staff. Before starting data collation users should have read this report and manual as well as reviewing the spreadsheet where the data will be entered. Most quantitative data are required as monthly average flow values for the assessment year and maximum use should be made of data which may have already been collated for other purposes. Work is currently in progress within the Agency to improve the interfaces between abstraction licence databases, abstraction returns data, Micro LOW FLOWS etc which should all help to facilitate data collation for the resources assessment. Pragmatic assumptions to prioritise and reduce the data collation exercise to readily manageable proportions will always be necessary – guidance is provided in Section 2.4.

Some of the data to be collated depends on the calculation method chosen (e.g. derivation of natural flows from microLOWFLOWS compared with gauge flow naturalisation).

Basic computing requirements for the spreadsheets are a PC which runs Excel v97 SR2. Conceptual sketch maps and schematic sections can be pulled together from existing digitised drawings or GIS layers and imported into the spreadsheets, or can simply be attached as hardcopy, although users should be encouraged to adopt consistent line symbols to facilitate comparison. The need for associated software such as microLOWFLOWS or the 'Impact of Groundwater Abstraction on River Flows' spreadsheets depends on the user's choice of calculation method.

Water resource assessments of this type are probably best implemented for several areas within a Region at the same time. This has the advantage of improving user consistency and comparability between areas. If the same year(s) are specified for assessment the efficiency of data collation can also be improved. In this context, once the monthly data has been collated the time taken to complete the spreadsheet assessment for each area assessed is likely to be between 1 to 3 man days of junior time plus 1 day of senior review time. These time inputs will depend on the complexity of the area and on the criticality of the resource management issues.

Table 2.2 Staff, Data and Software Requirements

T.

Assessment Step	Staff Involved*	Alternative Methods	Report & User Guide Reference	Data/Information	Possible Data/ Information Sources
Define Assessment Area	Hg/ Hy & SR	 previously defined SW & GW River Catch. GW Catch. only 	Section 1.3.1	Geol boundaries, SW catch., GW contours, GS locations, which GWABS impact the river to the assessed point	MicroLOWFLOWS for SW catch areas, topo, geol & hydro maps, reports
Select Assessment Year(s)	Hg/Hy, Ec & SR	 design drought other year hydrological scenario 	Section 1.3.2	Rainfall, river flow & abstraction data availability	Reports, Hydrolog, IoH hydrometric registers, MORECS eff rainfall
Conceptual Understanding	Hg/Hy & SR	Qualitative description of processes & issues	Section 3	Trends in flows, GW levels, abstraction, concerns	Reports, Hydrolog, staff knowledge
Collating Abstraction and Discharge/Data for Management Scenario	Tec/Hg/Hy/LO	 Licensed Actual Deployable output Future scenario 	Sections 1.3.4 & 2.4	Licence rates/controls/ abs &STW locs, abs returns, consumptiveness & utilisation assumptions	NALD, reports, discharge consent & abs. returns databases
Setting Target Flows	Hg/Hy, LO, SR & Others (Technical & Consultative)	 Set 12 monthly flow targets 	Sections 1.3.6 & 4,5	env. values, eco. objectives, prot. rights, GW qual. data	NALD, reports, consultation. SWALP assessments
Estimating Groundwater Abstraction Impacts (Optional)	Hg/Hy & SR	 GW flow models IGARF spreadsheets other assumptions for aquifer storage effects 	Sections 1.3.4 & 4,5,7,8	Abs rates, month of pumping, aquifer params, distance from river, cons& utilisation assumptions	Pumping test reports, staff knowledge, GW catch maps Aq. Properties Man
Collating Gauged River Flow Data (Optional)	Tec/Hg/Hy	 Calculate 12 monthly averaged flows 	Section 7	Monthly river flow data for specified year only	Hydrolog, reports
Estimating Natural Outflows from Effective Rainfall (Optional)	Hg/Hy & SR	ARF Method Micro LOW FLOWS other	Section 7	10 yrs. monthly eff rain data, SW &GW catch areas, recharge runoff split & aquifer params river location	MORECS, Aq. Properties Man. Staff knowledge, planimetered sketch plans Micro LOW FLOWS
Investigating Alternative Assumptions or Scenarios (Optional),	Hg/Hy, Ec &S R	 Consider other GWABS impact assumptions, scenarios or targets 	Section 8	No new information	N/A
Interpreting Results and Sustainability Status	Hg/Hy, LO, SR & Others (Technical & Consultative)	Interpret surplus/deficit profile	Section 6	Awareness of regional & national context	National reports & previous assessments
Final Approval	RWRM	Regional policy decisions	Section 6	No new information	N/A

* RWRM=Reg. Wat. Res. Manager, SR=Senior Reviewer, Hy=Hydrologist, Hg=Hydrogeologist, Ec=Ecologist, LO=Licensing Officer, Tec=Technician

2.4 Data Collation and Entry on Spreadsheets

2.4.1 Pragmatic Data Collation

The key to completion of a resource assessment within the proposed framework within a reasonable period of time is to adopt a pragmatic approach towards data collation. Provided assumptions and uncertainties are clearly documented, the user is encouraged to prioritise data collation efforts to focus attention on the most significant components of the local hydrological cycle and to avoid unnecessary detail.

The ready availability of data should be an important criteria in the choice of the assessment year. Brief consultation between hydrologists, hydrogeologists and licensing officers at an early stage can suggest valuable short cuts to the process by identifying previous studies or reporting exercises (e.g. associated with AMP3 or groundwater model development) which have already collated much of the required data. The spreadsheets require most data sets to be entered as twelve monthly averaged flows for the specified year, expressed as MI/d. This corresponds with the reporting frequency required for abstraction returns but means that daily river flow data will need to be averaged for each month (or exported from Hydrolog as monthly averages). Given the uncertainties associated with many of the components of the hydrological cycle, the use of decimal places should be avoided when quoting these monthly averaged MI/d data as this may suggest a misleading degree of precision.

National Agency guidelines on data collation for gauged flow naturalisation should be referred to but users are encouraged to enter 'first-pass' estimates of abstraction and discharge impacts into the spreadsheets at an early stage (e.g. based on total licensed amounts rather than on estimated actual abstraction). The spreadsheets combine these initial impact estimates with river flow data as stacked histograms which help to highlight the more significant data sets where time spent on a more sophisticated approach may be worthwhile.

2.4.2 Spreadsheet Formats, Audit Trails and Uncertainty

The Excel spreadsheets described in Sections 3 to 7 have been designed to facilitate data entry, checking and visualisation. Extracts from an example RIV.XLT spreadsheet are shown on Figure 2.2 to illustrate data entry formats, audit trails, plotting formats and the incorporation of uncertainty, as discussed below.

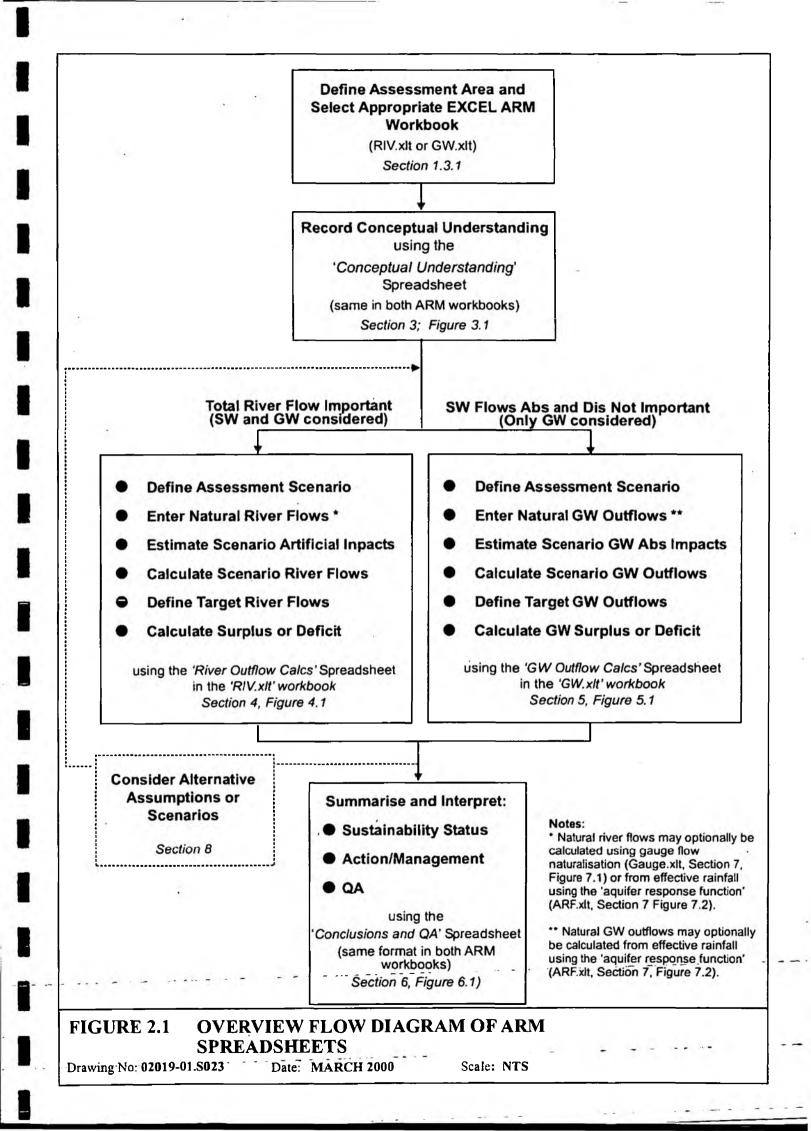
Spreadsheet cells are formatted according to the origin of the information displayed in them as follows:

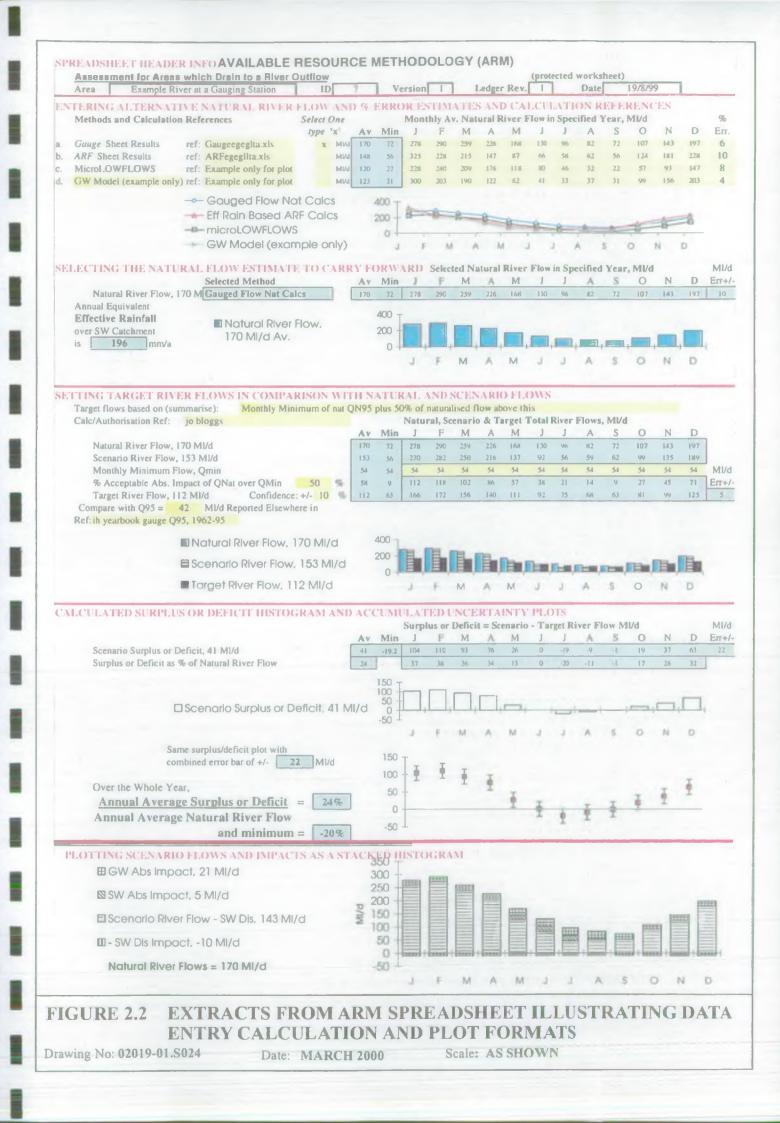
- Pale yellow cells without borders are unprotected for the user to enter information or data. When pasting data into these cells from other spreadsheets it is usually advisable to use the 'paste special values' option as this will ensure that the existing formats of the ARM spreadsheets are retained.
- Pale green cells with light borders are write protected and present calculation output derived from data in the same worksheet.
- White cells with bold borders are write protected and present calculation output derived from another worksheet within the same workbook.

The remaining cells within the main calculation are also write protected and contain notes and information to summarise the steps and help the user to enter data correctly. The main calculation can be viewed and followed by scrolling up or down within one screen width and will print onto a series A4 portrait pages with headers which display the file and sheet names, the page number, and the print date. Columns immediately to the right of the main calculation have been formatted to provide convenient input data storage for up to three alternative scenarios. These scenarios can be investigated by copying the stored data into the main calculation cells (see Section 8). Columns further to the right of the spreadsheets have been left unprotected so that they may be used for notes or preparatory calculations.

Auditable data trails are essential to ensure that the assessment process is transparent and robust and to enable conclusions to be traced back to the information and assumptions on which they have been based. Most of the preparatory calculations required (e.g. to derive natural river flows, set target flows, combine abstractions from the Assessment Area or predict the impacts of these abstractions) are not shown within the main calculation. They may be carried out in the unprotected part of the spreadsheet, or be taken from other paper calculations or reports. In all cases cells have been allocated in the main calculation to record the source of the information used and to summarise the assumptions adopted (Figure 2.2).

In both river (RIV.XLT) and groundwater only (GW.XLT) assessments calculations start with the definition of natural monthly flows. The user can optionally derive these by a number of alternative approaches and then enter them into the spreadsheet. These alternatives are plotted as line-and-symbol graphs (together with average and minimum flow values) which can be compared and adjusted as required before selecting one series to carry forward into the assessment (Figure 2.2).


Thereafter the basic method of visualising data entered and calculation results is the 12 month flow histogram. Some plots include adjacent histogram series e.g. to facilitate comparison between natural, scenario and target flows (Figure 2.2).


In order to take account of uncertainty however, a \pm % level of confidence associated with each of the data sets is required. This level of confidence should be a 'best judgement' value based on discussion with colleagues, knowledge of possible measurement errors and the perceived uncertainty associated with any calculation assumptions adopted. The % specified is simply multiplied by the average annual flow rate for that data set to derive an associated \pm error bar expressed in Ml/d. These error bars are accumulated in any subsequent combination of these data sets (by subtraction or addition) so that results can be presented with some indication of uncertainty in the form of box and whisker plots rather than as histograms which may suggest an unrealistic degree of confidence. Figure 2.2 includes a surplus/deficit profile plotted in both histogram and box and whisker format (and further examples are shown in Figure 1.2 and 1.3).

This is a simple approach to uncertainty. It relies on user judgement and focuses attention on the key data sets where monthly flows are proportionately high. It also requires the user to interpret the final calculation outputs within the context of compounded uncertainty and should help to prioritise further investigation and monitoring to reduce this uncertainty.

A further feature of the spreadsheets which should help to prioritise data collation effort and management intervention is the integration of scenario flows (e.g. river flows) and impacts (e.g. SW Abs, GW Abs and SW Dis impacts) into a single stacked histogram plot. Flows for this plot are drawn both as MI/d (as in Figure 2.2) and also as equivalent mm/month by dividing

by the surface water catchment area (for river assessments) or the groundwater catchment area (for groundwater assessments). These latter plots are useful for comparing the resources of different assessment areas. For river assessments differences between the mm/month plots may reflect variations in effective rainfall or in the relative size of the groundwater catchment area, as well as differences between the artificial flow impacts.

3. Conceptual Understanding Spreadsheet

Any water resource assessment within the proposed framework should start with the completion of a *Conceptual Understanding* Spreadsheet. This first spreadsheet has a common format in both workbooks (RIV.XLT and GW.XLT).

This summary of the aims, format and data requirements of this spreadsheet is best read in front of a computer with a copy of any of the Excel workbooks open. Hardcopy of the trial spreadsheets are enclosed in Appendix B and Figure 3.1 is a flow diagram summarising the steps involved.

Abbreviations commonly used in the remainder of the Manual text and Figures are SW (surface water), GW (groundwater), ABS (abstractions) and DIS (discharges).

The **aims** of this spreadsheet are to:

- Delineate the Assessment Area and present a simple, qualitative conceptual understanding of its natural hydrological cycle, the relative significance of GW and SW and interactions between them;
- Describe the anthropogenic impacts on flows, the assumed historical shifts in water balance components and the environmental issues which are currently perceived to be most significant;
- Draw a sketch plan and, if appropriate, a schematic cross-section of the Assessment Area using lines and symbols which, as far as possible, are nationally consistent.

Completion of this essentially qualitative description of areas, processes, impacts and issues should prepare the user for the quantitative assessment which follows (Sections 4 or 5) as well as providing a convenient summary of understanding and perceptions which can be readily reviewed by a senior staff member with local experience. It should also provide an easy introduction for Agency staff who have no local knowledge and a useful stepping stone toward the conceptual model development required for more detailed distributed modelling.

Some of the Guidance Notes which follow have also been summarised on the spreadsheet itself.

Step 1: Area Definition, Boundaries and Surface Drainage

Having read Section 1.3.1 on Assessment Area delineation, draw a simple sketch plan with features traced from a map so that the sketch can be used to calculate areas if required. The plan may be hand drawn or in digital format and may be based on existing GIS map layers. A windows metafile (.wmf) can optionally be imported into the third page of the *Conceptual Understanding* spreadsheet itself although this will increase the memory demand of the Excel file and may consequently slow down its operation. The plan should include (as relevant): Area boundaries; SW and GW catchment boundaries as you think they were before abstraction; geological boundaries; the coast; named rivers flowing in and out; named gauging stations; names of surrounding Assessment Areas; major SWDIS, SWABS and GWABS; key wetlands;

urban areas; tidal limits etc. Many of these features may already have been summarised on previous report figures.

The use of the standard line and symbol formats and colours provided in the Key is encouraged to facilitate national comparability.

Define the Assessment Area in words beneath the sketch. e.g. "SW and natural GW catchment to the Melford gauging station on the River Thet", or "natural Chalk GW catchment to the coast from Littlehampton to Brighton".

Enter an Assessment Area name at the top of the spreadsheet (e.g. "R Thet at Melford gauge") together with identification, version and revision numbers and date. These are carried through to the other spreadsheets in the workbook.

Step 2: Geology of the Area and Schematic Cross-Section

State the main geological formation in the Area, indicate whether this is a Solid or Drift formation and whether it is an aquifer or not. If it is not an aquifer and GW is not significant, go straight to Step 5 (i.e. skip Steps 3 and 4).

Define the overlying and underlying formations and, if appropriate, illustrate with a schematic cross section (either hand drawn, or digitally imported in .wmf format).

Figures 9.2 and 9.3 include example sketch plans and schematic sections from two of the ARM trial areas.

Step 3: Recharge and Groundwater – Surface Water Interaction

Summarise the aquifer condition (confined/unconfined/mixed).

Summarise the recharge processes considered to be relevant (direct recharge/stream leakage/mains supply leakage/Drift 'recharge reduction and smoothing') and define the areas over which these processes occur on the sketch plan.

Indicate the speed at which the river baseflow or GW outflow responds to recharge (on an approximate scale from 'year' to 'day').

Indicate the degree of hydraulic connection between GW and rivers (on an approximate scale from 'poorly' to 'well' connected). Indicate the extent to which river flows are dependent on GW baseflows and whether this has changed from the 'natural' state. Add conceptual GW-SW detail to the schematic geological cross section as appropriate.

Step 4: Hydrogeological Boundaries and Groundwater Flow

Indicate whether there are significant GW flows into or out of the area and show these on the sketch plan.

• Describe any barriers to groundwater flow or significant transmissivity variations within the area and show these on the sketch plan or schematic cross section as appropriate.

Describe any water quality issues which constrain groundwater abstraction (e.g. nitrates, saline intrusion etc) and show these on the sketch plan as appropriate.

Step 5: Hydrological Trends and Environmental Concerns

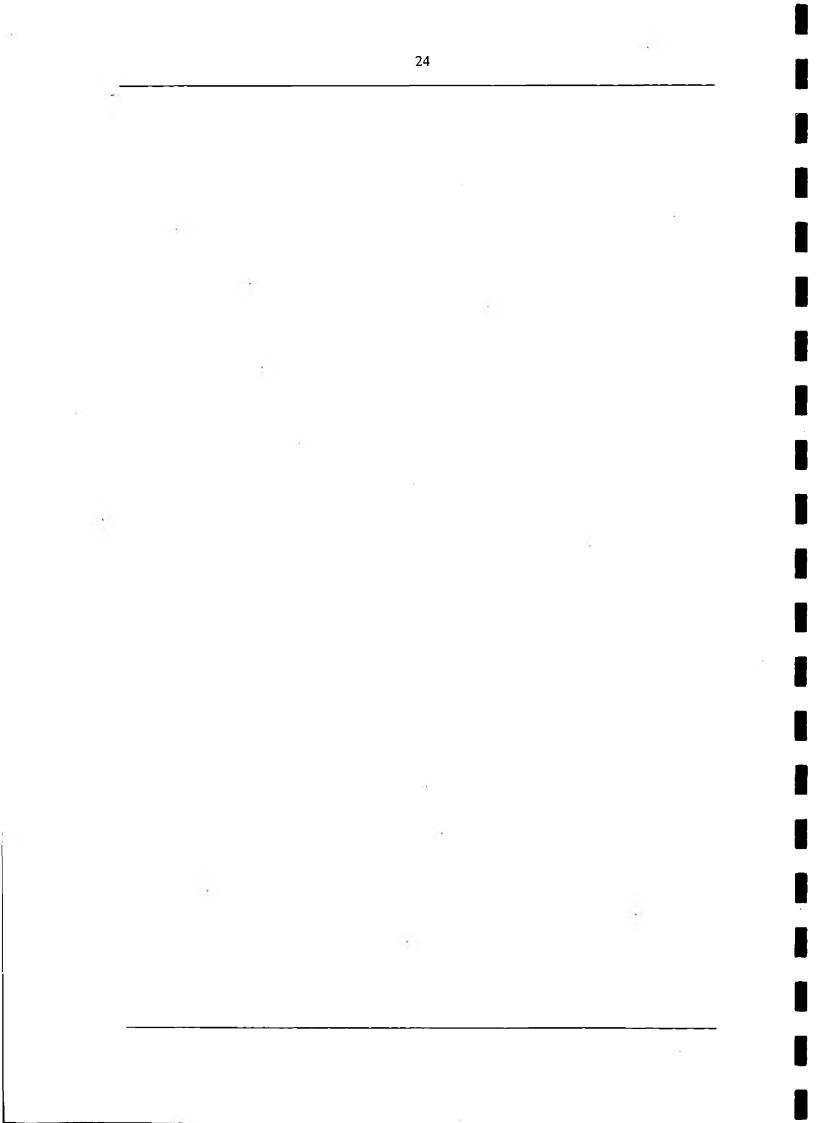
Provide a qualitative indication of general trends (falling/steady/rising/mixed) in GW levels, river flows, GWABS and SWABS during two time periods: 'natural' conditions to 1970, and 1970 to present. The trends before 1970 may be perceptions based on anecdotal information – there is space to comment on variations, assumptions and information sources.

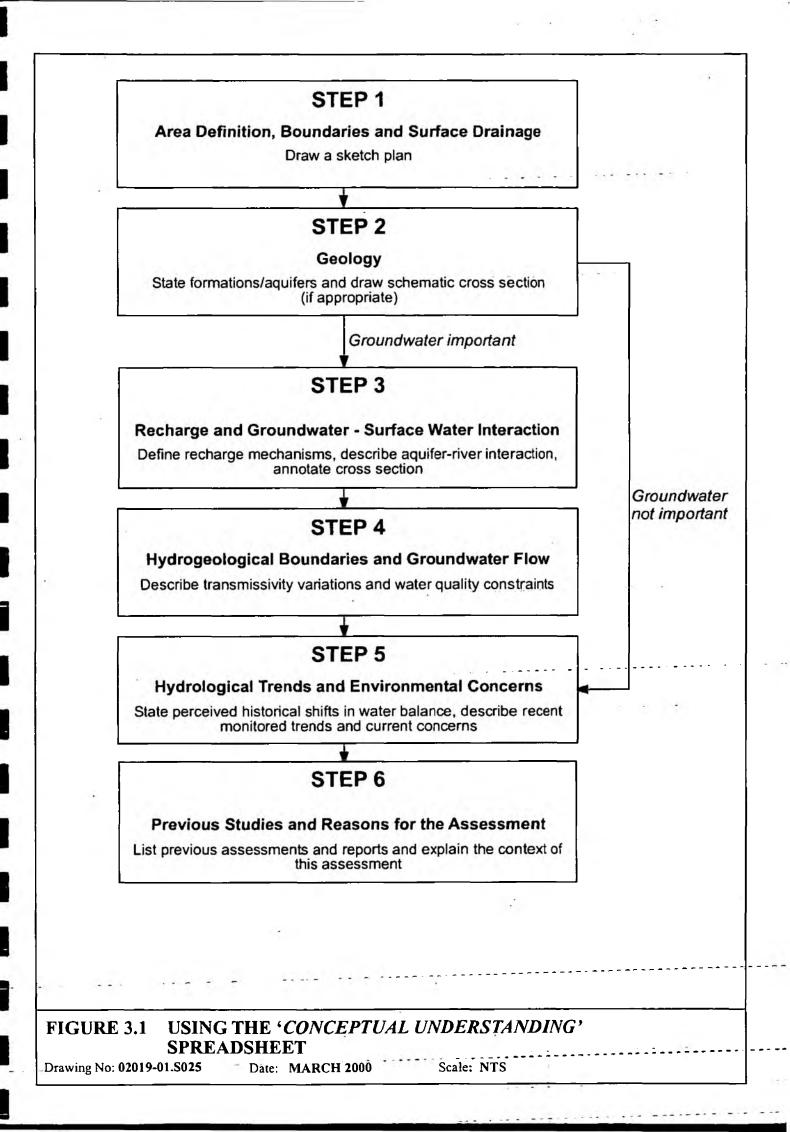
Rank the existing anthropogenic influences on the hydrological cycle of the area (GWABS, SWABS and SWDIS) according to their flow rates:

e.g. 'GWABS>>SWABS>>SWDIS' or 'SWABS~SWDIS>>GWABS'

Indicate whether there are any other significant artificial influences on natural flows (e.g. surface water reservoirs, bulk water transfer schemes etc)

Summarise the main water resources related environmental concerns in the Area (river flows/wetlands/salinity/other) and describe these. Indicate perception of the problems by interested parties (e.g. the public, English Nature, water companies etc) as well as by the Agency.


Step 6: Previous Studies and Reasons for this Assessment


List previous studies carried in for the Area and explain the rationale behind the assessment being undertaken (e.g. 'to review sustainability as part of AMP4 planning', 'in advance of a licence determination', 'in preparation for distributed modelling' etc).

After summarising the concepts involved the user moves on to enter data into the Calculation spreadsheet. Depending on the delineation of the Assessment Area, and therefore the Excel template chosen for the calculations, guidance notes for these calculations follow in:

Section 4 (River Outflow Calcs in RIV.XLT), or

Section 5 (GW Outflow Calcs in GW.XLT).

4. *River Outflow Calcs* Spreadsheet in RIV.XLT

Having recorded a qualitative conceptual understanding of the Area the next task is to enter quantitative data for a specified assessment year into the River or GW calculation spreadsheets.

This summary of the aims, format and data requirements of these spreadsheets is best read in front of a computer with a copy of the relevant Excel workbook open. Hardcopies of the worked example spreadsheets described in Section 9 are enclosed in Appendix B. Flow diagrams summarising the steps involved for each spreadsheet together with illustrative 12 month plots (for an idealised series of 12 average month flows) are included on Figures in this manual.

The aims of both the River and GW spreadsheets are the same for a specified assessment year:

- To define natural flows from the Assessment Area;
- To define the abstraction and discharge management scenario being assessed;
- · To calculate the scenario flows from the Assessment Area;
- To enter target flows and thereby calculate the surplus or deficit profile for the specified year;
- To calculate the total acceptable abstraction impact profile for the specified year;
- To combine estimated scenario flows and artificial flow impacts in stacked histogram plots.

The results from these sheets, are carried forward to the *Conclusions and QA* spreadsheet (see Section 6) which, like the *Conceptual Understanding* spreadsheet, has a common structure in both Excel templates.

The guidance provided on pragmatic data collation, data entry formats, uncertainty and audit trails in Section 2.4 is not repeated here. Thus the instruction to 'enter data' should be viewed as shorthand for 'enter the data, and its associated uncertainty, and the auditable data source and calculation assumptions'. In order to facilitate data entry, all workbooks have been set to perform calculations manually i.e. only when the F9 key is struck.

There are many similarities in the calculation steps in both spreadsheets. However, guidance notes are comprehensive for each and no attempt has therefore been made to avoid repetition.

The calculation steps for River Outflow Calcs described below are summarised on Figure 4.1.

Step 1: State Surface Water Catchment Area

Enter the surface water catchment area to the assessment point on the river in square kilometres. This area is only used in the calculation of 'equivalent effective rainfall' from natural river flows (at Step 3) and in deriving the mm/month stacked histogram plots presented at Step 12.

25

Step 2: Specify Assessment Year

Having read Section 1.3.2, state the calendar year or hydrological scenario chosen for the Assessment. Briefly indicate the reason for the selection (e.g. 'severe drought', 'climatically average year', 'equivalent to deployable output scenario', etc.).

Step 3: Estimate Natural River Flows

Enter one or optionally more (up to four) estimates of monthly average natural river flows for the assessment year. These may be derived from gauge flow naturalisation (optionally using the GAUGE.XLT template described in Section 7), using microLOWFLOWS or other standard hydrological tools or techniques, using more sophisticated regional models or from simple effective rainfall - river flow modelling (e.g. using the ARF.XLT template described in Section 7).

Compare and review these estimates, particularly considering the minimum and average natural flows they suggest, and revise them as required to reconcile any differences in conceptual understanding they imply. Select one natural flow series to carry forward into the assessment by typing an 'x' next to the chosen approach. On striking F9 the selected series will appear as a histogram plot of natural river flows and the 'equivalent annual effective rainfall' will be calculated as the natural flow divided by the surface water catchment area.

Step 4: Estimate Natural Baseflows (Optional)

If a separate estimate of groundwater resources is required, enter one or optionally more (up to three) estimates of natural river baseflows. These are not associated with separate flow protection targets (river assessments are for total resources integrating both groundwater and surface water) but, if specified, baseflows are compared separately with GW Abs impacts in Step 11.

Baseflow estimates may be derived by baseflow separation of a daily gauged hydrograph, from a groundwater model or other appropriate technique, optionally including the ARF.XLT calculations described in Section 7. A single baseflow series is selected to carry forward which, on striking F9, will appear as a separated part of the previously defined total natural river flow histogram. An 'equivalent annual recharge' is also calculated by dividing this baseflow series by the surface water catchment area.

At this stage any discrepancies between the selected total flow and baseflow series should be resolved.

Step 5: Define the Abstraction and Discharge Scenario and Estimate its Flow Impacts

Define the assumed scenario on which abstraction and discharge impact estimates will be based (see Section 1.3.4). In any assumed scenario it is important to consider the consumptiveness of each abstraction source taking into account local returns to the catchment. Public water supply sources should be considered as being fully consumptive because sewage treatment works returns or bulk transfer discharges are considered separately. This approach allows any transfers of mains supply water into or out of the Area to be taken into account.

At Step 5.1 enter the 12 monthly consumptive abstraction rates for all surface water sources in the area. These are assumed to have an 'instant' (i.e. within the same month) impact on the natural river flows from the area.

At Step 5.2a enter the 12 monthly consumptive abstraction rates for all groundwater sources considered to impact river flows at the assessed point. These cannot be assumed to impact flows in the month of abstraction – impacts may be smoothed and lagged depending on source proximity to the river, aquifer properties, timing of abstraction and recharge, relationship between the river and groundwater levels etc.

For this reason, at Step 5.2b separately enter the 12 monthly groundwater abstraction impacts on river flows in the specified year. Alternative GW abstraction impact assumptions can be readily investigated, as discussed in Section 8.1.

At Step 5.3 enter the 12 monthly discharge rates for all sewage treatment works or river support discharges within the Assessment Area. Discharge rates for sewage treatment returns should be based on consented dry weather flows rather than including storm flows as subsequent calculations assume that they represent the return of mains supply water only to the river.

The defined management scenario is summarised in Step 5.4 by plotting a stacked histogram of +SWABS impacts (Step 5.1), +GWABS impacts (Step 5.2b) and -SWDIS impacts (Step 5.3). These are added together to define a single series of 'Net Consumptive Abstraction Impacts' plotted in Step 5.5.

Step 6: Calculate Scenario River Flows

Scenario river flows are calculated by subtracting the net abstraction impacts (Step 5.5) from the natural flows (Step 3) and are plotted next to these natural flows.

Step 7: Set Target River Flows

Enter 12 monthly averaged environmental river flow protection targets below the natural and scenario flow estimates which are carried forward and re-plotted for comparison.

Target flows can optionally be defined as two components - a minimum flow specified for each month plus a proportion of the natural flow above this. In the spreadsheet (in line with the similar SWALP based approach) a single percentage is entered defining the proportion of natural flow above the minimum that it is considered acceptable to abstract. If set to 0%, the target flow will equal the natural flow. If set to 100%, the target flow will equal the defined monthly minimum flow.

If available the gauged Q95 flow (e.g. taken from standard Agency or loH statistics) can be recorded here for comparison with the target flows entered. The process of setting target flows should involve discussion between ecologists, hydrologists and hydrogeologists. A simple, year-round Q95 protection target may be adopted or seasonal variability may be incorporated – see Section 1.3.6 for possible approaches. Documentation of these target flows, however derived, should be referenced on the spreadsheet together with a summary of the reasoning behind them and an associated uncertainty. One strength of using ARM spreadsheets is that the implications of adopting different flow protection targets can be readily investigated (see Section 8).

The remaining calculation Steps 8 to 12 require no further information to be entered to the spreadsheet.

Step 8: Calculate Surplus or Deficit

The monthly surplus or deficit flows are calculated by subtracting the target river flows (Step 7) from the scenario river flows (Step 6) for the specified year. These surpluses or deficits are plotted as a 12 month histogram and as a box and whisker plot incorporating the combined uncertainties associated with both scenario and target flows. They are carried forward as headline results to the *Conclusions and QA* spreadsheet together with the average and minimum surplus or deficit percentages calculated as a proportion of natural flows (see Section 6).

Step 9: Calculate Total Acceptable Abstraction Impacts

The 12 monthly acceptable abstraction impacts for the specified year are calculated by adding existing surplus or deficit (Step 8) to scenario abstraction impacts (Step 5.4). These acceptable impacts are presented as a 12 month histogram and as a box and whisker plot incorporating the combined uncertainties associated with all the preceding data and calculations. They are carried forward as headline results to the *Conclusions and QA* spreadsheet (see Section 6).

Step 10: Plot Scenario Flows and Impacts as a Stacked Histogram in MI/d

Previously calculated scenario river flows, SWABS, GWABS and SWDIS impacts are combined into a stacked histogram plot. This plot also includes the annual average flow rates for each component and for the natural river flow in the legend.

Step 11: Natural Baseflow Minus Groundwater Abstraction Impacts

If baseflow has been separately specified at Step 4, the GWABS impacts on river flows entered at Step 5.3b are subtracted from it. The resulting difference is represented both as a histogram and as an uncertainty plot to provide a separate indication of the extent of groundwater resource commitment.

Step 12: Plot Scenario Flows and Impacts as a Stacked Histogram in mm/month

This plot expresses the scenario flow and impact components as mm per month over the surface water catchment area. Each flow component and the natural flow are summarised as mm per year totals in the legend for the stacked histogram. The net scenario abstraction impact for each month as calculated in Step 5.5 is also expressed as a percentage of the natural flow in the month. The maximum percentage abstraction impact is identified together with the month in which it occurs and these results are carried forward to the *Conclusions and QA* spreadsheet.

In this final Step, the user may optionally choose to consider the scenario flows and impacts for a discrete lower reach of the total river catchment which has been the subject of most of the ARM assessment. This can be achieved by adding up scenario flows and impacts derived from assessments of all the upstream parts of the catchment which are to be excluded and pasting these values, together with the excluded surface water catchment area, into the data entry cells in Step 12.

Principal Steps



FIGURE 4.1 USING THE 'RIVER OUTFLOW CALCS' SPREADSHEET

Drawing No: 02019-01.S026

Date: MARCH 2000

Scale: AS SHOWN

5. GW Outflow Calcs Spreadsheet in GW.XLT

Having recorded a qualitative conceptual understanding of the Area the next task is to enter quantitative data for a specified assessment year into the River or GW calculation spreadsheets.

This summary of the aims, format and data requirements of these spreadsheets is best read in front of a computer with a copy of the relevant Excel workbook open. Hardcopies of the worked example spreadsheets described in Section 9 are enclosed in Appendix B. Flow diagrams summarising the steps involved for each spreadsheet together with illustrative 12 month plots (for an idealised series of 12 average month flows) are included on Figures in this manual.

The aims of both the River and GW spreadsheets are the same for a specified assessment year:

- To define natural flows from the Assessment Area;
- To define the abstraction and discharge management scenario being assessed;
- To calculate the scenario flows from the Assessment Area;
- To enter target flows and thereby calculate the surplus or deficit profile for the specified year;
- To calculate the total acceptable abstraction impact profile for the specified year;
- To combine estimated scenario flows and artificial flow impacts in stacked histogram plots.

The results from these sheets, are carried forward to the *Conclusions and QA* spreadsheet (see Section 6) which, like the *Conceptual Understanding* spreadsheet, has a common structure in both Excel templates.

The guidance provided on pragmatic data collation, data entry formats, uncertainty and audit trails in Section 2.4 is not repeated here. Thus the instruction to 'enter data' should be viewed as shorthand for 'enter the data, and its associated uncertainty, and the auditable data source and calculation assumptions'. In order to facilitate data entry, all workbooks have been set to perform calculations manually i.e. only when the F9 key is struck.

There are many similarities in the calculation steps in both spreadsheets. However, guidance notes are comprehensive for each and no attempt has therefore been made to avoid repetition.

The calculation steps for *GW Outflow Calcs* described below are summarised on Figure 5.1.

Step 1: State Groundwater Catchment Area

Enter the recharge catchment area to the GW outflow boundary being assessed in square kilometres. This area is only used in the calculation of 'equivalent mm/a' from natural GW outflows (at Step 3) and in deriving the mm/month stacked histogram plots presented at Step 12.

Step 2: Specify Assessment Year

Having read Section 1.3.2, state the calendar year or hydrological scenario chosen for the Assessment. Briefly indicate the reason for the selection (e.g. 'severe drought', 'climatically average year', 'equivalent to deployable output scenario', etc.).

Step 3: Estimate Natural GW Outflows

Enter one or optionally more (up to four) estimates of monthly average natural GW outflows for the assessment year. These may be derived from estimated hydraulic gradients and assumed aquifer properties, using baseflow separation techniques or more sophisticated regional models or from recharge - baseflow analytical functions (e.g. using the ARF.XLT template described in Section 7).

Compare and review these estimates, particularly considering the minimum and average natural flows they suggest, and revise them as required to reconcile any differences in conceptual understanding they imply. Select one natural flow series to carry forward into the assessment by typing an 'x' next to the chosen approach. On striking F9 the selected series will appear as a histogram plot of natural groundwater outflows and the 'equivalent mm/a' will be calculated as the natural flow divided by the GW catchment area.

Step 4: Estimate Recharge Inflows (Optional)

If a separate, inflow based estimate of groundwater resources is required, enter one or optionally more (up to three) estimates of monthly recharge. These are not associated with separate flow protection targets (all ARM assessments focus on outflow-based resource estimates and targets) but, if specified, recharge is compared separately with GW Abstractions as pumped in Step 11.

Recharge estimates may be MORECS effective rainfall based or may be derived from soil moisture balance or recharge models. A single recharge series is selected to carry forward which, on striking F9, will appear as a monthly flow histogram. An 'equivalent annual recharge' in mm/a is also calculated by dividing the total recharge flow by the GW catchment area.

At this stage any discrepancies between the selected GW outflow and recharge (or inflow) based estimates of GW resources should be resolved.

Step 5: Define the GW Abstraction Scenario and Estimate its Flow Impacts

Define the assumed scenario on which GW abstraction impact estimates will be based (see Section 1.3.4). In any assumed scenario it is important to consider the consumptiveness of each abstraction source taking into account local returns to the groundwater. Public water supply sources should be considered as being fully consumptive because sewage treatment works returns or bulk transfer discharges are not returned to groundwater. Surface water abstractions and discharges are ignored in this 'GW only' assessment.

At Step 5a enter the 12 monthly consumptive abstraction rates for all groundwater sources considered to impact GW outflows. These cannot be assumed to impact outflows in the month of abstraction – impacts may be smoothed and lagged depending on source proximity to the outflow boundary, aquifer properties, timing of abstraction and recharge, etc.

For this reason, at Step 5b separately enter the 12 monthly groundwater abstraction impacts on GW outflows in the specified year. Alternative GW abstraction impact assumptions can be readily investigated, as discussed in Section 8.1.

Step 6: Calculate Scenario GW Outflows

Scenario GW outflows are calculated by subtracting GW abstraction impacts (Step 5b) from the natural GW outflows (Step 3) and are plotted next to these natural flows.

Step 7: Set Target GW Outflows

Enter 12 monthly averaged environmental GW outflow protection targets below the natural and scenario flow estimates which are carried forward and re-plotted for comparison.

Target GW flows can optionally be defined as two components - a minimum flow specified for each month plus a proportion of the natural flow above this. In the spreadsheet a single percentage is entered defining the proportion of natural flow above the minimum that it is considered acceptable to abstract. If set to 0%, the target flow will equal the natural flow. If set to 100%, the target flow will equal the defined monthly minimum flow.

For most GW assessments (e.g. to prevent saline intrusion) a simple, year-round minimum flow target should be adequate. As GW outflows can never be directly measured further sophistication (such as the seasonal variability which may be important for river flows) is probably unwarranted. Indeed, GW outflow targets are likely to be very poorly constrained and should have large associated uncertainty which will be carried through to the conclusions of the assessment. Documentation of the target flows, however derived, should be referenced on the spreadsheet together with a summary of the reasoning behind them.

The remaining calculation Steps 8 to 12 require no further information to be entered to the spreadsheet.

Step 8: Calculate GW Surplus or Deficit

The monthly GW surplus or deficits are calculated by subtracting the target GW outflows (Step 7) from the scenario outflows (Step 6) for the specified year. These GW surpluses or deficits are plotted as a 12 month histogram and as a box and whisker plot incorporating the combined uncertainties associated with both scenario and target flows. They are carried forward as headline results to the *Conclusions and QA* spreadsheet together with the average and minimum surplus or deficit percentages calculated as a proportion of natural GW outflows (see Section 6).

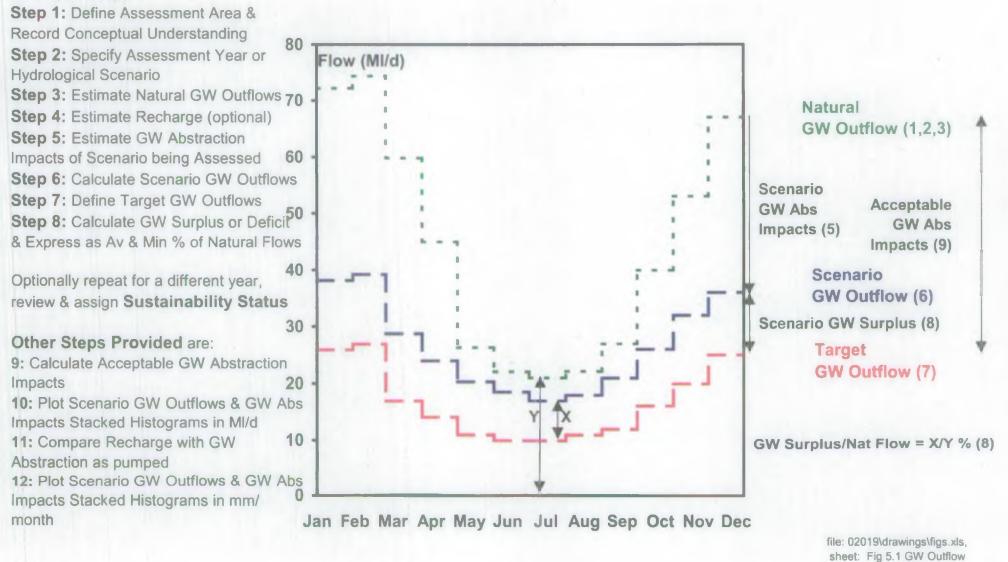
Step 9: Calculate Total Acceptable GW Abstraction Impacts

The 12 monthly acceptable GW abstraction impacts for the specified year are calculated by adding existing GW surplus or deficit (Step 8) to scenario GW abstraction impacts (Step 5b). These acceptable impacts are presented as a 12 month histogram and as a box and whisker plot incorporating the combined uncertainties associated with all the preceding data and calculations. They are carried forward as headline results to the *Conclusions and QA* spreadsheet (see Section 6).

Step 10: Plot Scenario GW Outflows and Impacts as a Stacked Histogram in Ml/d

Previously calculated scenario GW outflows and GWABS impacts are combined into a stacked histogram plot. This plot also includes the annual average flow rates for each component and for the natural GW outflow in the legend.

Step 11: Recharge Minus Consumptive Groundwater Abstraction


If recharge has been separately specified at Step 4, the consumptive groundwater abstractions entered at Step 5a (as pumped) are subtracted from it. The resulting difference is represented both as a histogram and as an uncertainty plot to provide a separate inflow based indication of the extent of groundwater resource commitment.

Step 12: Plot Scenario GW Outflows and Impacts as a Stacked Histogram in mm/month

This plot expresses the scenario GW outflow and impact components as mm per month over the GW catchment area. Each flow component and the natural flow are summarised as mm per year totals in the legend for the stacked histogram. The scenario GW abstraction impact for each month, as calculated in Step 5b, is also expressed as a percentage of the natural GW outflow in the month. The maximum percentage abstraction impact is identified together with the month in which it occurs and these results are carried forward to the *Conclusions and QA* spreadsheet.

In this final Step, the user may optionally choose to consider the scenario flows and impacts for a part or sub-area of the GW catchment which has been the subject of most of the ARM assessment. This can be achieved by adding up scenario flows and impacts derived from assessments of all the areas which are to be excluded and pasting these values, together with the GW catchment area to be excluded, into the data entry cells in Step 12.

Principal Steps

Calcs

FIGURE 5.1 USING THE 'GW OUTFLOW CALCS' SPREADSHEET

Drawing No: 02019-01.S027

Date: MARCH 2000

Scale: AS SHOWN

6. Conclusions and QA Spreadsheet

Figure 6.1 presents the steps which are common to the *Conclusions and QA* spreadsheets in both ARM Excel templates. For both types of assessment the aim of this sheet is to summarise the headline results and allow the user to interpret of the sustainability of existing abstractions and the implications for licensing policy, controls or mitigation. This spreadsheet is also where Quality Assurance records of senior review and update revisions should be made and where hardcopy authorisation by the Regional Water Resources Manager should be evident.

However, it is important to recognise that the conclusions from a river flow assessment relate to the total water resources of the river catchment whereas those from a groundwater outflow assessment relate only to the groundwater resources (surface water flows ignored).

These guidance notes are best read in front of a computer with a copy of the spreadsheet open. Hardcopies of the worked examples for the 2 trial areas described in Section 9 are provided in Appendix B.

6.1 Summarising Headline Results and Interpreting Abstraction Sustainability Status

No user inputs are required in Steps 1.1, 1.2 and 1.3 of the spreadsheet which simply summarise results from the preceding calculation spreadsheet as follows:

- Natural, scenario and target monthly flows for the specified year with average annual rate summaries;
- The artificial impact scenario (GWABS, SWABS and SWDIS impacts) combined as appropriate in a stacked histogram plot together with the maximum net abstraction impact as a percentage of natural flows, and the month in which this occurs;
- The resulting monthly surplus or deficit profile plotted with associated uncertainty and expressed as an average and minimum percentage of natural flows.

At the bottom of the first page of the *Conclusions and QA* spreadsheet (Step 1.4) the user is invited to assign a management sustainability status to the area based on a critical review of the headline results summarised above. This is an important interpretative step which recognises the judgement required to take into account all the uncertainties and assumptions involved in the calculations and the particular conditions in the assessment year (e.g. how dry it was) before deciding how much more or less abstraction should be licensed in the area. It may be useful to assess the implications of target flows and abstraction impacts in an alternative drought (or 'average') year to help make these decisions. See Section 1.3.8 and Figure 1.2 for guidance on interpreting sustainability status.

The second page of the Conclusions and QA spreadsheet summarises other results and plots from the assessment including the acceptable abstraction impacts profile and the mm/month

33

stacked histogram of scenario flows and impacts. The y-axis scale of this latter plot can be fixed by region (or even nationally) to highlight resource availability differences between areas.

6.2 Interpreted Management Action Required

Based on the results presented and the interpreted sustainability status, the user is invited on page 3 of the spreadsheet (at Step 3) to state the potential for further year-round or winter only abstraction impacts, or to identify any targets for reducing impacts, as appropriate. It is important to remember that these conclusions still refer to the *impacts* of abstraction on outflows. These can only be translated directly into licensing abstraction limits or controls for surface water sources which have an 'instant' impact on outflows. Surface water abstraction licensing can be linked to gauged flow controls in order to exploit winter-only surpluses (although this will generally require the abstractor to invest in additional storage capacity).

Groundwater abstractions can only be managed in this manner in the most karstic aquifers where boreholes are close to the rivers. Practically this means that the potential for further groundwater abstraction or the need for reductions in groundwater abstraction is reflected in the minimum value of the surplus or deficit profile derived for the assessment.

Further space for comment is provided in the spreadsheets to discuss alternative ways in which outflows could be augmented in order to meet flow targets.

6.3 Review, Approval and Version Control

The final part of a water resources assessment within the ARM framework is to complete the formal records of senior review and authorisation required in Step 4 of this spreadsheet. As has already been suggested in Table 2.2 senior review inputs should not wait until the end of an assessment, they are particularly required at the earliest steps of conceptual description, but these inputs should be formally signed-off. As the conclusions may have important consequences in setting abstraction licence ceilings it is recommended that the responsibility for final authorisation should rest with the Agency's Regional Water Resources Manager.

Once an assessment has been completed to establish natural, scenario and target flows, this Version need only be reconsidered if its basic assumptions are challenged by new data or by changes in climate or environmental flow protection needs. If the assessment has indicated that critical uncertainties remain which can only be resolved by further investigations, monitoring, or a more sophisticated assessment approach (e.g. distributed modelling) then a target date and proposed action should be set.

It may be useful to update the assumed abstraction and discharge scenario in line with licensing changes. Such updates will not change estimated natural or target flows and could therefore be issued as Revisions to the current Version of the assessment.

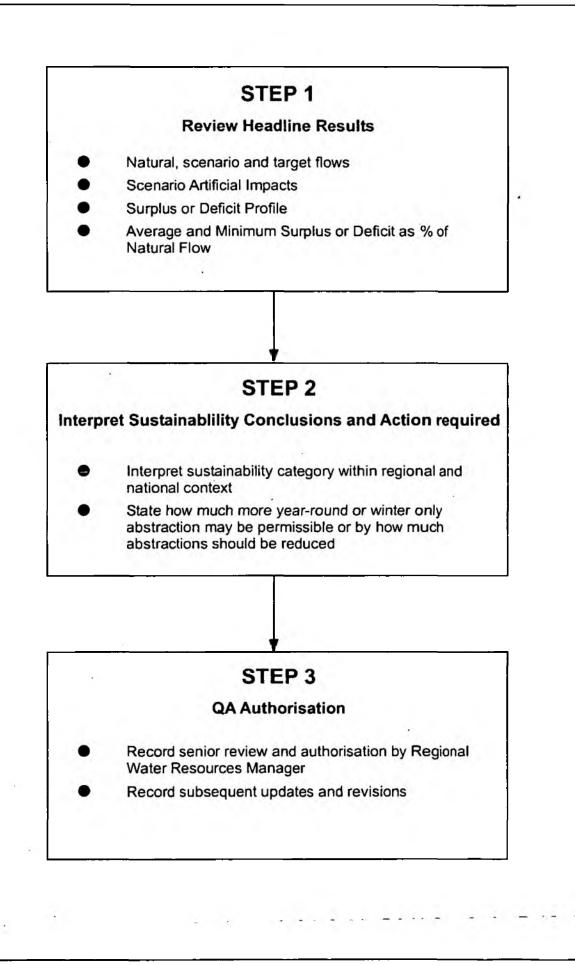


FIGURE 6.1 USING THE 'CONCLUSIONS AND QA' SPREADSHEET

Drawing No: 02019-01.S028

Date: MARCH 2000

Scale: NTS

7. Optional Spreadsheets to Estimate Natural Flows

Any appropriate standard hydrological approach (or approaches) can be used to estimate the natural river flows required as a starting point for an ARM river assessment as discussed in Section 1.3.3. In some instances (e.g. where artificial impacts are small, or where large influences such as reservoirs or effluent returns have effectively become a fixed feature of the catchment) it may even be appropriate to make the simple assumption that the existing gauged flow series be taken as the natural flow series.

This Section describes two spreadsheets which have been developed to provide optional means of estimating a 12 month natural flow series with associated uncertainty which can be readily copied into the ARM spreadsheets for comparison with other estimates.

Section 7.1 presents the GAUGE.xlt spreadsheet which can be used to facilitate gauge flow. naturalisation to generate a natural flow series for the *River Outflow Calcs* spreadsheet (described in Section 4).

Section 7.2 introduces the ARF.xlt spreadsheet which uses the analytical 'Aquifer Response Function' together with assumptions of the recharge/surface runoff split and the surface water and groundwater catchment areas to derive a natural flow series from monthly effective rainfall. Results from this optional 'lumped catchment response' approach can be fed into either ARM spreadsheet (*River Outflow Calcs*, Section 4 or *GW Outflow Calcs*, Section 5).

These step-by-step guides to the format and data requirements of each spreadsheet are best read in front of a computer with a copy of the relevant Excel workbook open. Hardcopies of the worked examples of these optional spreadsheets, as described in Section 9 are enclosed in Appendix B.

The guidance provided on pragmatic data collation, data entry formats, uncertainty and audit trails in Section 2.4 is not repeated here. Thus the instruction to 'enter data' should be viewed as shorthand for 'enter the data, and its associated uncertainty, and the auditable data source and calculation assumptions'. In order to facilitate data entry, all workbooks have been set to perform calculations manually i.e. only when the F9 key is struck.

7.1 GAUGE.xlt Spreadsheet to Naturalise Gauged Flows

The calculation steps for GAUGE.xlt described below are summarised on Figure 7.1.

Step 1: Specify Assessment Area and Year

These can be copied directly from the ARM *River Outflow Calcs* spreadsheet where the flows derived from gauge naturalisation are to be used.

Step 2: Enter Gauged Flows

Convert daily average river flows gauged at the outflow from the Assessment Area for the specified year to 12 monthly averaged flows (or simply export from Hydrolog as monthly flows) and enter at Step 2 together with reference details for the gauging station.

Step 3: Gauged Flow Naturalisation

In order to naturalise gauged flows, 'best estimates' of actual consumptive abstraction rates and discharge rates should ideally be used and Agency guidelines should be referred to. However, as discussed in Section 2.4.1, the user is encouraged to enter the most readily available 'first-pass' estimates of these artificial influences (e.g. based on fully licensed rates) early on in order to effectively prioritise the time spent in further refinement.

It is important to consider the consumptiveness of each abstraction source based on its use, taking into account local returns to the catchment. Public water supply abstractions should be considered as being fully consumptive because sewage treatment works returns are considered separately. This approach allows any transfers of mains supply water into or out of the Area to be taken into account.

At Step 3.1 enter the 12 monthly consumptive abstraction rates for all surface water sources, upstream of the gauging station. These are assumed to have had an 'instant' (i.e. within the same month) impact on gauged river flows.

At Step 3.2a enter the 12 monthly consumptive abstraction rates for all groundwater sources considered to have impacted river flows at the gauging station. These cannot be assumed to have impacted flows in the month of abstraction – impacts may be smoothed and lagged depending on source proximity to the river, aquifer properties, timing of abstraction and recharge, relationship between the river and groundwater levels etc.

For this reason, at Step 3.2b separately enter the 12 monthly groundwater abstraction impacts on river flows in the specified year. Alternative GW abstraction impact assumptions can be readily investigated, as discussed in Section 8.1.

At Step 3.3 enter the 12 monthly discharge rates for all sewage treatment works or river support discharges upstream of the gauging station. Discharge rates for sewage treatment returns should be based on consented dry weather flows rather than including storm flows as subsequent calculations assume that they represent the return of mains supply water only to the river.

All these artificial impacts are summarised in Step 3.4 by plotting a stacked histogram of +SWABS impacts (Step 3.1), +GWABS impacts (Step 3.2b) and -SWDIS impacts (Step 3.3). These are added together to define a single series of 'Net Consumptive Abstraction Impacts' plotted in Step 3.5.

At Step 3.6 naturalised river flows are calculated by adding the net abstraction impacts (Step 3.5) to the gauged flows (Step 2). These flows are plotted both as a histogram and as a box and whisker uncertainty plot.

Step 4: Naturalised Flow Results Summary

The naturalised flows are summarised together with the accumulated % error associated with them so that they can be manually copied into Step 3a of the *River Outflow Calcs* spreadsheet (remember to use *paste special-values*).

Step 5: Plot Gauged Flows and Impacts as a Stacked Histogram in mm/month

This plot is included because it combines the river flows and impacts in proportion and therefore helps the user to prioritise the time needed to refine each of the data sets in the naturalisation process.

Enter the surface water catchment to the gauge (as entered in the *River Outflow Calcs* spreadsheet). This plot then expresses the gauged flow and impact components as mm per month over the surface water catchment area. Each flow component and the naturalised flow are summarised as mm per year totals in the legend for the stacked histogram.

The stacked histogram has been drawn with flows as mm per month so that the user can optionally compare the naturalised flows with independent estimates of hydrologically effective rainfall (such as those derived by MORECS) for the assessed year.

7.2 ARF.xlt Spreadsheet for Natural Flows from Monthly Effective Rainfall

Natural river flows and groundwater outflows can be estimated from monthly effective rainfall inputs and an assumed split between runoff and recharge according to hydrogeological aquifer parameters using the Aquifer Response Function (ARF). The derivation and basis of the analytical 'Aquifer Response Function' has been presented in an earlier version of this User Manual (May 1999 – full reference in Section 1.5.1).

The calculation steps in the ARF.xlt spreadsheet described below are illustrated in Figure 7.2 which shows how the natural river flow estimated from the same effective rainfall varies depending on the assumed split between recharge and runoff and on the aquifer response time..

The key simplifying assumptions to consider if using the approach provided in the spreadsheet are that:

- the % recharge, runoff, and 'karstic GW flow' splits defined by the user are assumed to be fixed throughout the year as are the GW and SW catchment areas;
- runoff and karstic GW flow are assumed to contribute to natural outflows in the same month as the effective rainfall – there are no lags or decay such as might be associated with drainage of near surface 'interflow' from drift cover. This may often be over-simplistic and may result in the underestimation of low flows because interflow processes are not represented. It may also cause discrepancies in the timing of peak monthly averaged flows if the rainfall causing the flood fell towards the end of a month;
- the ARF function used to calculate the natural groundwater outflow response to recharge is an analytical function. It simplifies the aquifer to a one dimensional strip of length L with a fully penetrating discharge boundary (e.g. a river or the coast) at one end, and transmissivity (T) and storage (S) values which are assumed

to be constant throughout the year. In practice, L is derived by dividing the area of the groundwater catchment by twice the length of the rivers or discharge boundary draining this area, as specified by the user.

The ARF is clearly a simple, linear approach which cannot take account of seasonal variations in catchment areas, runoff responses or aquifer properties. Distributed groundwater modelling can overcome many of these limitations provided an appropriate budget and timescale are available. However, as a lower level tool, the possible benefits of the ARF spreadsheet are that it:

- is based on a simple monthly time step and can use available MORECS (or other) monthly effective rainfall data to calculate natural flows for any year;
- uses the aquifer parameters Transmissivity (T) and Storage (S) which can be derived from and altered according to local hydrogeological experience;
- can be applied to any area including those without rivers where only groundwater outflows are being considered;
- can allow for non-coincident SW and GW catchments;
- does produce an estimate of natural recharge, separated from runoff which can be compared with GW abstraction and previous, groundwater-only focussed resource assessments.

All the calculations using the ARF function are implemented using Excel macros. These are contained within the ARF spreadsheet to the right of the main calculation area and the Alternative Scenario storage area (see Section 8).

Step 1: Specify Assessment Area and Year

These can be copied directly from the ARM *River Outflow Calcs* spreadsheet where the natural flows derived from the are to be used.

Step 2a: Natural River Flows or GW Outflows in an 'Average Year'

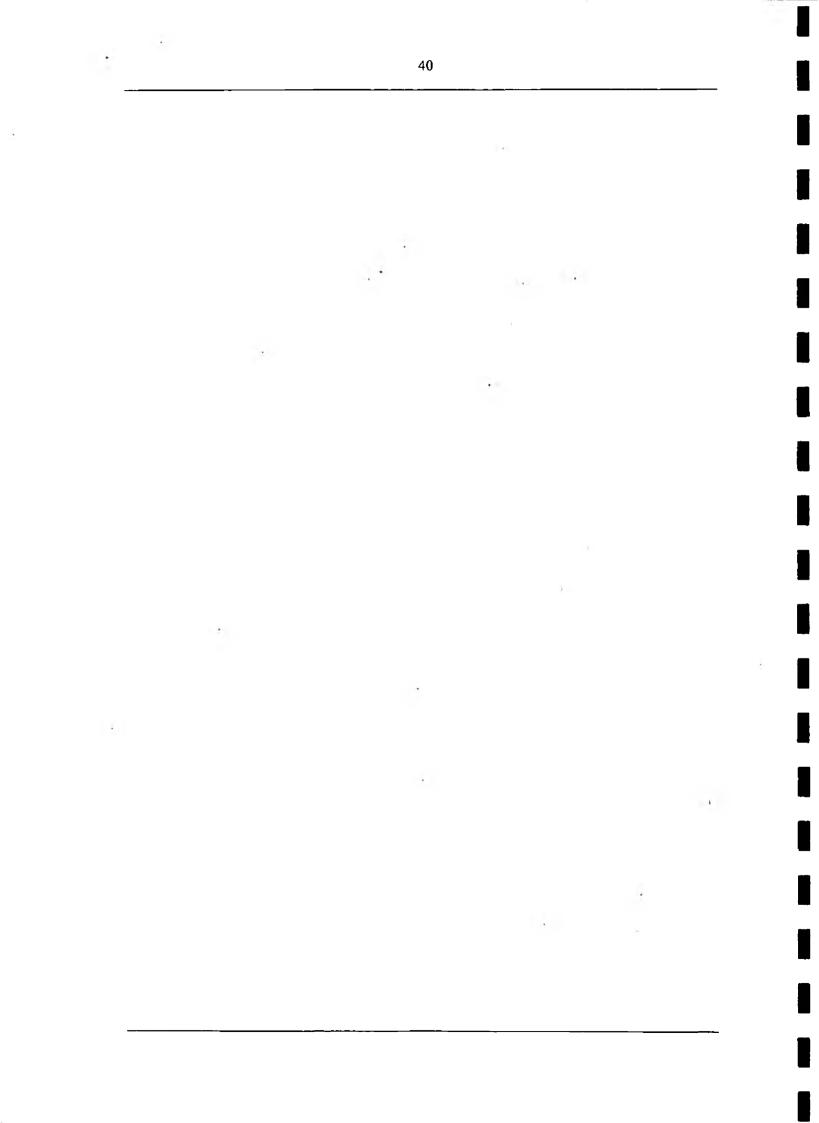
For main rivers Agency staff should already be able to readily access an estimated natural river flow-duration curve using microLOWFLOWS which can also be expressed as 12 'average month' flows. In order to provide a comparable estimate using the ARF method, the first part of the spreadsheet calculations derive monthly flows for an 'average' year before calculating the monthly flows for the specified assessment year.

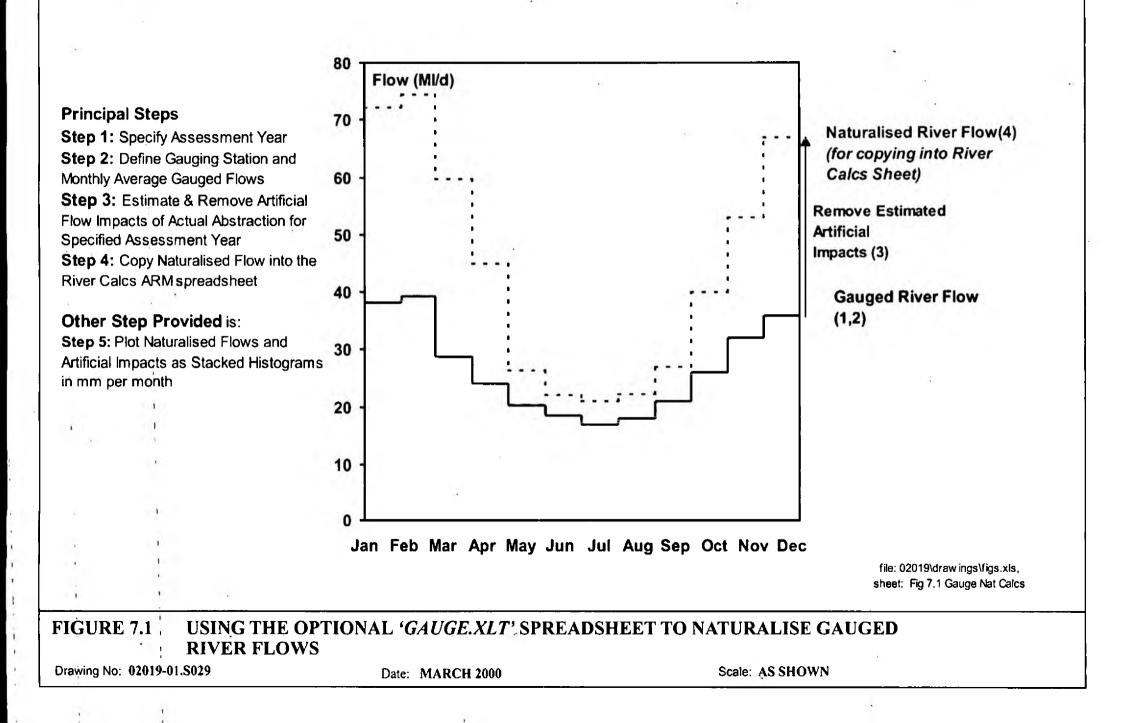
The initial calculation of 'average month' flows is based on the following user specified variables:

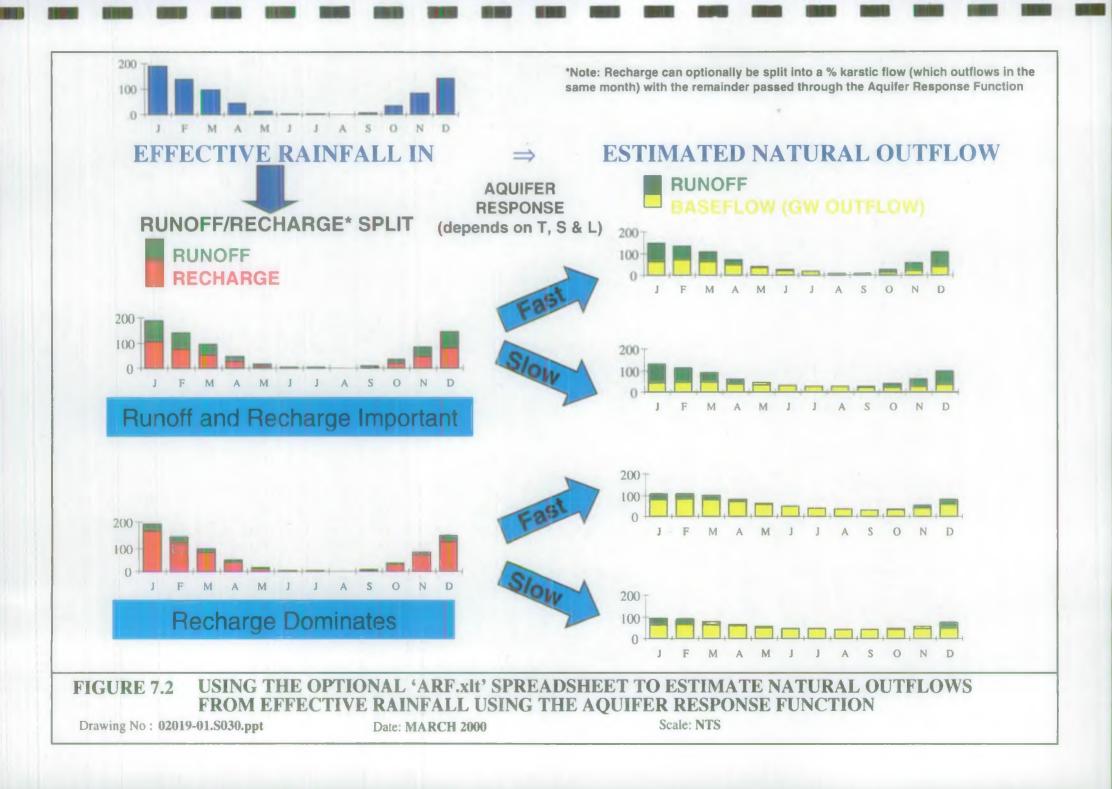
- areas for the surface water and groundwater catchments and for the aquifer (definitions of these areas are provided within the spreadsheet);
- a long term average annual effective rainfall value;
- an average monthly distribution of this effective rainfall through the year (default 'national average' values based on 5 MORECS squares across the country are provided but can be overwritten);

- the fixed % of effective rainfall which becomes recharge to the aquifer;
- the fixed % of this recharge which contributes to 'karstic' outflows in the same month;
- the fixed aquifer parameters, T, S and drainage boundary length which are used by the ARF function to calculate the slower groundwater outflow response to the remaining recharge.

Compare the calculated Aquifer Response Time with the qualitative estimate provided on the *Conceptual Understanding* Spreadsheet and, when possible, compare the average monthly flows with those derived from microLOWFLOWS. Vary the parameters within reasonable limits to understand the sensitivities of the calculation until the 'average year' flow responses are consistent with user perceptions.


Step 2b: Natural River Flows or GW Outflows in the Specified Assessment Year


The subsequent calculation of flows in the specified year uses the same areas, % recharge splits and aquifer characteristics but requires the user to enter 10 years of monthly effective rainfall data, the tenth year being that specified for assessment.


Enter 10 years of monthly effective rainfall data at Column DI of the spreadsheet from row 24 down, year 10 being that specified for assessment. Review the calculated runoff, recharge and natural total river flows back in the main calculation area.

Step 3: Natural Flow Results Summary

The resulting natural total river flows and GW outflows (or river baseflows) are summarised together with the accumulated % error associated with them so that they can be manually copied into the appropriate step of the associated *River Outflow Calcs* or *GW Outflow Calcs* ARM spreadsheet (remember to use *paste special-values*).

8. Assessing Alternative Assumptions, Management Scenarios, Target Flows and Years

A key feature of the ARM spreadsheets is the ease with which the user can investigate the implications of a range of alternative management scenarios and calculation assumptions and thereby gain a deeper understanding of the Area. In all of the spreadsheets there are columns to the right of the main calculation area where the information for up to three such scenarios can be stored. These data are only used actively if copied into the main calculation cells but otherwise provide a useful record of the alternatives considered.

8.1 Groundwater Abstraction Impact Assumptions

If groundwater abstractions are an important part of the water resources management of an area, the distribution of the impacts of these on natural river flows or GW outflows through the year is likely to be a key element of uncertainty in the ARM assessment. The relative significance of groundwater abstraction impacts (and therefore the time and effort it is worth investing in reducing the uncertainties associated with them) will be evident from any of the stacked histogram plots. Applying inappropriate assumptions to the distribution of groundwater abstraction impacts from month to month can, for example, result in misleading gauge naturalised flows and may raise false expectations of river low flow alleviation associated with the cessation or relocation of borehole sources.

There are some important differences between the Agency's Regions in the existing approaches towards the incorporation of groundwater abstraction impacts in resource assessments.- The ARM spreadsheets facilitate comparison of these approaches and their consequences because the user is required to enter the distribution of monthly outflow impacts separately from the rates of monthly abstraction.

Any assessment of this issue should start with a list of the borehole sources which are considered to reduce the natural outflows being assessed. Where there is significant groundwater throughflow under the point of the river being assessed, it may be reasonable to assume that only part of the groundwater abstracted from a source close to this point is affecting the assessed flows (the remaining impacts being evident downstream).

The factors influencing how abstractions impact flow will vary from borehole to borehole and may include:

- the distance of the borehole from the river and the aquifers properties (T and S);
- the hydraulic connection between river and aquifer (bed material properties, channel width, intervening Drift properties etc);
- the seasonality of the abstraction and the time since it started;

41

• the variability of recharge. During summer months or in droughts, abstracted water may be drawn from aquifer storage rather than directly from the river so that river flow impacts may be redistributed towards the wetter, winter months.

Analytical functions used to calculate groundwater abstraction impacts (e.g. Jenkins or Stang, as incorporated within SWALP, microLOWFLOWS or IGARF approaches) do not take account of this last factor (aquifer storage and recharge variability) and may therefore overestimate impacts.

The impacts of each source should ideally be considered independently and then added to others within the assessment. However, after estimating the total consumptive abstraction from all sources in the month of pumping it is possible to rapidly consider three alternative 'extreme assumptions' to distribute impacts within the ARM spreadsheets. These are illustrated in Figure 8.1 and allow the user to quickly estimate the possible range of impact estimates before considering local factors specific to the source, river, aquifer and recharge.

Figure 8.1 shows monthly average river flows gauged in a simple example catchment, and a monthly profile of the consumptive abstraction rates from all the boreholes considered to influence flows at the gauge, where these are the only artificial flow impacts in the catchment. The minimum gauged monthly flow is 37 Ml/d and, as part of an 'alleviation of low flows' study, the flow recovery associated with a hypothetical cessation of all groundwater abstraction is to be investigated. The groundwater abstractions include public water supply sources with relatively steady abstraction rates, plus spray irrigation boreholes which only pump in the summer, when river flows are lowest.

The first 'extreme assumption' is that river flow impacts are the same as the pumped consumptive abstraction profile i.e. water is effectively assumed to be drawn directly from the river. This assumption in gauge naturalisation results in a large predicted low flow recovery (minimum natural flows of 63 MI/d). However, as the storage properties of the aquifer are ignored this assumption is only likely to have some degree of validity in highly karstic aquifers where the boreholes are located next to rivers which would naturally receive baseflow throughout the year.

The second 'extreme assumption' is that the properties of the aquifer completely smooth out the summer abstraction peak so that impacts are evenly distributed throughout the year at the annual average abstraction rate. This is the most conservative prediction which could be derived from analytical approaches such as Jenkins or Stang and implies a low flow recovery to 55 Ml/d if all abstraction ceased. However, this assumption ignores the possibility that, since recharge is seasonal and the aquifer water level – river stage relationship may also vary with time, some of the water pumped during summer will be drawn from aquifer storage rather than from the river with the flow impacts being greater in the following winter.

This is the basis of the third 'extreme assumption' which redistributes impacts according to the gauged flows in the river (i.e. greater impacts in winter, less in summer), regardless of the summer abstraction peak. This results in the most conservative prediction of flow recovery to only 42 Ml/d.

In all three of these examples it has been assumed that all of the consumptive abstraction is accounted for by river flow reductions during the same year. However, according to the last 'extreme assumption' it follows that the impacts of groundwater abstraction during a drought

year may not be fully accounted for by flow reductions within that year but may be spread into following years.

It is important to note that none of these three 'extremes' are likely to fully reflect the actual impacts of groundwater abstraction, they simply provide rapid upper and lower bounds to the problem and help the user to think. Any local experience of flow recovery monitored following abstraction cessation will be invaluable. However, in many groundwater dominated areas where this issue is most significant, the only adequate approach to reducing uncertainties is likely to be the development of regionally distributed groundwater and river flow models.

8.2 Abstraction and Discharge Management Scenarios

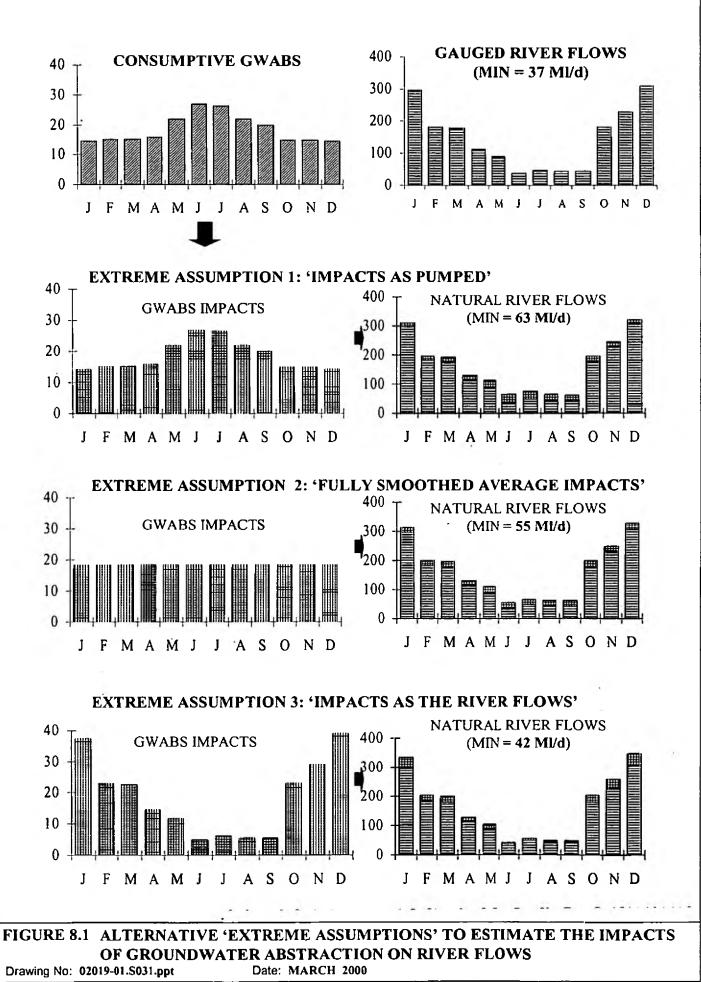
Possible choices and assumptions regarding the definition of the abstraction and discharge management scenario to be assessed have been discussed in Section 1.3.4. Alternative assumptions (e.g. based on estimate actual abstraction rates rather than on the licensed limits, or including a large new licence application under determination) can be easily stored in the spreadsheets and copied into the main calculation to investigate implications for scenario flows and the surplus/deficit profile.

8.3 Target Flows

Possible approaches for setting target environmental protection flows have been reviewed in Section 1.3.6 and the spreadsheet definition of these flow targets has been described as Step 7 of both the River and GW Outflow spreadsheets (Sections 4 and 5 respectively). Whatever approach is adopted, the target flows are plotted next to natural and scenario flows and their implications in terms of the surplus or deficit profile which results are immediately evident. Alternative target flow criteria can be readily considered in order to ensure that the conclusions of the assessment reflect pragmatically achievable environmental protection or restoration aims.

8.4 Assessment Years and Suggested Filenames

The previously described alternatives (groundwater abstraction impact assumptions, abstraction and discharge management scenarios and target flows) can all be considered for a specified assessment year as versions of one workbook. This workbook will include natural flow estimates that are specific to this year. It is therefore recommended that each workbook has a filename which reflects the type of assessment, the Assessment Area, the specified assessment year and the version number (e.g. GWBRITOT96v1.xls means 'GW assessment of the total Brighton Chalk Block in 1996, version 1'). It follows that alternative years should be assessed in a separately named copy of the workbook.


8.5 Recommended Scenarios to Consider

From previous discussion it is clear that a wide variety of alternative scenarios and assumptions can be investigated. The Agency should consider national guidelines to ensure a degree of consistency.

Experience from ARM trials to date suggest that, in formulating these guidelines it may be useful to consider three basic scenarios in the following order:

- Scenario 1: a 'long term average' year (derived from flow data over a standard recent period e.g. 1980 to1999) considered with seasonally variable target flows based on perceived environmental needs, and abstraction impacts based on a best estimate of actual recent rates and impacts. Consider alternative GW abstraction impact assumptions within this scenario as appropriate (long term average scenario). This scenario is useful to for comparison of 'average' conditions and sustainability between areas but the averaging effectively smoothes the winter high flows and summer low flows and will not provide a conservative picture of summer resources.
 - Scenario 2: a drought year considered with seasonally variable target flows based on a natural QN95 minimum and abstraction impacts based on licensed rates and conservative 'impact as pumped' GW abstraction assumptions (worst case scenario).
 - Scenario 3: an alternative year (possibly another drought year or an 'average' year) which, apart from natural river flow or GW outflow estimates is otherwise as Scenario 1 (alternative year scenario).

Further scenarios associated with alternative abstraction or discharge management proposals could follow this broad approach.

9. Worked Examples in Trial Areas

9.1 ARM Development Trial Locations

Figure 9.1 shows that, during the research and development process, ARM Framework trials have been carried out in seven of the eight Agency Regions covering a wide variety of groundwater and surface water dominated areas including catchments which are intensively exploited and those which are almost natural. These trial areas are summarised in the Table 9.1 below and have all been previously reported (full references in Section 1.5.1).

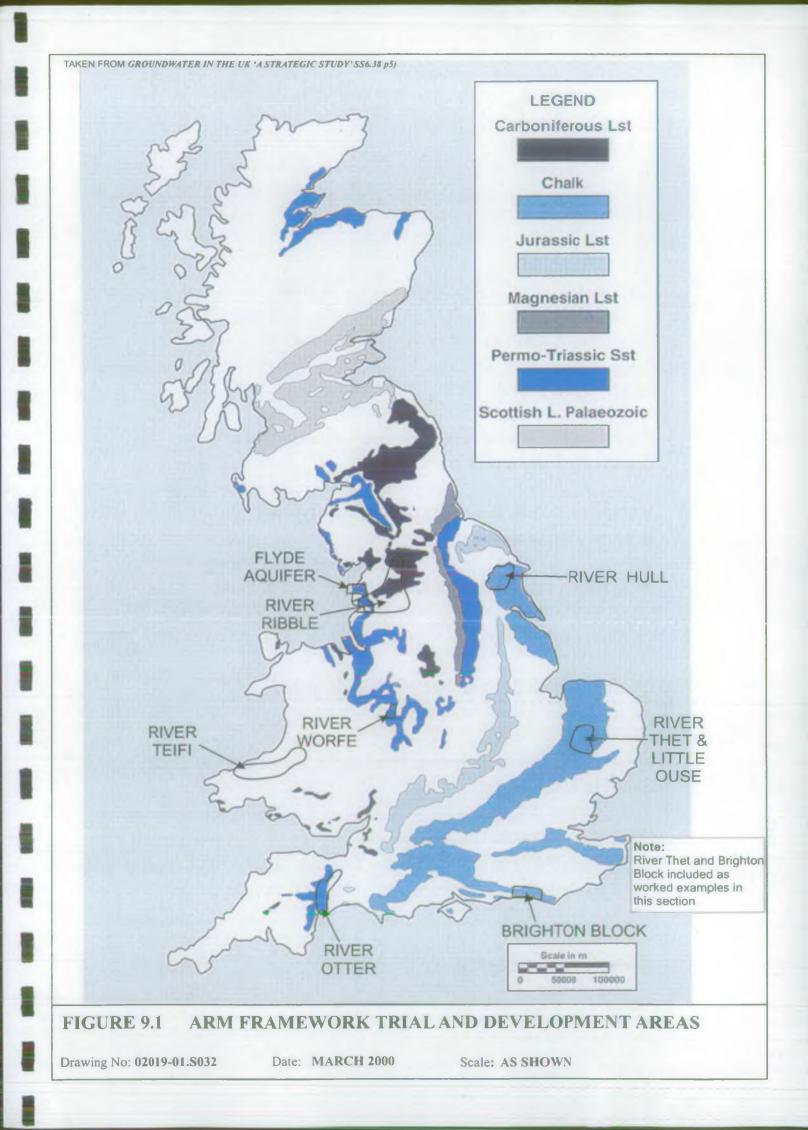
Table 9.1	ARM Trial	Locations	and	Reports
-----------	-----------	-----------	-----	---------

Assessment Area	Area Characteristics	Trial Reports	
River OtterRiver catchment with lower part whichSouth West Regioninteracts with a Sherwood Sandstone aquifer		May 1999 User Manual & March 2000 CAMS trials	
Brighton Chalk Block Southern Region	Karstic Chalk aquifer block bounded by tidal rivers and the sea with largely unmeasured GW outflows.	May 1999 User Manual & this March 2000 User Manual	
River Hull to Hempholme Gauge North East Region	Chalk aquifer catchment with spring discharge supporting river headwaters which subsequently flow over confining boulder clay.	May 1999 User Manual	
River Worfe to Cosford Gauge Midlands Region	Headwaters river catchment including Sherwood Sandstone aquifer and less permeable formations.	May 1999 User Manual	
River Ribble to Samlesbury Gauge North West Region	Large surface water dominated catchment with minor aquifers and SW reservoirs	March 2000 CAMS trials	
Fylde Aquifer North West Region	Confined Sherwood Sandstone aquifer, poorly connected to rivers which is exploited conjunctively with SW resources during drier periods.	March 2000 CAMS trials	
Rivers Little Ouse and Thet Anglian Region	Catchments equivalent to 2 sub-units of the Little Ouse Groundwater Unit. Boulder Clay cover Chalk with seasonally variable SW and GW Abs and a drought river support scheme.	March 2000 CAMS trials & this March 2000 User Manual	
River Teifi <i>Wales</i>	Effectively 'natural' surface water dominated catchment of high environmental value.	March 2000 CAMS trials	

45

The primary objective of all these trials has been to test whether Framework and its associated spreadsheets are sufficiently robust and flexible for wide application. In all cases basic data have been provided by the Agency but the level of involvement from Agency staff in the formulation of Conceptual understanding or review of results has been variable. For this reason, none of the trial spreadsheets should be considered as an 'Agency approved' assessment of water resources availability and the final step of assigning a sustainability status has not been taken. It is emphasised that the credibility of the Assessment Framework results is very dependent on having the active involvement of staff who are familiar with the local area, particularly for the consideration of appropriate target flows, conceptual models, and licensing issues.

The ARM Framework has evolved through the trials and in response to the comments and suggestion made by Agency staff. As such, some aspects of the format and approaches adopted for the earlier trials have been superseded by subsequent development. The next two subsections describe worked examples presented according to the latest description of the Framework (Section 1), as implemented on the spreadsheets described in Sections 2 to 8. These two trial areas are:


- River Thet to Melford Gauging Station: Application of the RIV.xlt ARM workbook and associated (optional) GAUGE.xlt and ARF.xlt spreadsheets to a river with both surface water and groundwater flow components which is exploited by seasonally variable abstractions and includes occasional drought river support boreholes (the Great Ouse Groundwater Scheme);
- Brighton Chalk Block: Application of the GW.xlt ARM workbook and associated (optional) ARF.xlt spreadsheet to a karstic Chalk aquifer block with seasonal transmissivity variations bounded by tidal rivers and the sea with largely unmeasured GW outflows.

The spreadsheets for each worked example are provided on disc in Appendix A and as hardcopy printout in Appendix B. This Section of the report introduces each area through the sketched conceptual plans and cross sections which have been reproduced from the *Conceptual Understanding* Spreadsheets as fold-out Figures to view alongside the text. Any key references or data sources are included on the spreadsheets themselves. The text explains the decisions taken during the Assessment Framework process but does not attempt to repeat the information presented on the spreadsheets which should be comprehensible as standalone documents. It is therefore recommended that the text be read in front of a computer with a copy of the Excel workbooks open.

The broad conclusions from the trials are briefly summarised although, as indicated above, these have not been formally reviewed or approved by the Agency. In some cases alternative scenarios have been considered in which case these results are also discussed in the text with the data required to investigate the scenario stored within the digital versions of the spreadsheets.

The reader is encouraged to experiment with the software using these trial data sets to improve understanding of the ARM Framework and spreadsheets.

The main lessons learned from all the trials in terms of the Framework's applicability and recommendations for further consultation and review are summarised in Section 10.

9.2 River Thet at Melford Bridge Assessment

9.2.1 Area Delineation, Description and Issues

Figure 9.2 shows a sketch plan of the area of drift covered Chalk around the Rivers Little Ouse, Thet and Sapiston within which water resources are currently managed by Anglian Region as the 'Little Ouse Groundwater Unit'. This groundwater unit has been sub-divided by the Agency for the purposes of strategic resource assessment into four smaller groundwater subunits:

- upper Little Ouse;
- lower Little Ouse;
- Sapiston;
- Thet.

The delineation of these sub-unit boundaries has been based on the Chalk areas around the four main river reaches. The eastern outer boundary is drawn according to the groundwater divide between the Rivers Little Ouse and Waveney which lies to the east of the surface water divide. In consultation with Agency staff it was agreed that the ARM assessments should initially be carried out on two gauged catchments (i.e. combined surface water and groundwater catchments) which are approximately, but not exactly equivalent to two of these sub-units:

- the upper River Little Ouse to Euston gauging station (NGR TL 892801);
- the River Thet to Melford Bridge gauging station (NGR TL 880830).

Figure 9.2 includes conceptual cross sections for both of these areas drawn along lines close to the river. The remainder of this section describes the assessment carried out for the River Thet.

The Melford Bridge gauging station is situated on the south eastern outskirts of Thetford some 1 km upstream of the River Thet confluence with the Little Ouse.

The assessment area comprises the surface water catchment for the river to the gauging station and its associated groundwater catchment within the Chalk aquifer. It is noted that the extent of the groundwater catchment does not coincide precisely with the surface water catchment and also that its extent varies in relation to antecedent or preceding climatic conditions. The western and southern boundaries are defined by flow lines perpendicular to groundwater contours while the northern and eastern boundaries are defined by groundwater divides. Figure 9.2 shows catchment boundaries for an average condition and for the year 1991 which represents drought conditions.

The Chalk outcrops in the lower reaches of the catchment in the River Thet valley between Thetford and East Harling. In addition drift cover over the Chalk is largely absent in the areas close to Quiddenham and Shropham as well as to the east of Harling Road.

The Chalk is overlain by Boulder Clay in the upper reaches of the catchment with pockets of glacial sands and gravels forming minor aquifers within the clay. A number of buried channels

are incised into the Boulder Clay in the north of the catchment delineated by valley gravels and alluvium deposits.

The upper reaches of the main watercourses flow over Boulder Clay. In the lower reaches watercourses flow mainly on Chalk with alluvium forming the base of the River Thet between East Harling and Carling.

Groundwater is abstracted from within the catchment primarily for public water supply and spray irrigation with some for other agricultural and industrial uses. In addition there are licensed Great Ouse Groundwater Scheme (GOGWS) sources to support river flows during drought years such as 1991.

Approximately 1600 Ml/a of surface water is licensed for abstraction within the assessment area for spray irrigation while discharges to surface water (>100 m^3/d) amount to around 2.1 Ml/d of which 50% is effluent from sewage treatment works.

9.2.2 Workbook Selection and Names

ARM calculations for the River Thet have been saved in the following spreadsheets based on the RIV.xlt template:

- Rivthetmellta.xls (long term average assessment using data from 1970 to 1990);
- Rivthetmel91.xls (drought year assessment using data from 1991).

Both of the optional spreadsheets described in Section 7 have also been used to provide estimates of natural flows for both assessment years and these have the following filenames:

- Gaugethetmellta.xls and Gaugethetmel91.xls (gauged flow naturalisation);
- ARFthetmellta.xls and ARFthetmel91.xls (natural flows from MORECS effective rainfall using the Aquifer Response Function).

9.2.3 Assessment Years

Calculations have been carried out to assess the long-term average (LTAV) water resources condition using data from 1970 to 1990 and also for the specific drought year 1991. The start of the LTAV period was dependent on gauged river flow data availability and the assessments were mostly based on data from an Agency water resources report produced in 1993.

MORECS effective rainfall data show 1991 to be the driest since 1960. This year was selected to consider the impacts of abstraction and river support from the GOGWS boreholes.

9.2.4 Key Assumptions

Estimation of Natural River Flows

The assumptions made in estimating consumptive abstraction impacts for both gauged flow naturalisation and the estimation of scenario outflows are described below. Long term average (1970 to 1990) gauge naturalised flows are estimated as 170 Ml/d with a summer monthly minimum of 72 Ml/d. These have been compared at Step 3 of the ARM spreadsheet with natural flows derived using the aquifer response function (ARF) based on monthly MORECS effective rainfall and assuming:

- areas for the surface water catchment given by IoH and for groundwater catchment estimated from the sketch plan;
- an assumption that effective rainfall onto the aquifer is split between recharge and runoff according to the ratio between MORECS effective rainfall and the recharge values quoted by the Agency for each of the sub-units;
- a river length considered to drain the aquifer of 30 km;
- aquifer parameters $T = 500 \text{ m}^2/\text{d}$ and S = 0.03.

The ARF based estimates suggest natural flows averaging 148 MI/d with a monthly minimum of 56 MI/d – both much lower than flows derived from gauge naturalisation. This may indicate that the ARF assumed groundwater catchment areas are incorrect or that MORECS significantly underestimates effective rainfall, or may reflect errors in the simple assumptions used to estimate actual abstractions from licensed values as part of the gauge naturalisation process.

In addition to the flow estimates derived from the gauge and the ARF approach, two other synthetic natural flow series have been entered at Step 3 of the ARM sheets. These are not based on 'real data' but have been included to illustrate how output from microLOWFLOWS or a groundwater model might be taken into the assessment. If available, flows from the river flow model used by Anglian Region to determine natural QN95 protection targets could also have been entered at this stage. All four estimates are plotted and can be compared and revised before one (in this example that based on gauge flow naturalisation) is taken forward.

The option of separately specifying a natural baseflow has been taken with three alternative estimates provided and plotted. Two of these (the baseflow separation and the groundwater model output) have been synthesised and entered for illustrative purposes only. The third estimate is taken from the effective rainfall based aquifer response function calculations on the supporting spreadsheet. For the long term average assessment this is very close to the groundwater resource derived by Anglian Region's existing methodology (66MI/d ARF average cf. 64 MI/d Anglian Gross Resource, 51 MI/d ARF minimum cf. 51 MI/d Anglian reliably Available Resource). The ARF baseflow estimate and has been taken forward for later comparison with groundwater abstraction impacts.

Consumptive Abstraction Impacts

Surface water abstractions in this area are primarily for spray irrigation purposes and licensed quantities, as they existed in 1993 for catchment no 6/33/44 have been used with Spray Irrigation Demand Factors (based on Anglian Region's Flow Naturalisation Good Practice Guidelines) to estimate monthly abstracted quantities. This results in an average of around 3 Ml/d over the year as a whole which is actually all abstracted from surface water during the summer months at rates of up to 11 Ml/d for spray irrigation.

By far the largest abstractions are from the Chalk and the delineation of the groundwater catchment to the gauge, as described above, is a vital step in the naturalisation process. The groundwater catchment defines which boreholes are considered to impact flows measured at the gauge and which impact flows downstream or in other rivers.

Groundwater abstraction rates from the Chalk have been estimated using the following:

Public Water Supply. 1993 licence and actual abstraction data has been used to determine an overall uptake factor (i.e. an estimate of the proportion of the annual licence actually pumped). This factor has been applied to the total licensed abstraction quantity of 3752 Ml/a (including 50% of the Brettenham licence which appears to straddle the groundwater divide defined between the Little Ouse and Thet catchments). In addition, further refinement of abstraction demands has been undertaken using the Public Water Supply Demand profile presented in the Regional Good Practice Guidelines.

Spray Irrigation. A total of around 1593 MI/a is licensed for abstraction for spray irrigation purposes. The relevant demand profile presented in the Regional Good Practice Guidelines has been applied to this quantity. In addition further refinement of actual abstractions impacts from spray irrigation uses are made by applying an uptake factor of 0.6 for the long-term average condition and 0.8 for the drought condition represented by 1991.

• Other Uses. Groundwater abstractions used for other purposes are split between general agriculture (370 Ml/a) and cooling (801 Ml/a). No demand profile has been applied to these abstractions but an average uptake factor of 0.275 (Regional Good Practice Guidelines) has been used, in order to obtain an estimate of actual abstraction.

These assumptions suggest an average annual abstraction rate of around 8 Ml/d with a summer peak of up to 17 Ml/d.

As groundwater abstraction is a significant part of the water balance and varies significantly between summer and winter, further consideration has been given to the distribution of the *impacts* of these abstractions on gauged river flows.

In the first instance an 'average or fully smoothed' approach has been adopted (see Section 8.1) where river flow impacts are assumed to occur at the annual average rate of 8 Ml/d for longterm average assessment, for all months. This simplest impact distribution has been used when generating the hard copy assessment output which accompanies this report. It is the distribution which might be expected for an aquifer receiving steady state recharge which has sufficient storage to smooth out any seasonal variations in abstraction. Analytical approaches to the calculation of groundwater abstraction impacts (such as the Jenkins approach incorporated into microLOWFLOWS) will also 'smooth' flow impacts for long term steady state abstractions.

Two other impact distributions, described as alternative 'conceptual extremes' in Section 8.1, have also been provided in the spreadsheets and can be substituted into the main calculations, as follows:

• Abstractions are assumed to impact river flows in the same month as the abstraction occurs, representing boreholes close to rivers and/or in relatively high transmissivity/low storage aquifers. This impact distribution effectively considers the boreholes to be pumping water directly from the river and, because of the spray irrigation and public water supply demand profiling, implies that impacts are greater in the summer than in the winter.

• Impacts account for all the water abstracted in the year but are distributed according to natural river flows i.e. are assumed to have a greater impact on river flows during wetter months of higher flow, than during summer periods of lower flow.

At this stage Entec have not attempted to consider the distribution of groundwater abstraction impacts on a source by source basis. The regional groundwater model which is currently planned to include the River Thet should help to reduce uncertainties about groundwater abstraction impact distributions.

Prior to the early 1990's licensed discharges to surface water to the Thet upstream of the Melford Bridge gauge amounted to around 2 MI/d. During the drought year 1991 GOGWS boreholes abstracted 11820 MI over the period July to October to support river flows. Information from the Agency suggests that the net effect of these abstractions on the assessment area was an increase in gauged flows by rates equivalent to 40% of the rates abstracted from the boreholes. It is believed that the figure of 40% has been adopted by the Agency after comparing responses of river flows in augmented river reaches with simultaneous flow patterns in reaches which underwent no augmentation.

For the purpose of this assessment therefore this 40% net gain effect is represented as follows:

- groundwater abstraction rates from the GOGWS (based on 11820 MI spread from July to 10 October) are added onto the other groundwater abstractions in the spreadsheet as fully consumptive.
- these additional GOGWS abstractions are assumed to impact river flows at a rate equal to 60% of the full abstraction rate.
- the full GOGWS abstraction rates are entered as surface water discharges as all of the outfalls from the boreholes are within the same assessment area.

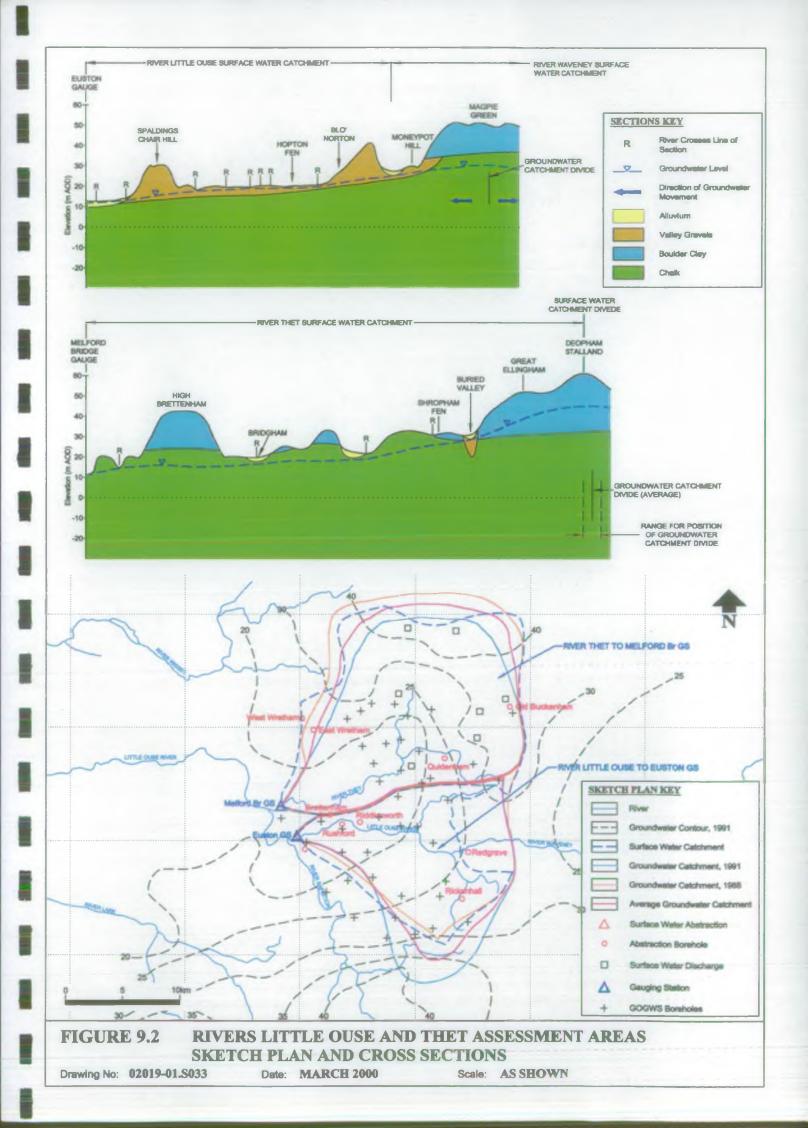
This approach retains the flexibility of being able to accommodate any river support abstractions which are discharged outside the area (in the same way as public water supply boreholes). However, the approach also results in the 'Scenario river flow minus SW Dis' series becoming negative in the stacked histogram presented at Step 10 of the spreadsheet.

Target Flows

The average scenario flows at the Melford Bridge station in 1991 ranged from 149 Ml/d in March to a minimum of 55 Ml/d in July. The IoH register reports a Q95 flow for the period 1962-95 to be 42 Ml/d.

The minimum monthly flow of 54 Ml/d in the ARM assessment was taken directly from the natural QN95 specified for protection according to the Agency's river flow model (even though this is greater than the 51 Ml/d quoted by the Agency as being reliably available from groundwater). Monthly variability in the ARM target was allowed by assuming that it is acceptable to abstract 50% of natural flows above this minimum. In contrast the existing Anglian Methodology makes no equivalent allowance although it implicitly assumes that winter flows will be assured by the 'unreliable' groundwater flows and runoff.

9.2.5 **Presentation and Discussion of Results**


All of the main plots and results from the first two pages 'Conclusions and QA' sheet of the Rivthetmellta.xls and Rivthetmel91.xls workbooks are presented as hardcopy following this section.

The surplus or deficit profile resulting from the long term average ARM assessment suggests a very small minimum surplus of 3 Ml/d in September with an associated error bar of \pm -18 Ml/d. These results would not justify any change to the Agency's existing policy of no further groundwater licences in this Unit. This is encouraging. It is important to note however that the mean annual surplus of 29 % from the ARM assessment would be misleading as a summary of sustainability for groundwater unless accompanied by the seasonal profile and minimum 5 % value.

Despite these tight summer resource position, the assumed 50% monthly extra acceptable abstraction impact implies the potential for further abstraction at higher flows which could probably only be effectively managed through surface water licensing with flow controls linked to the gauging station.

A brief review of the 1991 ARM spreadsheets for the River Thet shows how the impacts of the river support scheme have been taken into account. It also illustrates how the use of the support boreholes was largely successful in maintaining river low flows around the target levels even though the natural flows would have been much lower. The artificial impacts 'scenario' considered in this example was based on the actual use of the scheme in 1991.

52

RivT	hetmellta.xls, 16/02/00 sheet: Conclusions & QA page 1 of 3
	Area R Thet at Melford Bridge GS ID ? Ver 1 Rev 1 Date 19/8/99 Assessment for Areas which Drain to a River Outflow (protected worksheet) Specified Assessment Year L T Average Year (1970-1990) Conclusions & QA
1	Results Summary for the Total Catchment to the Outflow Point
1.1	Natural, Scenario and Target River Flows for Specified Year (with Annual Average Rate Summary)
	Natural Flow, 170 MI/d Scenario Flow, 161 MI/d
	Target Flow, 112 MI/d J F M A M J J A S O N D
	Target Flows based on Monthly Minimum of nat QN95 plus 50% of naturalised flow above this
1.2	Scenario Artificial Impacts (with Annual Average Rate Summary) Abs & Dis Scenario: Licensed 1993 Rates (No Restrictions)
	A GW Abstraction Impact, 8 MI/d 5 SW Abstraction Impact, 3 MI/d 0 ISW Discharge Impact, -2 MI/d Net Abstraction Impact, 9 MI/d
	Maximum net abstraction impact for total catchment based on Max. (net abs impact/natural river flow from total catchment) = 17 % in Jul
1.3	Surplus or Deficit Profile for Specified Year(= Scenario River Flow Minus Target River Flow)J F M A M J J A S O N DAnn Av49MI/d10611297804521543213966
	Uncertainty +/- 18 MI/d $50 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - $
	-50 ¹ Central value of Surplus or Deficit as % of Natural River Flow: Ann Av 29% Min 5%
1.4	Interpreted Sustainability Status of Resource Management at Outflow Point Sustainability Status Category:

Ĩ

ł

l

Comments: Not assigned at this trial stage - see discussion in Section 1.3.8 and note in Section 9.1 of the User Manual for further information. Step 3 (Management Action) also not complete

RivT	Chetmellta.xls, 16/02/00sheet: Conclusions & QApage 2 of 3
	AVAILABLE RESOURCE METHODOLOGY (ARM)
	Area R Thet at Melford Bridge GS ID ? Ver 1 Rev 1 Date 19/8/99
	Assessment for Areas which Drain to a River Outflow(protected worksheet)Specified Assessment YearL T Average Year (1970-1990)Conclusions & QA
	Speenled Assessment Tear (1710-1770)
1.5	Acceptable Net Abstraction Impacts Profile for Specified Year
	(= Natural Flow Minus Target Flow)
	J F M A M J J A S O N D Ann Av 58 MI/d 112 118 102 86 57 38 21 14 9 27 45 71
	7150
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Uncertainty +/- 19 Ml/d 50 - 12 12 13 13 13 13 13 13 13 13
	-50 _
1.6	Natural Baseflow Minus Locally Consumptive Groundwater Abstraction Impact
	if baseflow (i.e. groundwater resource) has been separately defined
	J F M M J J A S O N D Ann Av 58 MI/d 71 74 73 68 60 54 49 46 43 46 52 59
	Uncertainty +/- 8 MI/d 50 * • • • • • • • • • • • • • • • • •
	0
2	Outflow Components (Optionally Excluding Upstream Sub Catchments)
	Upstream Catchments Excluded NONE Flow Components Derived from the Sub Catchment
	Expressed in mm/month Over Surface Water Sub-Catchment Area
	(with Annual Average Rate Summaries in mm/a and Ml/d)
FR	GW Abs Impact, 9 mm/a (8 MI/d) 60 _ mm per month
	(scale fixed by
	region/user)
	SW Abs Impact, 3 mm/a (3 MI/d) 40 -
	Outflow-Inflow-SWDis, 186 mm/a 20
(
	SW Dis Impact, -2 mm/a (-2 MI/d)
	Natural outflow from 216 or km 6020
	Natural outflow from 316 sq.km. SWU ⁺ sub-catch. area = 198 mm in the JFMAMJJASOND
	Maximum net abstraction impact for this sub-catchment area only (excluding upstream catchme
	Max. (sub-catchment net abs impact/sub-catchment nat outflow) = 17 % in Jul

RivT	Thetmel91.xls, 16/02/00sheet: Conclusions & QApage 1 of
	AVAILABLE RESOURCE METHODOLOGY (ARM)
	Area R Thet at Melford Bridge GS ID ? Ver 1 Rev 1 Date 19/8/99
	Assessment for Areas which Drain to a River Outflow (protected worksheet)
	Specified Assessment Year Drought condition 1991 Conclusions & QA
1	Results Summary for the Total Catchment to the Outflow Point
1.1	Natural, Scenario and Target River Flows for Specified Year (with Annual Average Rate Summary)
	7 200]
	Natural Flow, 83 MI/d
	Scenario Flow, 86 MI/d 50 -
	Target Flow, 72 MI/d JFMAMJJASOND
	Target Flows based on Monthly Minimum of nat QN95 plus 50% of naturalised flow above this
1.2	Scenario Artificial Impacts
1.4	(with Annual Average Rate Summary)
	Abs & Dis Scenario: Licensed 1993 Rates (No Restrictions)
E	GW Abstraction Impact, 29 MI/d 0 co
23	ISW Abstraction Impact, 3 MI/d -100
	ISW Discharge Impact, -35 MI/d -150
	Net Abstraction Impact, -4 MI/d J F M A M J J A S O N D
	Maximum net abstraction impact for total catchment based on
	Max. (net abstitute in the flow from total catchment) = 20 % in Jun
1.3	Surplus or Deficit Profile for Specified Year
	(= Scenario River Flow Minus Target River Flow)
	J F M A M J J A S O N D Ann Av 14 Ml/d 22 40 44 21 7 -2 1 2 12 8 6 11
	Minimum -2 MI/d $\underset{50}{\stackrel{100}{=}}$ $\overset{100}{_{10}}$ $\overset{1}{_{10}}$ 1
	Uncertainty +/- 36 MI/d
	Central value of
	Surplus or Deficit as % of Natural River Flow: Ann Av 17% Min -3%
1.4	Interpreted Sustainability Status of Resource Management at Outflow Point
	Sustainability Status Category:

Comments: Not assigned at this trial stage - see discussion in Section 1.3.8 and note in Section 9.1 of the User Manual for further information. Step 3 (Management Action) also not complete

RivThetmel91.xls, 16/02/00 sheet: Conclusions & QA	page 2 of 3
AVAILABLE RESOURCE METHODOL	OGY (ARM)
Area R Thet at Melford Bridge GS ID ? V	
Assessment for Areas which Drain to a River Outflow Specified Assessment Year Drought condition 1991	(protected worksheet) Conclusions & QA
Specified Assessment Tear	
1.5 Acceptable Net Abstraction Impacts Profile for Specified Y (= Natural Flow Minus Target Flow)	
Ann Av 11 MI/d MI/d 28 47 51 28 2	I J J A S O N D 0 15 -28 -33 -28 1 12 17
Minimum -33 MI/d 200 -	
Uncertainty +/- 49 MI/d 0 100 0	I I I I I I
-100 - 1	
1.6 Natural Baseflow Minus Locally Consumptive Groundwat	er Abstraction Impact
if baseflow (i.e. groundwater resource) has been separately	
	A J J A S O N D 9 26 -49 -51 -53 -4 19 22
Minimum -53 Ml/d $\overrightarrow{\Xi}$ 100 $\overrightarrow{50}$	
Uncertainty +/- 11 MI/d 0	
-50 -	
-100 上	
2 Outflow Components (Optionally Excluding Upstream Su	
Upstream Catchments Excluded NON Flow Components Derived from the Sub Catchment	Ĕ
Expressed in mm/month Over Surface Water Sub-Catchm	ent Area
(with Annual Average Rate Summaries in mm/a and MI/d)
E GW Abs Impact, 34 mm/a (29 MI/d) mm per month	
(scale can be fixed by	
region/user)	
SW Abs Impact, 3 mm/a (3 MI/d) 40 +	
Outflow-Inflow-SWDis, 96 mm/a (83 ²⁰	
SW Dis Impact, -41 mm/a (-35 MI/d) ⁰	
Natural outflow from 316 sq.km. SW ²⁰ \downarrow sub-catch. area = 132 mm in the J F M A M	

9.3 Brighton Chalk Block Groundwater Assessment

9.3.1 Area Delineation and Description

Figure 9.3 shows the conceptual sketch plan and cross section for the Brighton Chalk Block which has been assessed. The Chalk dips gently southwards from its northern scarp face and is underlain by the Greensand with which it has been assumed to be in hydraulic continuity, and the impermeable Gault Clay. Although the Chalk outcrop continues along strike it is hydraulically bounded by the tidal River Ouse to the east and by the River Adur to the west.

The Chalk is largely unconfined and, although Head deposits may locally reduce recharge, it is considered that runoff losses from the Block as a whole are negligible – most of the effective rainfall enters the aquifer as recharge. There is no information as to the effect of urbanisation around Brighton on recharge – for this Assessment, the extra runoff losses associated with engineered drainage are assumed to offset any enhancement due to mains water leakage.

Springs drain the northern scarp but there is little permanent surface water drainage from the Brighton Block. Flows are gauged in the Winterbourne at Lewes, but these fall to zero during the summer months and the great majority of water leaves the Block as ungauged groundwater discharge to the sea or bounding rivers, or via abstraction boreholes for public water supply. There are no significant surface water abstractions and most treated effluent discharges to long sea outfall.

Transmissivity variations within this groundwater dominated systems are significant both spatially and seasonally. Fissure flow dominates with zones of greatly enhanced flow beneath dry valley and vertically within the zone of water table fluctuation. Groundwater levels vary markedly as specific yield is low. Groundwater discharge is controlled by transmissivities which can effectively be considered as karstic during the winter months but which fall during the summer.

9.3.2 Workbook Selection, Assessment Year and Filenames

All calculations for the Brighton Block have been carried out using workbooks based on the *GW Outflow Calcs* spreadsheet, in the GW.xlt template. The assessment has been carried out for the Block as a whole which has well defined boundaries.

The calendar year 1996 was selected for assessment as a recent severe drought period. According to MORECS effective rainfall data this was the 2^{nd} driest year since 1960.

The spreadsheets for the Brighton Block included on the CD in Appendix A, and as hardcopy in Appendix B are summarised as follows:

Assessment Assumptions	Excel Workbook Template Used	Completed Filename
1996 drought, GWABS impacts on GW outflows assumed to be at average rate throughout year	GW outflows, GW.xlt	Gwbritot96v1.xls
1996 drought, GWABS impacts on GW outflows assumed to be distributed according to natural GW Outflows	GW outflows, GW.xlt	Gwbritot96v2xls
Natural GW outflow from effective rainfall (same for both versions)	ARF.xlt	ARFbritot96.xls

9.3.3 Key Assumptions

Estimation of Natural Groundwater Outflows

The first step in the Brighton Block assessment is to estimate the natural groundwater outflows from the Assessment Area. The ARF approach has been used based on MORECS effective rainfall inputs (see ARFbritot96.xls). All of the effective rainfall is assume to become recharge and, in order to simulate the perceived karstic response, 30% of this recharge has been assumed to discharge from the Area in the same month as it rained. Outflow of the remaining recharge is controlled through the Aquifer Response Function with storage set at a low Chalk value of 0.01 and transmissivity set at 127 m2/d. This transmissivity value is considered to be representative of the less permeable regions of Chalk away from the karstic dry valley corridors where flow rates are very high. The length of boundary considered to drain the Chalk block has been measured to include the length of bounding coastline, rivers, or spring line and also the length of the high T dry valley features. The high T valleys have been included in conceptual consistency with the choice of a lower transmissivity value – an alternative model might use a higher transmissivity but a shorter discharge boundary length.

The overall effect of this parameterisation is to simulate natural groundwater outflows which are very seasonally variable. In 1996 modelled natural outflows from the Block as a whole averaged 111 MI/d but ranged from 331 MI/d in January to only 4 MI/d in October (ARFbritot96.xls). Even without considering the karstic proportion of flow, modelled aquifer response times are short (133 days).

In addition to the flow estimates derived from ARF approach, an extra natural flow series has been entered at Step 3 of the Gwbritot96v1.xls spreadsheets. This is not based on 'real data' but has been included to illustrate how output from a groundwater model might be taken into the assessment. Both estimates (and the results of any alternative approaches) are plotted and can be compared and revised before one (in this example, that based on the ARF spreadsheet) is taken forward.

The option of separately specifying a recharge, inflow based estimate of groundwater resources has also been taken with two alternative estimates provided and plotted. One of these (the 'recharge model output') has been synthesised and entered for illustrative purposes only. The other estimate is taken from the MORECS data for the year, as calculated in Ml/d on line 96 of the ARFbritot96.xls spreadsheet. The MORECS data (which have been taken forward for later

54

comparison with groundwater abstraction as pumped) suggest an average 99 Ml/d recharge for 1996 including a 7 month period (April to October) with no recharge.

Consumptive Abstraction Impacts

Groundwater abstraction for public water supply is the only significant anthropogenic impact on the water balance of the Brighton Chalk Block. The abstractions should be considered as fully consumptive losses as all treated effluent discharges are to the sea.

The management scenario assessed was based on the estimated average 76 Ml/d was actually abstracted during 1996 from boreholes and adits which are mostly clustered within or close to the dry valley high T zones. Despite the different distances of these sources from the coast or from the high T zones, there was little seasonal variation in the abstraction rates reported for the drought year of 1996. There is no evidence of operational switching of abstraction away from the boreholes 'close' to the coast during the summer to avoid saline intrusion. Pumping rates remained fairly steady throughout the year at levels similar to previous years.

Comparison with estimated natural outflows from the Block for 1996 shows that whilst the average resource (111 Ml/d) exceeds the average abstraction rate (76 Ml/d), significant flow reversals are implied through the year if the impacts of steady groundwater abstraction are assumed to be constant from month to month. Adopting this assumption, as shown in (Gwbritot96v1.xls) results in estimations of 1996 scenario flows ranging from 255 Ml/d (outflow) in February to -73 Ml/d (inflow) in October.

Agency staff report that available water quality monitoring data and operational experience are not consistent with the seasonal movement of the saline front which these results imply and conclude that the water balance representation according to this assumption is inadequate. Alternative concepts are discussed in the 'Results' Section below.

Target Flows

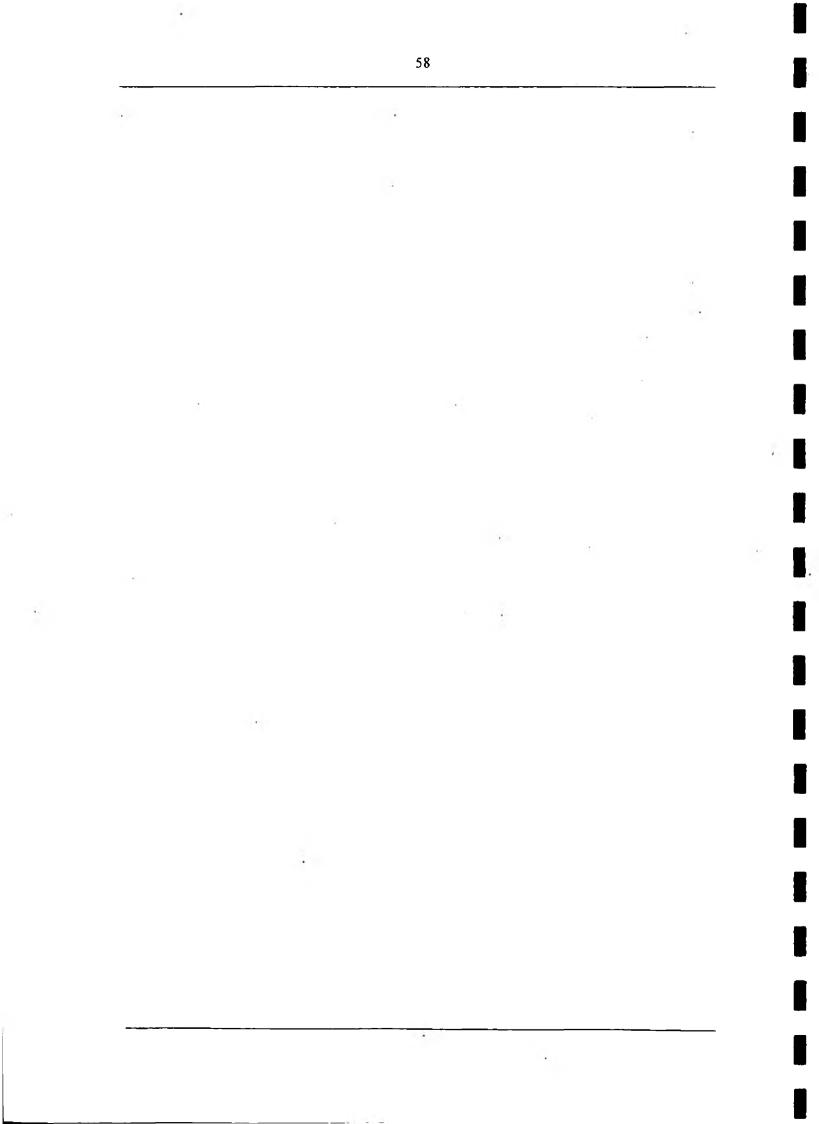
The key factor to be considered when setting outflow protection targets for the Brighton Chalk Block is the groundwater discharge required to prevent saline intrusion. Considerable uncertainty is associated with the groundwater outflows from the Block – they cannot be measured and the complexities of spatial and seasonal transmissivity variation also makes them difficult to model, particularly using a simple lumped parameter approach such as the ARF method.

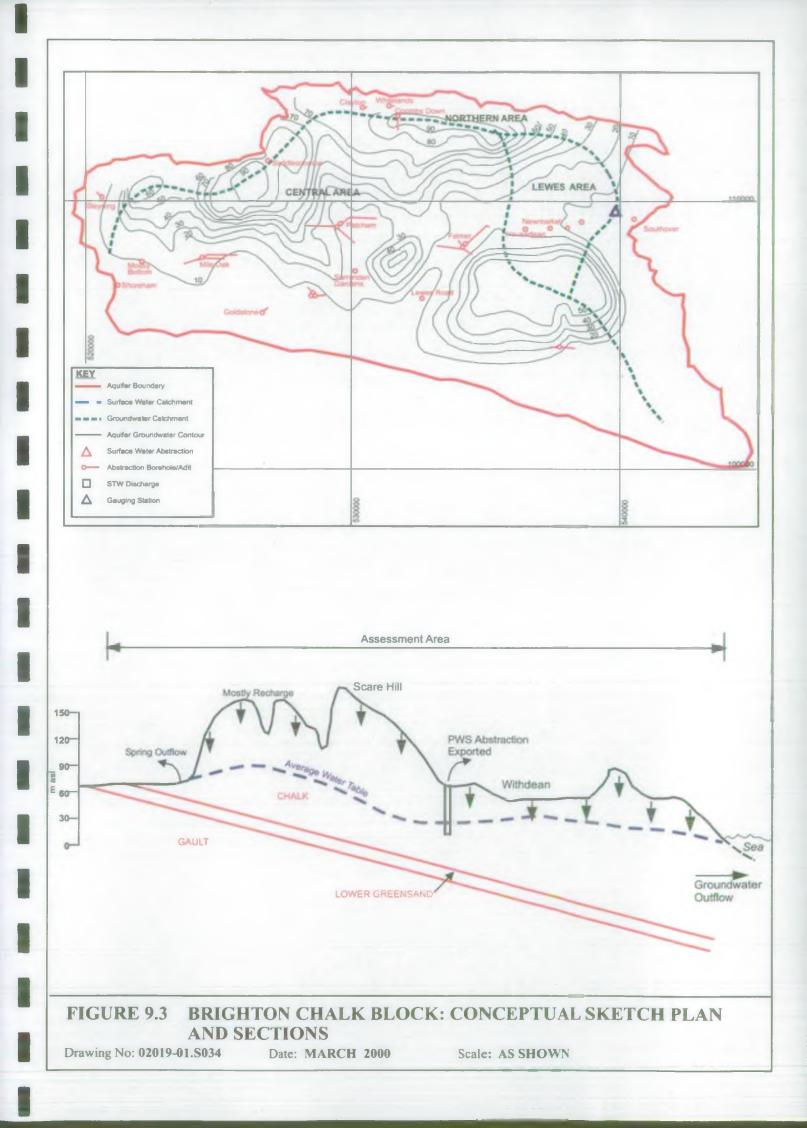
In practice operational experience from each borehole site has been applied for many years to limit abstraction to rates at which saline intrusion does not occur. It has been assumed that a small inflow of saline water (equivalent to a small shift in the saline front) should be acceptable during the driest summers. For this reason target flows have been set as a minimum of -5 Ml/d plus 30 % of the natural GW outflow above this (i.e. 70% of excess natural outflows can be reduced by abstraction - a higher proportion than would be probably acceptable if river low flows were a particular concern). This results in a protection target with large winter outflows and a short, 2 month period of small inflows. The defined target flows have been associated with a large uncertainty (+/- 30 %) which is reflected in the large error bars of the resulting surplus/deficit profile.

9.3.4 Discussion of Results

All of the main plots and results from the first two pages of the 'Conclusions and QA' sheet of the GWbritot96v1.xls workbook are presented as hardcopy following this section. The main headline result of the assessment for the 'actual 1996 abstraction scenario', as determined according to the assumptions for natural flows, groundwater abstraction impacts and target flow setting described above, is that these abstractions are unsustainable with large summer/autumn deficits (down to -70 Ml/d in October).

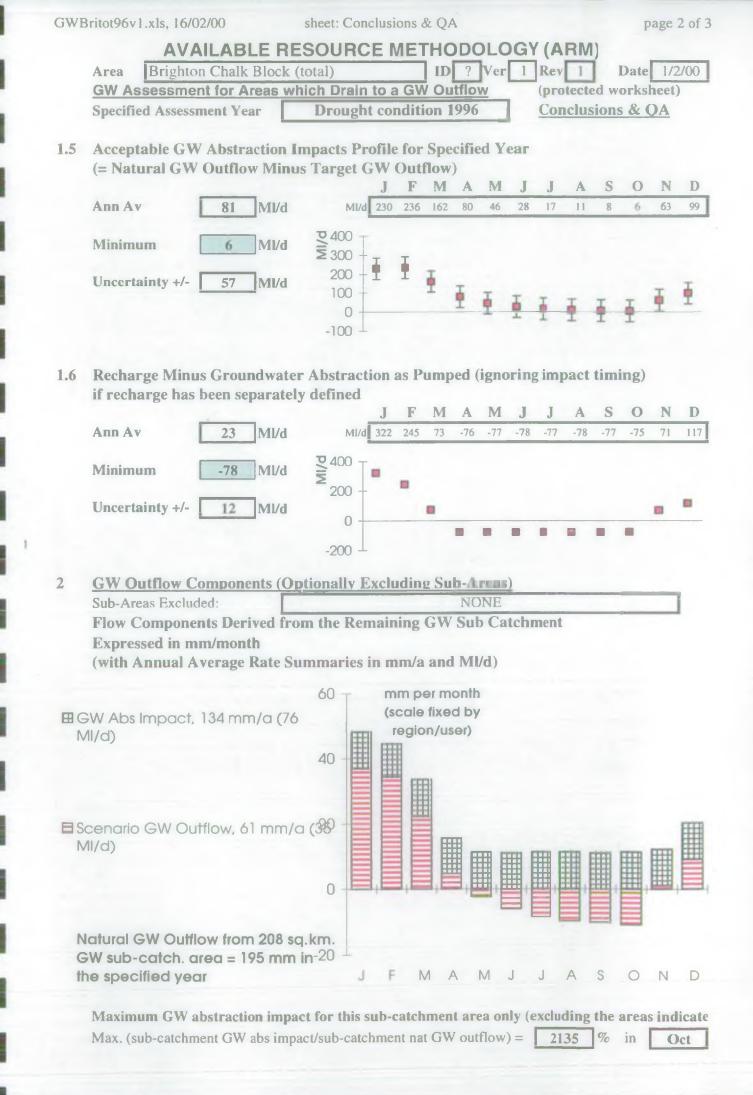
The average abstraction impact rate assumed for 1996 in this version of the assessment is over 20 times larger than minimum estimated monthly outflow in October (i.e. a maximum abstraction impact of 2132%). This results in an estimated maximum 72 Ml/d inflow which, given that abstractions were not drawing in saline water, is considered unreasonable and casts doubt on the adequacy of the calculation assumptions.


In order to reconcile the concept of a rapidly responsive aquifer where winter outflows are considered to be very high and natural summer outflows considerably less than the rate of steady state abstraction, with the observation that saline intrusion did not affect water quality in the boreholes, it is necessary to consider where the storage required to buffer the system might be available. During the months May to October, the main calculation in GWbritot96v1.xls suggest that a total inflow of nearly 10 000 Ml of water occurred. Assuming a Chalk specific yield of 0.01 this volume is equivalent to the water which would be released with a drop in groundwater level of around 4.7 m over the 208 km² area of the Chalk block. Alternatively, assuming a higher storage associated with matrix porosities, as would determine the water released through regional movement of the saline water – fresh water interface, this volume could be generated by a seasonal fluctuation of less than 50 m laterally in this interface. Either of these alternative sources of aquifer storage seem plausible and some element of both may be involved.

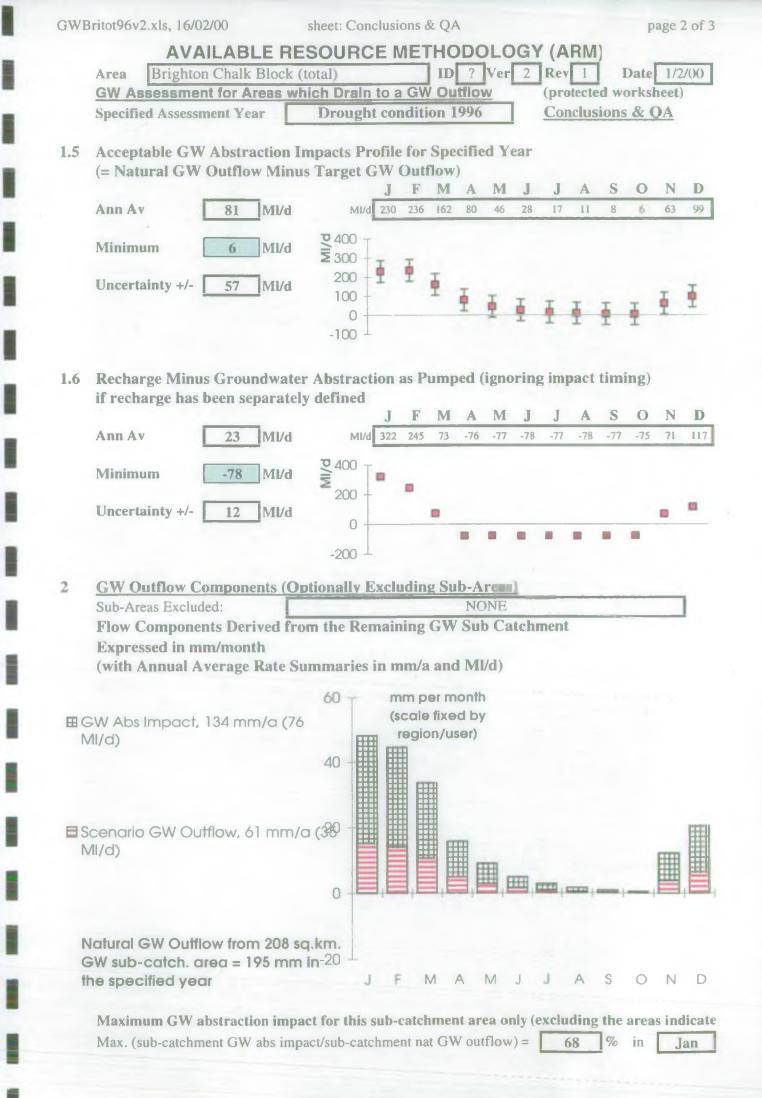

This effectively suggests that during the summer months, and particularly in a drought, borehole abstracted water is drawn from storage in the aquifer system. The abstracted water does not impact natural outflows directly or induce sea water inflow to the boreholes during these months because water is more readily available from aquifer storage. During the wetter months this abstraction related storage has to be replenished. In this way it can be seen that steady state groundwater abstractions have a greater impact on natural outflows during the wetter months of recharge than during the drier months. This is the rationale behind the third 'extreme assumption' for groundwater abstraction impacts described in Section 8.1.

An example of how this assumption can be implemented within the spreadsheets is provided within the GWbritot96v2.xls workbook (first two pages of the 'Conclusions and QA' sheet also follow this Section). The impacts of abstraction have been redistributed through the year according to the estimated natural outflow rate. The annual average impact rate has been set to the average rate abstracted although, during a drought year this is probably a conservative assumption (more water would be drawn from storage during a drought). By copying this impact distribution into the main calculation (at Step 5b) it can be seen that the estimated scenario (i.e. actual) outflows during 1996 remained positive throughout the year. The surplus or deficit profile also remains positive through the year although only by 4 MI/d with large associated uncertainties.

This version of the assessment presents a much more credible picture of the sustainability of the abstractions existing in 1996 which is in line with operational experience. It would support a


precautionary abstraction management strategy which would prohibit further licensing, promote ongoing monitoring of actual groundwater levels and quality and possibly seek abstraction reductions where these would result in local specific benefits. The assessment might also support investment in more sophisticated regional groundwater models in order to reduce the large uncertainties associated with abstraction impacts.

GWBritot96v1.xls, 16/02/00 sheet: Conclusions & QA page 1
AVAILABLE RESOURCE METHODOLOGY (ARM)
Area Brighton Chalk Block (total) ID ? Ver 1 Rev 1 Date 1/2/0
GW Assessment for Areas which Drain to a GW Outflow (protected worksheet)
Specified Assessment Year Drought condition 1996 Conclusions & QA
1 Results Summary for the GW Catchment to the GW Outflow Boundary
results Summary for the GW Catchment to the GW Cathow Boundary
1.1 Natural, Scenario and Target GW Outflows for Specified Year
(with Annual Average Rate Summary)
400
≥ 300 -
🖻 Natural GW Outflow, 111 MI/d 🗧 200
EScenario GW Outflow, 35 MI/d
■Target GW Outflow, 30 MI/d
J F M A M J J A S O N E
Target Flows based on can allow small seasonal fluctuation of saline/freshwater interface
1.2 Scenario GW Abstraction Impacts
(with Annual Average Rate Summary) GW Abs Scenario: Estimated Actual 1996 Rates
Gw Abs Stellario.
GW Abstraction Impact, 76 20 - 20 -
J F M A M J J A S O N I
Maximum GW abstraction impact for total area based on
Max. (GW abs impact/naturalGW Outflow from total area) = 2135 % in Oct
1.3 GW Surplus or Deficit Profile for Specified Year
(= Scenario GW Outflow Minus Target GW Outflow)
J F M A M J J A S O N
Ann Av 5 MI/d 154 159 86 4 -30 -48 -59 -65 -68 -70 -13
Minimum $\overline{}$ MI/d $\stackrel{300}{\underset{200}{1}}$
$\frac{1}{100} + \frac{1}{100} + \frac{1}$
Uncertainty +/- 42 Ml/d 0
-200 -200
GW Surplus or Deficit as % of Natural GW Outflow Ann Av 5% Min <-100%
1.4 Interpreted Sustainability Status of GW Resource Management for the Area
GW Sustainability Status Category:


Comments : This version of the assessment does not reflect operational experience, probably because GWABS impact assumptions are wrong. See GWbritot96v2.xls which is more credible.

GWE	Britot96v2.xls, 16/02/00 sheet: Conclusions & QA page 1 of
	AVAILABLE RESOURCE METHODOLOGY (ARM)
	AreaBrighton Chalk Block (total)ID?Ver2Rev1Date1/2/00GW Assessment for Areas which Drain to a GW Outflow(protected worksheet)
	Specified Assessment Year Drought condition 1996 Conclusions & OA
1	Result Summary for the GW Catchment to the GW Outflow Boundary
1.1	Natural, Scenario and Target GW Outflows for Specified Year
	(with Annual Average Rate Summary)
	≥ 300 II I
M	Natural GW Outflow, 111 MI/d 200 -
P	Scenario GW Outflow, 35 MI/d
-	Target GW Outflow, 30 MI/d J F M A M J J A S O N D
	Target Flows based on can allow small seasonal fluctuation of saline/freshwater interface Le. small inflow in summer
1.2	Scenario GW Abstraction Impacts
	(with Annual Average Rate Summary)
	GW Abs Scenario: Estimated Actual 1996 Rates
	150 -
	BGW Abstraction Impact, 76
	MI/d 50
	J F M A M J J A S O N D
	Maximum GW abstraction impact for total area based on
	Max. (GW abs impact/naturalGW Outflow from total area) = 68 % in Jan
1.3	GW Surplus or Deficit Profile for Specified Year
	(= Scenario GW Outflow Minus Target GW Outflow) J F M A M J J A S O N I
	J F M A M J J A S O N I Ann Av 5 Ml/d
	Uncertainty +/- 42 MI/d
	Central value of GW Surplus or Deficit as % of Natural GW Outflow Ann Av 5% Min 3%
1.4	Interpreted Sustainability Status of GW Resource Management for the Area
	GW Sustainability Status Category:
	Comments : Not assigned at this trial stage - see discussion in Section 1.3.8 and note in Section 9.1

the User Manual for further information. Step 3 (Management Action) also not complete

.

10. Conclusions from ARM Spreadsheet Trials and Recommendations for Further Consultation

10.1 Applicability of the ARM Spreadsheets

Experience from the ARM trialling process is encouraging with regards to the applicability of the Framework and the spreadsheets to a wide variety of assessments and problems. Adopting the ARM as a Framework should not in itself require any more Agency staff time than would otherwise be required for resource calculations (beyond an initial training requirement) as it merely sets out a recommended order of procedures which should themselves be subject to Agency best practice guidelines. It also provides a consistent focus of assessment on river outflow impacts where possible which are likely to be the principal aspect of management concern.

Following extensive consultation the ARM spreadsheets are now flexible and can accommodate a variety of techniques for each of the calculation steps, including all of those currently in use in the Regions. Furthermore, the spreadsheet reporting style (monthly outflow and surplus or deficit plots), if consistently adopted across the Agency, could arguably save time and effort when compiling regional and national reports.

The ARM spreadsheets are clearly able to combine and present monthly variations in existing water resource balance components, to compare these between areas, and to investigate the implications of target flows in terms of the sustainability status of abstraction management. The representation of natural and artificial flow components as stacked histograms and the simple consideration of the possible uncertainties associated with each component should help to prioritise abstraction management interventions or further investigations.

The trials have shown that the ARM is widely applicable to both surface water and groundwater dominated catchments. Where possible assessments should be focussed on gauged catchments, with groundwater and surface water flows and abstraction impacts considered together and compared against target flows which can be measured. However, the absence of a gauging station does not prohibit the application of the ARM as it can accommodate a variety of approaches to natural flow and impact estimation (microLOWFLOWS, surface water models, groundwater models, the Aquifer Response Function spreadsheet etc.). Similarly the ARM can be applied to groundwater resources separately where this is justified (e.g. confined or coastal aquifers where interaction with rivers is limited) although, as with most other approaches, its conclusions in such areas should be viewed with extreme caution.

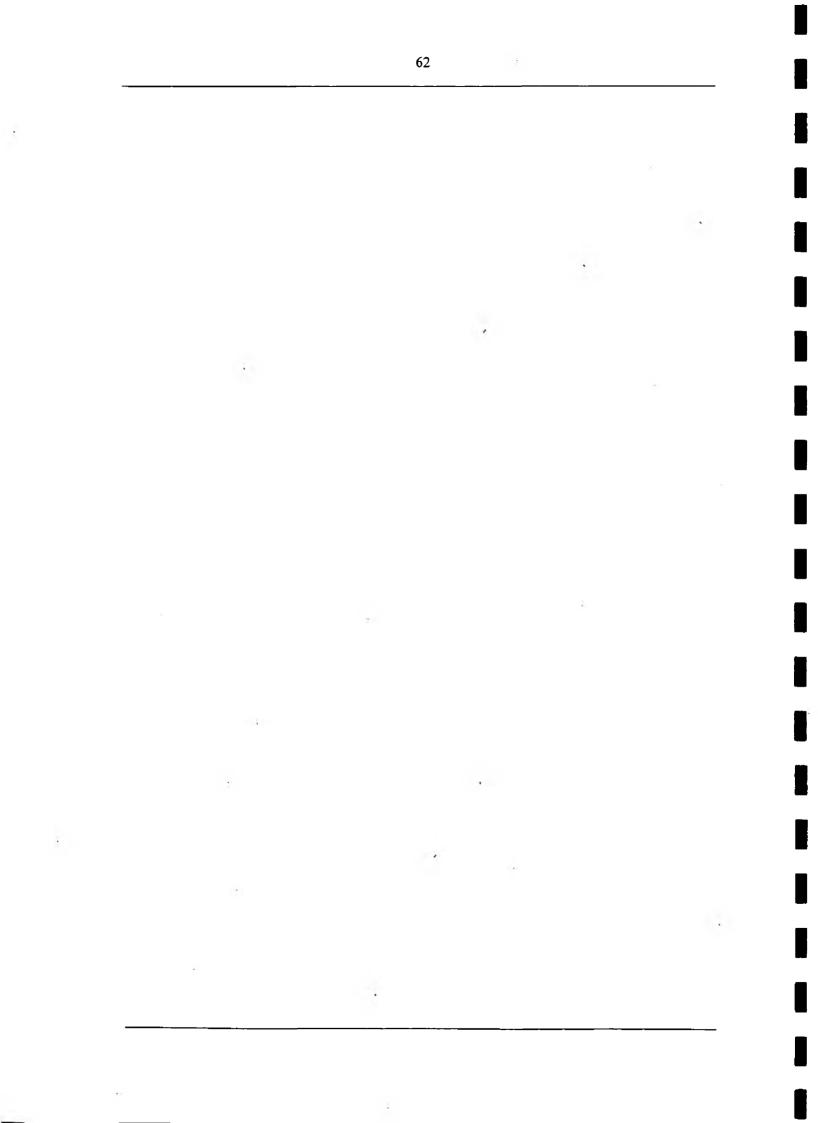
The assessments may be most effectively carried out by the Agency staff who know the area. Data requirements do not appear to be significantly more onerous than the resource assessment approaches already in use in the Regions although estimates of actual abstraction impacts are required where these differ from licensed rates and are a key part of the balance. Data collation time should be reduced by other ongoing initiatives such as implementation of the National Abstraction Licensing Database, the development of national standards for flow naturalisation and the updating of microLOWFLOWS. Spreadsheet data entry and analysis of the resource balance for each of the ARM assessment areas in the LTAV and one specific year is expected to take an experienced user between one and three days depending on how critical the balance is. More time and wider consultation may be required to establish appropriate target flows (including consideration of downstream needs), and to define and represent the initial conceptual understanding.

ARM assessments are most straightforward and are probably associated with the least uncertainty when focussed on reliably gauged river flows. This has implications with regards to the preferred delineation of assessment 'areas as the combined (but not necessarily coincident) surface and natural groundwater catchment to a river gauge or between two river gauges. In groundwater dominated areas the Agency's existing groundwater management units may not be defined in this way so that trial results may not be directly comparable with current resource estimates. The sub-division of a catchment into sub-areas for ARM assessment also requires careful consideration and may be based on either perceived changes in the characteristics of the catchment or in the environmental sensitivity of river flows. The size of the catchments assessed in these trials varies considerably although this may be justified by differences between the current levels of abstraction stress and environmental concern. The additional representation in the spreadsheets of monthly flow balances as mm/month (by dividing by the surface catchment area) facilitates resource comparison regardless of catchment size across the country. It also enables easier comparison with previous resource estimates which may have been derived from effective rainfall or recharge calculations.

The key issues to ensure consistency in gauged river assessments are firstly that these flows are naturalised according to nationally accepted Agency guidelines and secondly that the target flows can be justified through the consultative process both between internal Agency functions and with interested parties and the public.

The most problematic elements of the naturalisation process are likely to be the estimation of the impacts of groundwater abstraction, surface reservoirs and river support boreholes on river flows. However the effort invested in resolving these issues can be considered pragmatically in the light of their significance to the overall water balance. Conservative assumptions based on licensed groundwater rates have been readily applied to the Teifi catchment whereas the timing of groundwater abstraction impacts are much more critical to the Anglian and South West Region trial areas (a criticality demonstrated by efforts to construct and use groundwater flow models in both cases).

The surplus and deficit profiles which are a key output from the ARM process are critically dependent on the target flows. As for flow naturalisation, the ARM does not prescribe how these should be set - this has been the subject of extensive previous research (e.g. SWALP) and intensive current debate. The option of defining targets on the basis of a minimum flow and an acceptable abstraction % of natural flows above this minimum may be helpful to ensure that the targets are 'reasonable' for any specified assessment year.


Whilst the presentation of the average surplus or deficit from the profile as a percentage of the total resource is helpful for comparative purposes and to inform the interpretation of sustainability status proposed in Section 1.3.8, it is also essential to quote the minimum surplus as this more closely reflects the groundwater resource position.

As with other approaches, application of the ARM to assessment areas with ungauged river outflows or unmeasurable groundwater outflows is likely to be less reliable and more involved, particularly for drift covered aquifers like the Fylde. In such aquifers abstraction may induce further leakage from the overlying Drift so that the basic premise of a natural resource impacted by abstraction (upon which the ARM depends) may not be valid. Target groundwater outflows will also be difficult to determine and should be associated with large uncertainties. In this case the ARM spreadsheets may only offer a consistent reporting format. Practical abstraction management should lean strongly towards the precautionary principle with particular dependence on time limited licences and controls based on groundwater level or quality monitoring.

10.2 Recommendations for Further Consultation

The ARM Framework and spreadsheets described in this User Manual evolved over 18 months of regular discussions and trials involving Agency staff from a variety of groundwater and surface water backgrounds in National Centre, Regional and Area offices and in intensive workshops. This should perhaps be regarded as a first stage in consultation leading to the development and acceptance of a nationally consistent Framework for resource and sustainability consideration and representation.

The next stage of development should concentrate on the clear dissemination of the ideas presented and on wider consultation and discussion. This should include other Agency staff and also the key stakeholders, particularly water companies and environmental groups, whose understanding and acceptance of the Framework approach is essential if it is to become widely adopted.

11. Bibliography

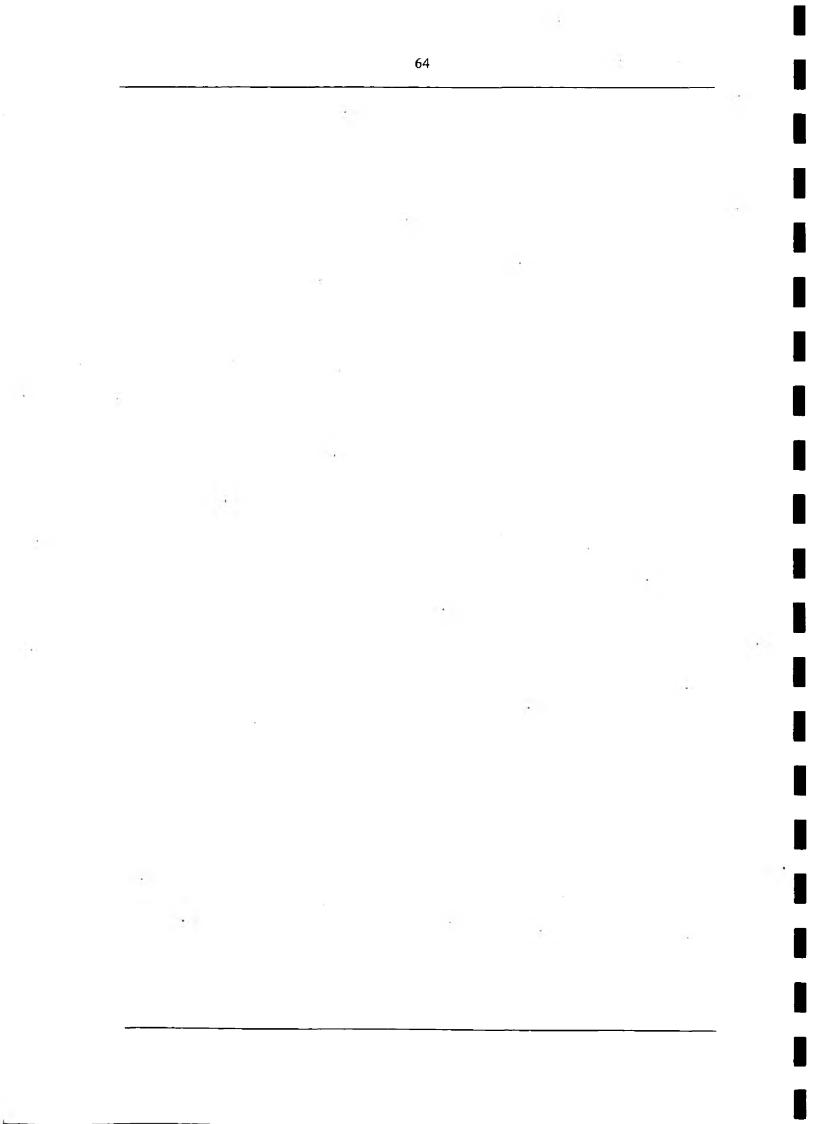
Institute of Hydrology Report No. 108, 1992. Low Flow Estimation in the United Kingdom. A Gustard, A Bullock and J M Dixon.

Environment Agency R& D Note 274, 1994. Low Flow Estimation in Artificially Influenced Catchments. A Bullock, A Gustard, K Irving, A Sekulin and A Young, Institute of Hydrology.

Environment Agency R& D Note 448, 1995. Predicting Artificially Influenced Flow Statistics Using Micro LOW FLOWS v2.0. G Watts, R Grew, S Cook, A Scrivens and A Young, Institute of Hydrology.

Environment Agency R& D Note 351. Revised SWK Methodology Assessment of Low Flow Conditions Caused by Abstraction:Report. Hydro-Logic Ltd & Water Management Consultants.

Environment Agency R& D Note 438, 1995. Surface Water Abstraction Licensing Policy Development: Core Report. Sir William Halcrow & Partners Ltd.


Environment Agency, 1997. Surface Water Abstraction Licensing (SWALP): Guidance for the Application for Proposed Methodology, Working Draft: Version 1.1. A Kirmond and I Barker

Environment Agency Technical Report W9, 1997. Groundwater Resource Reliable Yield: User Manual. A Papaioannou and A D Erskine, Entec UK Ltd.

Environment Agency Technical Report W10, 1997. Groundwater Resource Reliable Yield: Key Components in Methodology Formulation. A Papaioannou and A D Erskine, Entec UK Ltd.

Environment Agency NGCLC ProjectNC/06/28, 1999. The Impact of Groundwater Abstractions on River Flows

Erskine, A D and Papaioannou A, 1997. "The Use of Aquifer Response Rate in the Assessment of Groundwater Resources". Journal of Hydrology, 202 pp 373-391-----

Appendix A Software (Blank Spreadsheet Templates and Worked Examples on Disc)

1 Disc and Copyright/Liability Label

COPYRIGHT & LIABILITY LABELLING FOR 'ARM' PROJECT DELIVERABLES

These spreadsheets (and accompanying report and user guide) were produced under the National Groundwater and Contaminated Land Centre (NGWCLC) project 'Available Resource Methodology' (NC/99/68), 2000, by the Environment Agency and ENTEC, Shrewsbury, England.

These spreadsheets should be used in conjunction with the accompanying user guide to help ensure their appropriate application. Enquiries about these spreadsheets and accompanying reports and user guide should be made to the NGWCLC of the Environment Agency, Tel. 0121 711 5885.

We do not promise that the spreadsheets will provide any particular facilities or functions. You must ensure that the spreadsheets meet your needs. You are entirely responsible for the consequences of any use of the spreadsheets, we give you no warranty about the fitness for purpose or performance of any part of the spreadsheets. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error-free. You should carry out all necessary virus checks prior to loading on your computing system.

Environment Agency 2000

All rights reserved. No part of these spreadsheets may be reproduced, stored or transmitted, in any form or by any means without the prior permission of the Environment Agency.

Appendix B Hardcopies of Worked Example Spreadsheets

RIVER THET LONG TERM AVERAGE TRIAL ARM SPREADSHEET

RIVthetmellta.xls (including Conceptual understanding sheet): 12 pages

	ivThetmellta.xls, 16/02/00	Sheet. Concepte	al Understandin	lg		page 1 of 3
	AVAILABLE	RESOURC	E METHOD	•	•	
	Conceptual Understanding				(unprotected	
	Area R Thet at Melford Bridge GS	ID?	Version l	Ledger Rev	1 Date	19/8/99
	Area Definition Doundaries and	Su-fees Drain				
	Area Definition, Boundaries and Draw on the attached sheet, a simp		-	features traced.	rom a man -	1 11
	Show/label the following features (•		ies, SW catchm	•	·c
	GW contours & catchment bounda					•
	the coast, rivers flowing in and out	•	•		-	
•	location of major SW discharges a				-	
	j					
	Geology of the Area and Schema			Bedrock	Drif	
	Main geological formation: Chalk		Тур		or	(tick)
	Is this an aquifer - is GW a signific	•	ydrological cycl	le? (Y/N)	Y (if)	√, go to 5)
	Underlying solid geology in Area:	Chalk			_	
	Overlying solid or drift geology in	••	50% area overl		•	
	If appropriate: Draw on the att	ached sheet a sc	hematic geologi	cal cross section	n(s) through t	he area.
	Groundwater Recharge and Inte	raction betwee	n Groundwater	and Surface V	Vater	
	Aquifer Condition: Confined		Unconfined		xed y	
	if confined, by what? c				•	
		-				
	Recharge: Relevant processes		Direct recharg	ge:		Y
	(please tick):			leakage/runoff-r	echarge:	Y
			'Urban' leakag	-		Ν
			-	e reduction & si	•	Y
	Recharge occurs over			Part of the Are	a: Y	
	If only part, which p		rough boulder c	lay		
		overbu	rden			
	A suifer Descence to Deshause (i	- worda).	1100 5 500	ison month	wool: d	<u></u>
	Aquifer Response to Recharge (in please tick according to you		•		week d	ay
	Groundwater - River Interaction	-	poorly.conned	y cted	- well conne	ected -
	please tick according to you		• •		V V	
	please liek according to you	r conceptuar ree	baseflow inde	pendent b	aseflow deper	ident
	riv	er flows are nov		-	Y	
			baseflow inde	ependent ba	aseflow deper	ndent
	'natu	rally' rivers wer		•	Ý	
	If appropriate: Mark recharge	and discharge ar	eas and 'losing/g	gaining' river rea	aches	
	on the conceptu	al sketch plan.	Add GW-SW co	ncepts to sketch	ed cross secti	on(s)
ļ	Hydrogeological Boundaries and			V		
	Are there significant groundwater f	lows into or out	of the Area:	Yes:	No:	N
	ahaw an akatah nian fu saatiar	and describe	Possibly	come flour to T	hat or Sanista	
	show on sketch plan & section	i anu descride	russidiy	some flow to T	recor Sapisto	
	Are there hydrogeological flow bar	Tiers or Transm	issivity variation	ns: Yes V	No:	
	The mere hydrogeological now bal		issivity variation	15. I 65. A	1.0.	
	show on sketch plan & section	and describe	Chalk ha	s very variable	Т	
	show on sketch plan de section					
	Does water quality constrain abstra	ction (eg saline	intrusion etc):	Yes:	No:	N
			/ -			
	show on sketch plan & section	n and describe				
					5. C.	
					· · ·	

-

. .

-

page 2 of 3

	RESOUI	RCEN	IETHO	DOLO	•	(M) nprotected worksheet)
Area R Thet at Melford Bridge GS	IÐ	? V	ersion	Ledg		Date 19/8/99
		mental falling	Concerns steady	rising	mixed	comment/data source No Data
River flows:						No Data
GW abstraction:						No Data
SW abstraction:						No Data
Trends Evident from 1970 to Pres Groundwater levels:	sent .	falling	steady	rising	mixed	No Data
River flows:		Y				Table 2. L/O WRM, 199
GW abstraction:				Y		Returns
SW abstraction:				Y		Returns
GW abs > SW dis > Are there any other artificial influer Great Ouse Groundw	SW abs alth nces on the vater Schem	nough su catchme le drougi	mmer SW nt? (e.g. re	abs are : servoirs	significant , bulk ⁻ trans	
Please summarise rive	er flows Y	w	etlands Y		salinity	other
			nd falling i	egional	groundwate	er levels.
Please List: 1993 Little Ouse Wa	ter Resourc	es repor	•			
÷						
	-		nt now:			
5°						
	Conceptual Understanding Area R Thet at Melford Bridge GS Observed Hydrological Trends at Perceived Trends from 'Natural' Groundwater levels: River flows: GW abstraction: SW abstraction: Trends Evident from 1970 to Pres Groundwater levels: River flows: GW abstraction: SW abstraction: SW abstraction: SW abstraction: SW abstraction: Relative Magnitude of Current A Please rank by magnitude SW disch GW abs > SW dis > 1 Are there any other artificial influer Great Ouse Groundw Ely Ouse to Essex Th Water Resources Environmental Please summarise rive Please explain: Perceived low flow p Causing derogation t Previous Studies and Reason for Please List: 1993 Little Ouse Wa 1998 Ely-Ouse Envir	Conceptual Understanding Area R Thet at Melford Bridge GSIDArea R Thet at Melford Bridge GSIDObserved Hydrological Trends and Environ Perceived Trends from 'Natural' to 1970 Groundwater levels:River flows:GW abstraction:SW abstraction:SW abstraction:Trends Evident from 1970 to Present Groundwater levels:River flows:GW abstraction:SW abstraction:Please rank by magnitude of Current Artificial Int Please rank by magnitude SW discharges, GW GW abs > SW dis > SW abs alt Are there any other artificial influences on the Great Ouse Groundwater Schem Ely Ouse to Essex Transfer Schem Ely Ouse Environmental Concerns Please explain: Perceived low flow problems in Causing derogation to WetlandsPrevious Studies and Reason for this Assess Please List: 1993 Little Ouse Water Resourc 1998 Ely-Ouse Environmental Concerns 1998 Ely-Ouse Environmental Concerns	Conceptual Understanding Area R Thet at Melford Bridge GS ID ? V Observed Hydrological Trends and Environmental Perceived Trends from 'Natural' to 1970 falling Groundwater levels: River flows: ID ? V GW abstraction: SW abstraction: Y GW abstraction: Y GW abstraction: Y GW abstraction: Y GW abstraction: Y SW abstraction: SW abstraction: Y GW abstraction: Y GW abstraction: Y GW abstraction: GW abs > SW dis > SW abs although su Are there any other artificial influences on the catchme Great Ouse Groundwater Scheme droug Ely Ouse to Essex Transfer Scheme Y Water Resources Environmental Concerns Please summarise river flows Y W Please explain: Perceived low flow problems in rivers at Causing derogation to Wetlands Previous Studies and Reason for this Assessment Please List: 1993 Little Ouse Water Resources report 1998 Ely-Ouse Environmental Overview <	Conceptual UnderstandingArea R Thet at Metford Bridge GSID?Version IObserved Hydrological Trends and Environmental Concerns Perceived Trends from 'Natural' to 1970fallingsteadyGroundwater levels:River flows:GW abstraction:SW abstraction:Groundwater levels:River flows:GW abstraction:SW abstraction:GW abstraction:SW abstraction:GW abstraction:SW abstraction:GW abstraction:SW abstraction:GW abstraction:SW abstraction:GW abs > SW dis > SW dis > SW abs although summer SWAre there any other artificial influences on the catchment? (e.g. ro Great Ouse Groundwater Scheme drought river su Ely Ouse to Essex Transfer SchemePlease summariseriver flows Ywetlands Y.Please explain: Perceived low flow problems in rivers and falling t Causing derogation to Wetlands<	Conceptual Understanding Area R Thet at Melford Bridge GS ID ? Version 1 Ledg Observed Hydrological Trends and Environmental Concerns Perceived Trends from 'Natural' to 1970 falling steady rising Groundwater levels: River flows: GW steady rising GW abstraction: SW abstraction: SW abstraction: rising Trends Evident from 1970 to Present falling steady rising Groundwater levels: Y GW abstraction: Y SW abstraction: Y Y SW abstraction: Y GW abstraction: Y Y SW abstraction: Y SW abstraction: Y Y SW abstraction: Y Relative Magnitude of Current Artificial Influences Please rank by magnitude SW discharges, GW abstraction and SW abstration and Ely Ouse to Essex Transfer Scheme Water Resources Environmental Concerns Please summarise river flows Y wetlands Y Please explain: Perceived low flow problems in rivers and falling regional particular discoverses report by Julie Barker - 1 1998 Ely-Ouse Environmental Overview (data behind 1995) Please L	Area R Thet at Metford Bridge GS ID ? Version 1 Ledger Rev 1 Observed Hydrological Trends and Environmental Concerns Perceived Trends from 'Natural' to 1970 falling steady rising mixed Groundwater levels: River flows: GW abstraction: SW steady rising mixed GW abstraction: SW abstraction: Frends Evident from 1970 to Present falling steady rising mixed Groundwater levels: River flows: Y Y GW abstraction: Y River flows: Y GW abstraction: Y Y SW abstraction: Y SW abstraction: Y Y SW abstraction: Y Y Relative Magnitude of Current Artificial Influences Please rank by magnitude SW discharges, GW abstraction and SW abstraction GW abs > SW dis > SW abs atthough summer SW abs are significant Are there any other artificial influences on the catchment? (e.g. reservoirs, bulk trans Great Ouse Groundwater Scheme drought river support and supply for Ely Ouse to Essex Transfer Scheme Water Resources Environmental Concerns Please summarise Please river flows Y wetlands Y salinity Please explain: Perceived low flow problems in rivers and falling regional ground

RivThetmellta.xls, 16/02/00 sheet: Conceptual Understanding AVAILABLE RESOURCE METHODOLOGY (ARM) **Conceptual Understanding** (unprotected worksheet) Area R Thet at Melford Bridge GS ID ? Version 1 Ledger Rev 1 Date 19/8/99 Conceptual sketch plan (hand sketch or import as windows metafile) see Figure 9.2 of User Manual Assessment Area is SW and GW catcment of R Thet to Melford Br GS Schematic conceptual sketch cross-section(s) (hand sketch or import as windows metafile)

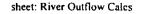
END OF SHEET

	RivThetmellta.xls, 16/02/00	shee	et: River C	Dutflow Cale	s						page: 1	of 6	
		AILABLE RESOUR					/)				page		
	Assessment for Areas which Drain				.001		,	rotected	worksh	eet)		14	
	Area R Thet at Melford Bridg		?	Version		ledger			Date	19/8	/99	I	
									-				
1.0	0 Surface Water Catchment Area Surface catchment area to river outflow p	pint assessed = 3	16 sq.	km.	Based	l on:	ih hydro	metric reg	ister, 9	1-95			
2.0	Ycar or Hydrological Scenario of Asses The ycar specified for this assessment is	sment L T Average Year (197	'0- 19 90)	Basis for	selectior	ofthis	year	ltav c	omparis	ion			
3.0	 Natural River Flows in Specified Year (Enter the monthly averaged natural river 1 a. Gauged Flow Naturalisation (use the b. Effective Rainfall Based Aquifer Res c. MicroLOWFLOWS for average year d. An Alternative Method e.g. Standard Compare these different estimates, adjust 	Nows for the assessment yea 'Gauge' workbook & refer to ponse Function Calculation: Nows (please reference calculation) Hydrological Approaches, 1	ar, and an a to Agency is (use the foulation) River or C	associated % national gui 'ARF' workl Groundwater	delines), book) Flow M	odel (pl	ease ref	erence me	thod &	calculati			
	Methods and Calculation References	Select One		Monthly	Av. Nat	ural Ri	iver Flo	w in Spec	ified Y	ear. Ml/c	ł		%
-		type 'x'	Av Mi	in_ J ්i	M	А	М	i i	Α	S C	N	D	Еπ.
а. b.	Gauge Sheet Results ref: Gaugethe ARF Sheet Results ref: ARFtheti		170 72 148 56	-		226 47		30 96 66 58	82 62	72 10 56 12		197 228	6 10
с.	MicroLOWFLOWS ref: Example	only for plot MVd	120 22			176		80 46	32	22 5		147	8
d.	GW Model (example only) ref: Example	only for plot Mi/a	123 31	300 20	3 190	122	62	41 33	37	31 94	156	203	4
			400 -										
	Gauge	d Flow Nat Calcs		4									
		n Based ARF Calcs	300	200	~	•						-	
			200	- ¥-		20	-			~	1	2	
		.OWFLOWS	100			1		-	8-1		-		
		lodel (example only)	0 1						<u> </u>	-	25 3		
			,	,	4 4	м	1	1 ^	3	U	N	U	
	Selected	Method		Selected	Natural	River I	Flow in	Specified	Year.	Mil/d			MI/d
			Av Mi			Α		1 1	A	S O	N	D	Err+/-
	Natural River Flow, 170 M	Flow Nat Calcs	170 72	278 2	0 259	226	168 1	30 96	82	72 10	1 143	197	10
	Annual Equivalent Effective Rainfall		400	T		1980		and a second second	· · ·	•	7		
	over SW Catchment	tural River Flow,	300										
		0 MI/d Av.	200	-			<u>1</u>	. 77.					
			100	1									
			0			با ز احسبا م	صارغ السبب		• • •		44444	D	
•				.) F.	M	A	M ·)	-·]	A	's o	N	D	
4.0) Natural River Baseflows in Specified Y												
	If a separate estimate of groundwater reso a. Baseflow Separation of Total Flow F					baseflo	ws, base	ed on one o	or more	of the fo	llowing:		
	b. Effective Rainfall Based Aquifer Res	ponse Function Calculation	s (use the	'ARF' workl	ook)								
	c. An Alternative Method e.g. Standard												
	Compare these different estimates and, co Method and Calculation Reference	Select One	low select					seflow in S					%
		type 'x'	Av Mi			Α	м	1 1	A	S 0		D	Err.
а. в. b.	Baseflow Separation ref: E.g. 70% ARF Sheet Results ref: ARFtheu	gauge nat flow MVd melita.xis x MVd	119 51 66 51			158 76		91 67 61 57	57 54	51 75		138 67	15 10
с.	GW Model (example only) ref: example			_		73		24 20	22	18 60		122	15
J													
	Bacofic	w Separation	250										
		W Separation	200	20	~								
	Eff Rai	in Based ARF Calcs	150	×	-* .	0	-				1	2	
•		ladal (avammlat-)	50	<u> </u>	*	-			a		4	-	
		lodel (example only)	0			*		*	× ;				
s)	F	M A	M	1) .	s	0	N	0	
			- • •			- · - ·							
-	(1995) (1997)	14 *											
						1							• • • • • • •
									÷.				
							4.4.9.4		••••				
												5.1	

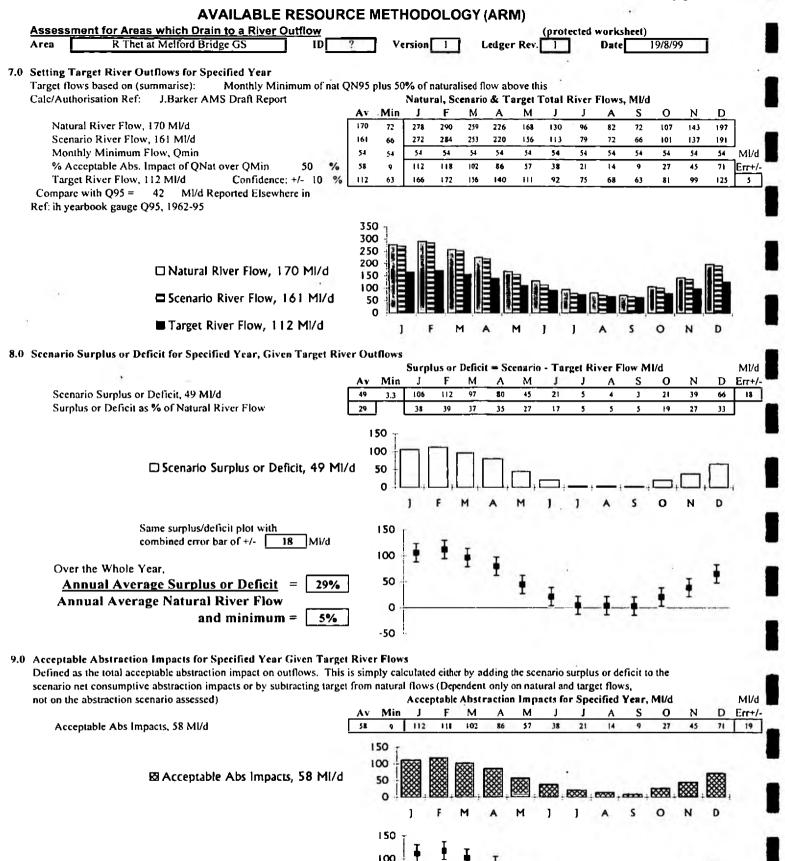
•

page: 2 of 6

1


	AVAILABLI	Outflow		10.000	-		•	(pre	stected						
	Area R Thet at Melford Bridge GS Selected Method		1	Versio			.edger			Date	<u> </u>	19/8/99	-		
		E Calas	Av	Min J	F	M	A	ow in Spe M J	J	Α	S	0	N	D	MI/d Err+/-
	Eff Rain Based AR Implied Surface Rur		66 104	51 79 22 199		80 179	76 150	68 61 100 68		54 28	\$1 22	54 53	60 83	67 1 30	
	Annual Equivalent Recharge over SW Catchment is 76 mm/a IN Atural Su IN Atural Ba IN Atural Ri	seflow	30		NUMBER OF STREET	M			, 62 ,	A A	<u>द्वाह</u> ्य. s	0		D	
5.0	Impacts of Consumptive Abstraction and Dischar Abstraction rates should be locally consumptive (i.e.				-										. 1
5.1	Public water supply abstractions should be locally consumptive (i.e. Public water supply abstractions should be considere are accounted for separately. Surface water abstracti abstraction impacts on the river are entered separately In this scenario the pumping rates used to derive the (e.g.full licensed 1999 rates/deployable output/actual Scenario Surface Water Abstraction Impacts on F Year 1993 licenced Calcs in: natcalsLT/	d as fully cons ons and discha y as they may (impacts of SW 1999 rates) River Flows in	umptive rges are differ fre abs/GW Specifi	e because so assumed t om the pun Vabs/SWdis ied Year licenses pr	ewage (o impa- nped pr s are ba ofiled a	reatmen et on riv ofile bed sed on (j License is per Ai	it work er outf cause o please d 1993 nglian	s or transf lows as th of groundy describe / B Rates (N naturalisa	ey pum vater sto Assumed Io Resti tion gui	p. Gro prage c d Abst riction deline	hanges raction s)	s. Scena	rio)		I
	Data compilation & calculation imply		Ann A		nsumpt F	t <mark>ive SW</mark> M	Abs I A	mpacts of M J	n River J	Flows	s, MI/d S	0	N	D	MI/d Err+/-
	level of confidence in this data set is +/- 10 %		3]миа о 15	0	0	0	6 11	10	4	0	0	0	0	0
		SW A		10 - 5 -	·	·				S S					
				1	F	м	A	M J	1	A	s	0	N	D	
	Scenario Groundwater Abstraction Impacts on Ra. Scenario Groundwater Abstraction in the MorYearest actualCales in: natcalsLTAData compilation & calculation imply av.level of confidence in this data set is +/-10 %	th of Pumpin	g	low ignorir Coi				profile * raction, N M J 12 17		factor A 10	S 5	0 5	N 5	D ↓ [MI/d Err+/-
		⊠ Consur GW A									200				
]	F	M	A	M])]	A	S	0	N	D	
5.2	b. Scenario Groundwater Abstraction Impacts on Impact Calcs Assumptions & reference: assuming f			state impac		ive CN	/ Abe I	monete o	- Diver	Flow					
	Data compilation & calculation imply av.		Ann A	v J	F	M	A	mpacts o M J	u Kivei J	A	S, MIZ	0	N	D	MI/d Err+/-
	level of confidence in this data set is +/- 15 %	₿GW								-			8		
		Imp		s 0		, III .,					, Ⅲ	▦,	. ,	▦,	
5.3	Scenario Surface Water Discharges Impacts on R Include all sewage treatment works discharges or riv Year 1993 Calcs in: Taken fror	er suppo <mark>n</mark> disc	harges	to the river 993	-		_			A rate o	S n est. C	O DWFs	N	D	I
	Data compilation & calculation imply av. level of confidence in this data set is +/- 20 %		Ann A		Dis Im F 2	M 2	on Rive A 2	er Flows, M J 2 2	M1/d J 2	A 2	S 2	O 2	N 2	D 2 [Mi/d Err+/-
		OD SW D Impac			F	Ш. м	₩.,[Ш. м))	Ш. 	s.	0	Ш. N	Ш., D	
	ed.														

<u>Ass</u> es	sment for Areas which Drain	AILABLE RESOU to a River Outflow				· ·	(protecte	d workshe	et)	
Area	R Thet at Melford Bridg		?	Version	<u></u> . !	Ledger Rev		Date	19/8/99	
C			о. г.							
Summa	ary of Scenario Abstraction and	Discharges impacts on	KIVER FIDE				is Impacts o	n River F	lows, MI/d	
			Ann Av	1	F M	A M	J J		S O	N D
G١	V Abs Impact, 8 MI/d		8	1Vd 8	8 8	8 1	8 8	8	88	8 8
	V Abs Impact, 3 MI/d			11/1 0	00.		- 11 - 10		0. 0	0 0
- S	W Dis Impact, -2 MI/d		-2 N	1Vd -2	-2 -2	-2 -2	-2 .2	-2	-2 -2	-2 -2
			20	Т						
	•						田田			
	<i></i>		15	-			田田			
	-						田田	° mm * ·	÷	
			_ 10	-						
			P/IW	BHH B		⊞ ⊞				
	🖽 GW Abs Impac	t. 8 MI/d	- 5							
		,								
	SW Abs Impact	. 3 MI/d	0		÷÷			- 🔛 - 🗄	2 <u>-</u> - 2263	** + ** +
		,		um u		ш		шшш		шш
	III - SW Dis Impaci	12 MI/d	-5	1.						
	•	•		1	FM	A M	JJ	A S	0	N D
					_					
Scenar	io Net Consumptive Abstraction	Impacts in Specified Y	ear	Net A	os Impact		Abs Impact 1 + step 5.21			11/d
			Ann Av		F M	A M	-	-	<u>s o</u>	N D
	t Abs Impact, 9 MI/d	0/		41/d 6 % 2	6 6 2 2	6 12 3 7			6 6 8 6	6 6 4 3
Ne	t Abs Impact/Natural River Flow, Maximum Percentage	70						12	4 0	<u> </u>
	Impact = 17 %			20 j						
	T - 1 - 1 - 1 - 1 - 1			15			田田			
	In the month of Jul	🖻 Net Abs Impa	er 0 ML/c	10 -		÷.	田臣	臣		
			ci, 7 1-11/c		田田	田田田	田田田	宮臣	3-23	百百
				0		, co, e.,	1,00,00	L, CCC , CC	a''œı''e	
				1	FM	AM]]	A	5 0	ND
River I	flows for this Artificial Impact S	icenario in Specified Ye	ar	Scena	rio River F	low = Nati	ıral Flow - I	Net Abs In	ipact, MI/c	đ
	•						tep 3 - step	5.5		÷
Sci	enario River Flow, 161 MI/d		Ann Av	1Va 272	F M 284 253	A M 220 (56	113 79		<u>SO</u> 56 101	N D
50			350							
			300]						
			250							
			200		3 8 1	Э				1.200
			150							
	Natural River	Flow, 170 MI/d Av.	100							
			50					Tan		
	Scenario River	r Flow, 161 MI/d	0							
) F	м	AM	3 1	A S	0	N D
										2.7


1.1

.

المتحجة المحاج وتجمعه المحاج

page: 4 of 6

50

0

-50

Same Acceptable Abs Impacts plot with combined error bar of +/- 19 MI/d

sheet: River Outflow Calcs RivThetmellta.xls, 16/02/00 page: 5 of 6 AVAILABLE RESOURCE METHODOLOGY (ARM) Assessment for Areas which Drain to a River Outflow (protected worksheet) R Thet at Melford Bridge GS Ledger Rev. 1 19/8/99 Area t D Version 1 Date Scenario Outflow Composition from Total Catchment in Specified Year 10 F Ann Av Μ Μ S O D N Scenario River Flow, 161 Ml/d 161 MVd 272 284 253 220 156 191 113 79 77 66 101 137 GW Abs Impact, 8 MI/d 8 MVd 8 8 8 . 8 8 8 8 8 8 SW Abs Impact, 3 MI/d 3 MI/d 0 ٥ 0 0 6 н 10 4 D 0 ٥ 0 - SW Dis Impact, -2 MI/d -2 мVd -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 Scenario River Flow - SW Dis, 159 MI/d 159 MUd 270 282 251 718 154 111 77 70 64 99 135 189 Natural River Flows = 170 Ml/d 170 мĽd Surface water catchment area = 316 sq km Licensed 1993 Rates (No Restrictions) 350 300 250 **EIGW** Abs Impact, 8 MI/d 200 SW Abs Impact, 3 MI/d P/IH 150 C Scenario River Flow - SW Dis, 159 MI/d 100 50 □ - SW Dis Impact, -2 MI/d 0 Natural River Flows = 170 Ml/d -50 J F D M A M]] A S 0 N Natural Baseflow (Groundwater Resource) Minus Consumptive GW Abstraction Impact in Specified Year 11 Only plotted if a baseflow has been specified at step 4. Natural Baseflow - Consumptive GW Abs. Impacts, MI/d = step 4 - step 5.3b MI/d F М Ann Av 1 M 0 N D Err+/-Baseflow - GW Abs Impact, 58 MI/d 58 Mi/d 71 73 60 . 54 49 46 43 46 52 59 74 68 . 80 60 40 Baseflow - GW Abs Impact, 58 Ml/d 20 0 F 0 D М A S N J М 1 I A Same Baseflow - GWAbs Impacts plot with 100 combined error bar of +/- 8 Ml/d BÔ Ŧ Į 60 40 20 0

	RivT	hetmellta.xls, 16/02/00	she	et: Riv	ver Ou	tflow	Calcs								ţ	age: 6	i of 6
		AVAILABLE RES	SOUR		NET	ног	DOL	OGY	(AR	M)							
		ment for Areas which Drain to a River Outflo		0	1			-		-	and the second second	tected	work		10/0/		
	Area	R Thet at Melford Bridge GS		?	j v	ersio		1	Leage	er Rev		1	Date		19/8/9	9	1
12	This plot The step the lower Identify t Scer GW SW	Outflow Composition from Sub-Catchment in S expresses the scenario outflow components as mm 10 values from upstream assessment areas can be or sub-catchment only. If no values are pasted in, the the upstream catchments to be excluded from the plan mario River Flow, 0 MI/d Abs Impact, 0 MI/d Abs Impact, 0 MI/d V Dis Impact, 0 MI/d	per mon ombined : plot rep ot:	ath ove I and p	r the s asted 1 s the c Cat	surfac below entire ichme <i>Con</i>	e wate / in ord catchr ints Ex inbine S	er catel der to ment a sclude Step 10	hment a plot the issessed d: NOI 0 value ow Val	area. : outfl I. NE s <i>from</i>	ows fro these of tep 10	om <i>assess</i>					
				(Comb	ined l	Upstre	am SV	V catch	ment	areas =		sq kr	n			
	Sur	face Water Sub-Catchment Area for this plot	316	sq. kr	-												
	Suri	ace water sub-catenment Area for this plot	510	JSQ. KI	п.												
						Cor	npone	nts of	Nat. C	Jutflo	w as m	m/ma	onth ov	ver SV	v sub	catch.	
				Ann T	ot	J	F	M	Α	M	J	1	Α	S	0	N	D
		Catch GW Abs Impact, 9 mm/a		9	mm/a	1	I	I.	1	I	1	1	1	I	1	ł	I
	Sub	Catch SW Abs Impact, 3 mm/a		3	mm/a	0	0	0	0	I.	I.	1	0	0	0	0	0
	Sub	Catch SW Dis Impact, -2 mm/a		-2	mm/s	0	0	0	0	0	0	0	0	0	0	0	0
	Out	flows - Inflows - Sub Catch SW Dis, 186 mm/a		186	mm/a					15	н	8	7	6	10	13	19
		Total Natural Outflow From 316 sq. km. Sub C	atchme	nt = 19	98 mm	n in tl	he Spe	cified	Year								
		Licensed 1993 Rates (No Restrictions)															
_		· · · · · · · · · · · · · · · · · · ·			4												
0	Catchment	s Excluded: NONE															
						111											
					25	Ξ											
							-	-									
						-	-	-	-								
					20	=		-									
						_											E
	EB Sub (Catch GW Abs Impact, 9 mm/a		nonth	15												
	🖾 Sub (Catch SW Abs Impact, 3 mm/a		mm per mo	10 -										Ħ		
	Outf	lows - Inflows - Sub Catch SW Dis, 186 mm.	/a		5 -												
	🗖 Sub 🕬	Catch SW Dis Impact, -2 mm/a		. •	0			IIII									

-5 1

ł

17% in

F

М

A

0

5 4

Ν

s

8

А

12

J

13

17

М J

7

Jul

D

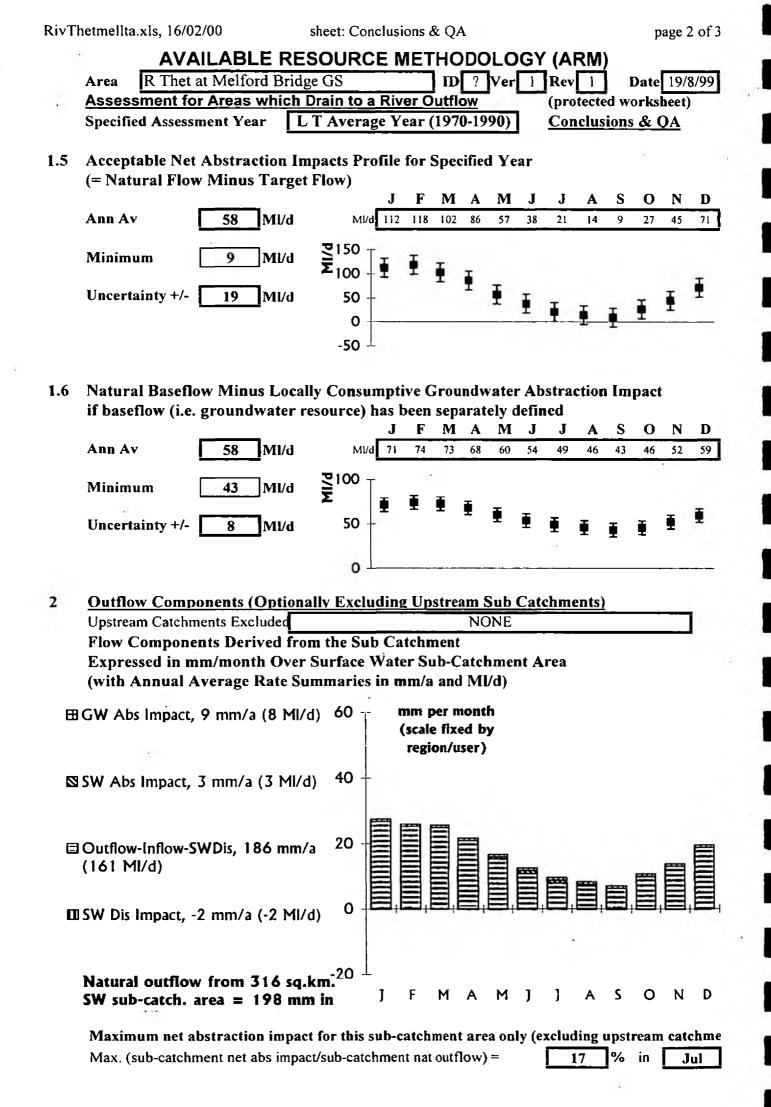
3

Total Natural Outflow From 316 sq. km. Sub Catchment = 198 mm in the Specified Year

% (net abs impact for sub-catchment)/(nat outflow from sub-catchment) = 2 2 2 3 Maximum net abstraction impact for this sub-catchment area only (exluding upstream catchments) Max. (sub-catchment net abs impact/sub-catchment nat outflow) = END OF SHEET

AVAILABLE RESOURCE METHODOLOGY (AF	RM)
Area R Thet at Melford Bridge GS ID ? Ver 1 Rev	
	tected worksheet)
Specified Assessment Year L T Average Year (1970-1990) Con	clusions & OA
1 Results Summary for the Total Catchment to the Outflow Poin	<u>nt</u>
1.1 Natural, Scenario and Target River Flows for Specified Year (with Annual Average Rate Summary)	
3 400	
□ Natural Flow, 170 MI/d 200 1 1 1	
■ Scenario Flow, 161 MI/d 100 -	
□ Target Flow, 112 MI/d □] F M A M]]	ASOND
Target Flows based on Monthly Minimum of nat QN95 plus 50% of naturalised flow above this	
1.2 Scenario Artificial Impacts (with Annual Average Rate Summary) Abs & Dis Scenario: Licensed 1993 Rates (No Restriction	ns)
$\stackrel{\bigvee}{\Sigma} \stackrel{20}{15} \stackrel{10}{15} \stackrel{10}{10} \stackrel{10}{$	
III SW Discharge Impact, -2 MI/d -5	
Net Abstraction Impact, 9 MI/d J F M A M J J	A S O N D
Maximum net abstraction impact for total catchment based on	
Max. (net abs impact/natural river flow from total catchment) = 1	7 % in Jul
1.3 Surplus or Deficit Profile for Specified Year (= Scenario River Flow Minus Target River Flow) J F M A M J J	ASOND
Ann Av 49 Mi/d 106 112 97 80 45 21 5	4 3 21 39 66
Minimum 3 M1/d \ge 150 \pm \pm \pm \pm	-
Uncertainty +/- 18 M1/d 50 $\overline{1}$	<u>I</u> II
-50 Central value of Surplus or Deficit as % of Natural River Flow: Ann Av 29%	Min 5%
- 1.4 -Interpreted Sustainability Status of Resource Management at Outflow Sustainability Status Category:	w Point

.


Comments: Not assigned at this trial stage - see discussion in Section 1.3.8 and note in Section 9.1 of the User Manual for further information. Step 3 (Management Action) also not complete

.

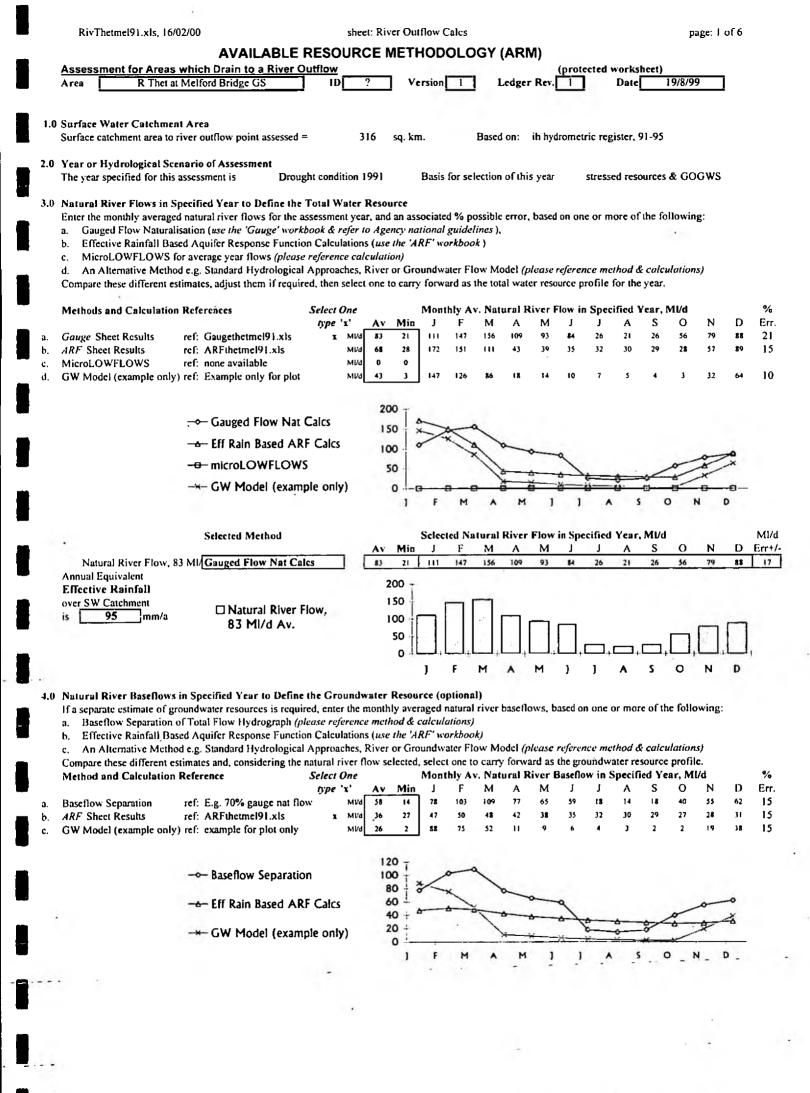
...

. .

2

RivThetmellta.xls, 16/02/00

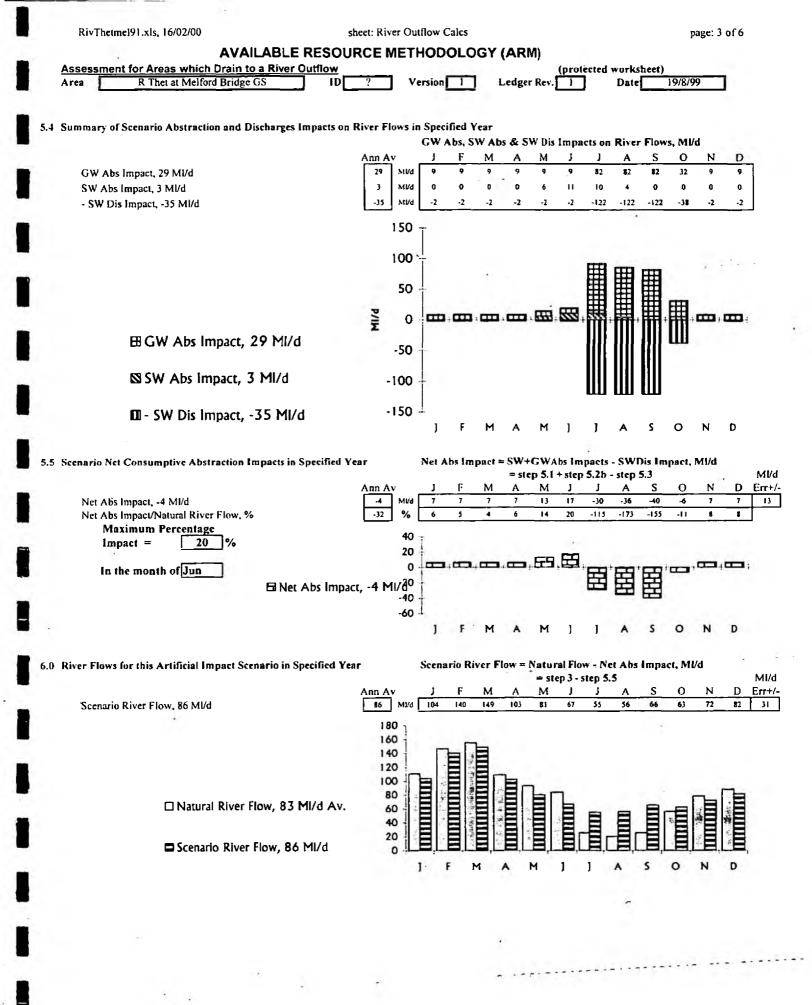
sheet: Conclusions & QA

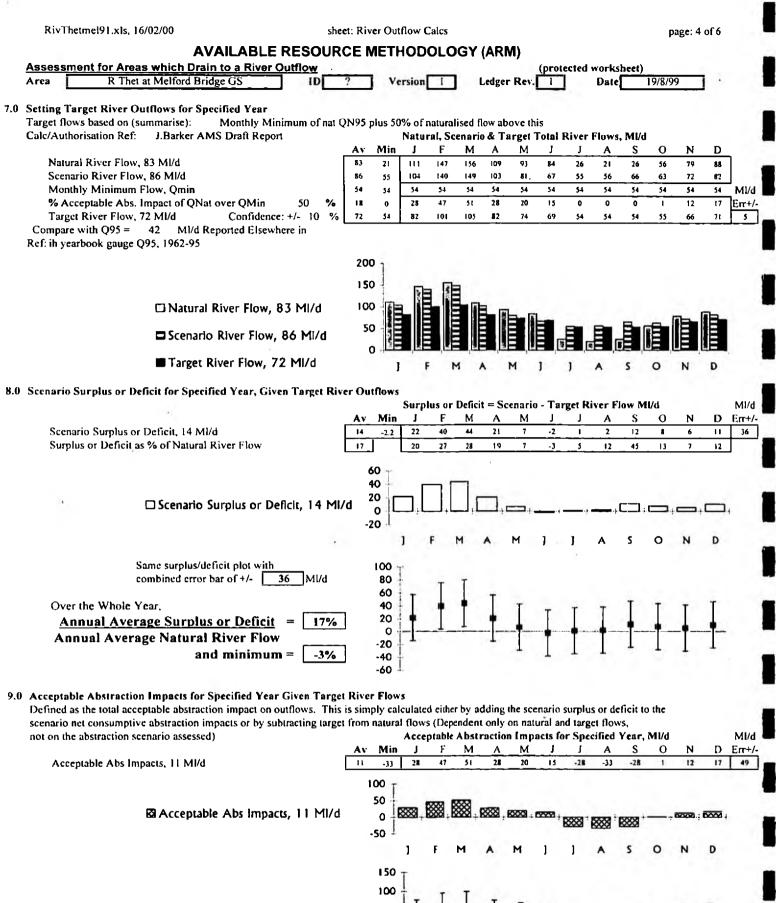

. .

. . .

Assessment for			e Year (1970-1990)	-		worksheet)
Specified Assessme	ent year	L 1 Averag	<u>e Year (1970-1990)</u>		<u>iciusioi</u>	<u>ns & QA</u>
		•				
Interpreted Mar	nagement	Action Rea	uired			
			isideration of other	vears in	other	spreadsheet
3.1 Potential for F	-			youro in	Unit	oproudbilloot
Potential for additio		•	tion impacts		MI/d	(zero if none
Potential for addition	-		-		MI/d	(zero if none
(river flow controlle		•	-		IVII/G	
3.2 Target For Ab						
Overall target for re		-			MI/d d	uring
•		-	ion to meet Flow Tar	aets		ang
•	•	-	ith regular licence revi	-		
(e.g. ennuneed				•••••••••		
QA Authorisatic	on and Ve	ersion Contr	ol			
			_			
4.1 Acceptable Im	pact Asses	sment Review	and Authorisation	·		
4.1 Acceptable Im		sment Review	_	sign		
4.1 Acceptable Im Version: 1	pact Asses Assesse	s ment Review d by:	and Authorisation	sign sign		
4.1 Acceptable Im Version: 1	pact Asses Assesse	s ment Review d by:	and Authorisation G Coombs	1		
4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by	pact Asses Assesse ogeologist d	sment Review d by: & hydrologist):	and Authorisation G Coombs R Soley & J Bloggs	sign		
Version: 1 Reviewed by (hydro Authorised by Any need/plans to	pact Asses Assesse ogeologist d	sment Review d by: & hydrologist):	and Authorisation G Coombs R Soley & J Bloggs	sign		
4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by	pact Asses Assesse ogeologist & reassess re	sment Review d by: & hydrologist):	and Authorisation G Coombs R Soley & J Bloggs	sign		
 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 	pact Asses Assesse ogeologist & reassess re	sment Review d by: & hydrologist):	and Authorisation G Coombs R Soley & J Bloggs J Bloggs	sign sign		
 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 	pact Asses Assesse ogeologist & reassess re	sment Review d by: & hydrologist):	and Authorisation G Coombs R Soley & J Bloggs J Bloggs	sign sign		
 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01 	pact Asses Assesse ogeologist & reassess re method	sment Review d by: & hydrologist): source soon?:	and Authorisation G Coombs R Soley & J Bloggs J Bloggs	sign sign		
 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01 4.2 Abstraction Lo 	opact Asses Assesse ogeologist d reassess re method	sment Review d by: & hydrologist): source soon?: ate Control	and Authorisation G Coombs R Soley & J Bloggs J Bloggs CAMS ??	sign sign		
 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 	pact Asses Assesse ogeologist & reassess re method	sment Review d by: & hydrologist): source soon?:	and Authorisation G Coombs R Soley & J Bloggs J Bloggs	sign sign		
 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01 4.2 Abstraction Lo Ledger rev. no: 	opact Asses Assesse ogeologist & reassess re method edger Upda 0	sment Review d by: & hydrologist): source soon?: ate Control Updated on:	and Authorisation G Coombs R Soley & J Bloggs J Bloggs CAMS ??	sign sign		
 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01 4.2 Abstraction Lo Ledger rev. no: In connection with 1 	opact Asses Assesse ogeologist & reassess re method edger Upda 0	sment Review d by: & hydrologist): source soon?: ate Control Updated on:	and Authorisation G Coombs R Soley & J Bloggs J Bloggs CAMS ??	sign sign		
 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01 4.2 Abstraction Lo Ledger rev. no: In connection with 1 	opact Asses Assesse ogeologist & reassess re method edger Upda 0	sment Review d by: & hydrologist): source soon?: ate Control Updated on:	and Authorisation G Coombs R Soley & J Bloggs J Bloggs CAMS ??	sign sign		
 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01 4.2 Abstraction Lo 	opact Asses Assesse ogeologist & reassess re method edger Upda 0	sment Review d by: & hydrologist): source soon?: ate Control Updated on:	and Authorisation G Coombs R Soley & J Bloggs J Bloggs CAMS ??	sign sign		

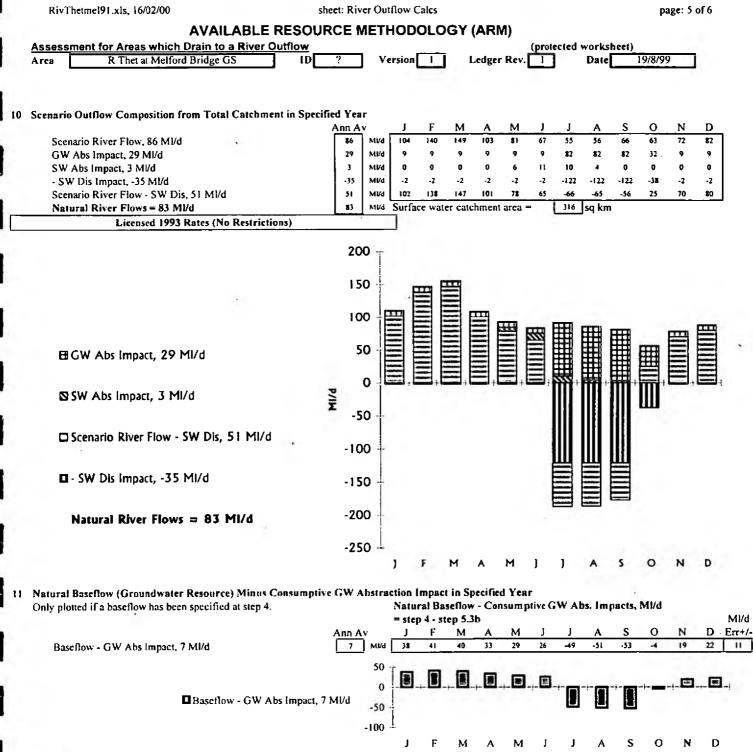
RIVER THET 1991 DROUGHT TRIAL ARM SPREADSHEET


RIVthetmel91.xls (not including Conceptual understanding sheet): 9 pages


.

page: 2 of 6

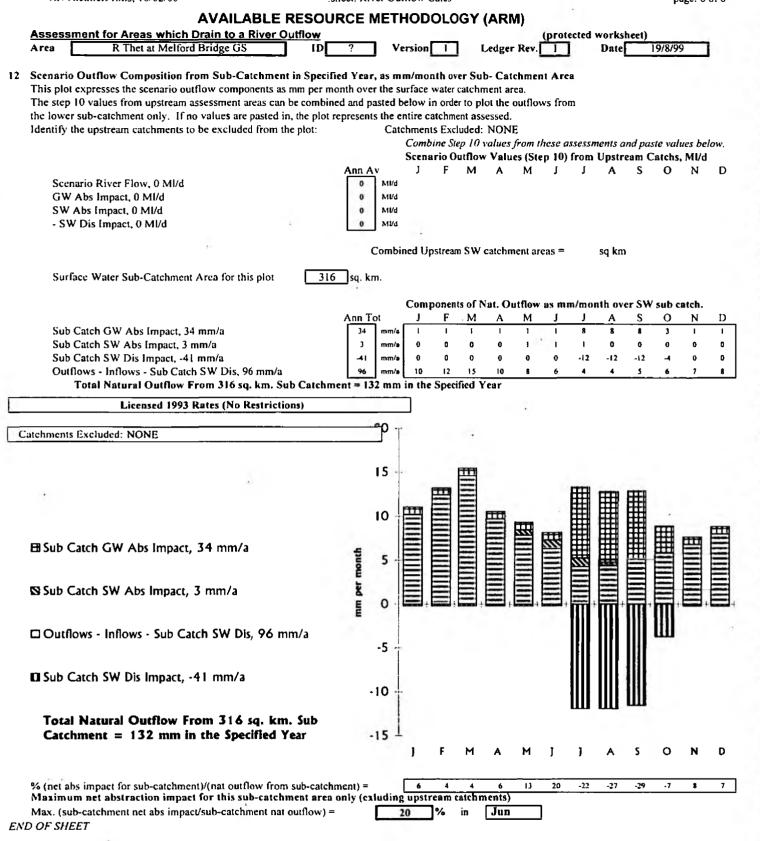
	Assessment for Areas wh		2.7 4		2		ersion	1	1.4	dger		rotec		Date	_	9/8/99	1	1	
	Area <u>Kinet at Me</u>					-				-						9/8/95			
		Selected I			Av	Min	Select:	ed Nat	M	aseflo A	winSj M	ecilie J	d Yea	ar, M _A	IVd S	0	N		/I/d m+/-
			Based ARF urface Runof		36 46	27 -10	47 64	50 97	48 107	42 67			32 -7	30 -10	29 -3	27 29	28 51	31 58	5
	Annual Equivalent Recharge					00 50												Ţ	1
	over SW Catchment		latural Surf	ace Runol	~~	00				n –	_							1	
	is1 mm/a	ΞN	latural Base	flow		50			f=	_						LE I	ł	S.	
			latural Rive	r Flow		o E	1 . E	IE E	10. E	E.E	E E	1, II	0,0	10,6	199	11.	-11-	ENE	
]	F	ч /	A 1	1 }	J		A	5	0	N	D	
,	Impacts of Consumptive Abs Abstraction rates should be loc Public water supply abstraction are accounted for separately. S abstraction impacts on the rive In this scenario the pumping ra	cally consum ns should be Surface wate er are entered	ptive (i.e. ex considered a cr abstraction separately a	cluding any as fully con s and disch is they may	y water <i>l</i> sumptive arges are differ fr	locally e becau e assum rom the	returne ise sew ned to is pumpe	d to th age tre mpact d prof	e catch atment on rive ile bec	ament) works r outfl ause o	or tran ows as groun	they p iwate	ump. r stora	Grou ige ch	anges	•	rio)		
	(e.g.full licensed 1999 rates/de Scenario Surface Water Abs				n Specif	iicd Ye	ar	Li	icensec	1 1993	Rates	(No R	estric	tions	i)				
	Year 1993 licenced		natcals91.xls				profile				uralisat n pacts				миа			K.	/1/d
	Data compilation & calculation	n imply			Ann A	١v	J	F	M	ADS II A	M	J	J	A A	S	0	N		π+/·
	level of confidence in this data	set is +/-	10 %		3	MI/d	0	0	0	0	6	11	10	4	0	0	0	0	0
						15 10							_						
				SW A	A be					5				0.1					
						5 -													
	Scenario Groundwater Abst			Impa er Flows in	oct . Specifi	0) 1	F	M	A .	M :	8.8	84,6)	A .	S	0	N	D	
	a. Scenario Groundwater Al Year est actual Data compilation & calculation	bstruction i Cales in: r n imply av.	n the Month natcais91.xls	Impa er Flows in of Pumpi	Specifi ng nced flor	0 ed Yea w*dem	and pro	ofile*d	rought	uptako	factor action, M	Ml/d J	J	A	S abst	raction O	N	N D <u>E</u> r	лі/d п+/-
	a. Scenario Groundwater Al Year est actual	bstruction i Cales in: r n imply av.	n the Month natcais91.xls	Impa er Flows in of Pumpin - 1993 lice:	o Specifi ng nced flo Ann A	0 - ed Yea w*dem \v MI/d 150	and pro	ofile*d	rought e GW	uptako Abstr	factor action, M	Ml/d J	34 GC J 135		S abst	raction	1	N D <u>E</u> r	
	a. Scenario Groundwater Al Year est actual Data compilation & calculation	bstruction i Cales in: r n imply av.	n the Month natcais91.xls	Impa er Flows in of Pumpi	Specific ng nced flor Ann A 41	0 - ed Yea w*dem \v MI/d 150	and pro	ofile*d	rought e GW	uptako Abstr	factor action, M	MI/d J 20	J 135	A 127	S abst	raction O 39	N	N D <u>E</u> r	π+/-
	a. Scenario Groundwater Al Year est actual Data compilation & calculation	bstruction i Cales in: r n imply av.	n the Month natcais91.xls	Impa er Flows in of Pumpin - 1993 lice: Ø Consu	Specific ng nced flor Ann A 41	0 . ed Yea w*dem миа 150 100	and pro	ofile*d	rought e GW	uptako Abstr	factor action, M	MI/d J 20	J 135	A 127	S abst	raction O 39	N	N D <u>E</u> r	π+/-
2	a. Scenario Groundwater Al Year est actual Data compilation & calculation	bstruction i Cales in: r n imply av. a set is +/-	n the Month natcais91.xls 15 % mpacts on R	Impa of Pumpin - 1993 lice Ø Consu GW A	Ann A (4) (mptive (b) (mptive (b) (mptive (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	0 ed Yea w*dem 4v 150 100 50 0 0	iand pro Consu J 4 T J (ear ong terr	ofile*da umptiv F 5	rought e GW M 5 	uptake Abstr A 6	factor action, M I4	MI/d J 20 1 J abstra	J 135 J J ction	A 127	S abst	O 39	N	N D Er 4 D	<u>6</u>
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Al Impact Calcs Assumptions & 	bstruction i Cales in: r n imply av. a set is +/- bstruction for reference:	n the Month natcais91.xls 15 % mpacts on R	Impa of Pumpin - 1993 lice Ø Consu GW A	Ann A (4) (mptive (b) (mptive (b) (mptive (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	O ed Yea w*dem Y 150 100 50 0 cified Y of all to	iand pro Consu J 4 T J (ear ong terr	ofile*da umptiv F 5	rought e GW M 5 	uptake Abstr A 6	factor action, M 14	MI/d J 20 1 J abstra	J 135 J J ction	A 127	S abst	O 39	N	N D Er 4 D D	<u>n+/-</u> 6 /11/d
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab 	bstraction i Cales in: r n imply av. a set is +/- bstraction f reference: n imply av.	n the Month natcais91.xls 15 % mpacts on R assume fully	Impa of Pumpin - 1993 lice Ø Consu GW A	Ann A Ann A 41 Ann Specific Ann A 41 Ann A Ann Ann A Ann Ann Ann Ann Ann Ann Ann Ann Ann Ann	o ed Yea w*dem Y 150 100 50 0 cified Y of all lo	iand pro Consu J 4 T J (ear ong terr	ofile*da umptiv F 5	rought e GW M 5 M bs + 6 e GW	uptake Abstr A 6	factor action, M I4	MI/d J 20) abstra J	J 135 J J ction	A 127	S abst	O 39	N 5 N	N D Er 4 D D	π+/- 6
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation 	bstraction i Cales in: r n imply av. a set is +/- bstraction f reference: n imply av.	n the Month natcais91.xls 15 % mpacts on R assume fully	Impa er Flows in of Pumpin - 1993 lice 1993 lice GW A GW A	Ann A Ann A 41 Imptive As in Spec impacts Ann A 29	о ed Yea w*dem 150 100 50 0 stified Y of all k	iand pro Consu J 4 T J (ear ong terr	ofile*da umptiv F 5	rought e GW M 5 M bs + 6 e GW	uptake Abstr A 6	factor action, M I4	MI/d J 20) abstra J	J 135 J ction J	A 127 A	S abst S 125 S S	o o o	N S N	N D Er 4 D D	<u>n+/-</u> 6 /11/d
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation 	bstraction i Cales in: r n imply av. a set is +/- bstraction f reference: n imply av.	n the Month natcais91.xls 15 % mpacts on R assume fully	Impa er Flows in of Pumpin - 1993 lice: 20 Consu GW A Swoothed Smoothed	Ann A Ann A Ann A 41 Imptive As in Spec impacts Ann A 29 V Abs	o ed Yea w*dem 150 100 50 0 cified Y of all lo	iand pro Consu J 4 T J (ear ong terr	ofile*da umptiv F 5	rought e GW M 5 M bs + 6 e GW	uptake Abstr A 6	factor action, M I4	MI/d J 20) abstra J	J 135 J ction J	A 127 A	S abst S 125 S S	0 39 0 0 32	N S N	N D Er 4 D D	<u>n+/-</u> 6 /11/d
	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation 	bstraction i Cales in: r n imply av. a set is +/- bstraction f reference: n imply av.	n the Month natcais91.xls 15 % mpacts on R assume fully	Impa er Flows in of Pumpin - 1993 lice: 20 Consu GW A Swoothed Smoothed	Ann A Ann A 41 Imptive As in Spec impacts Ann A 29	о ed Yea w*dem 150 100 50 0 stified Y of all k	J J J J J J J J J J J J J J J J J J J	ofile*da imptiv F 5 F F m est al imptiv F 9	rought e GW M 5 M bs + 60 e GW M 9	uptake Abstr A 6 A 0 % G0 Abs In A 9	factor action, M I4	MI/d J 20 J abstra on Ri J 9	J 135 J ction J	A 127 A	S abst S 125 S S	raction 0 39 0 0 1 0 32	N S N N	N D Er ↓ D N D Er ♀	<u>n+/.</u> 6 /11/d
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation level of confidence in this data 	bstruction i Cales in: r n imply av. a set is +/- bstruction I reference: n imply av. a set is +/-	n the Month natcais91.xls 15 % mpacts on R assume fully 20 %	Impa er Flows in of Pumpin - 1993 lice: 20 Consu GW A GW A swoothed B GW Imp	Ann A Ann A Ann A 41 Ann A 29 Ann A 29 Abs Ann A 29 Abs Dact	о ed Y ca w*dem 150 100 50 0 cified Y of all lo 100 50 0 50 0 50 0 0	J J J J J J J J J J J J J J J J J J J	ofile*da imptiv F 5 F F m est al imptiv F 9	rought e GW M 5 M bs + 60 e GW M 9	uptake Abstr A 6 A 0 % G0 Abs In A 9	factor action, M 14 M DGWS npacts M 9	MI/d J 20 J abstra on Ri J 9	J 135 J ction J	A 127 A	S abst S 125 S S	0 39 0 0 32	N S N N	N D Er ↓ D D N D Er ₹	<u>n+/-</u> 6 /11/d
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation 	bstruction i Cales in: r n imply av. a set is +/- bstruction fi reference: n imply av. a set is +/- charges imp vorks discha	n the Month natcais91.xls 15 % mpacts on R assume fully 20 %	Impa er Flows in of Pumpin - 1993 lice: 20 Consu GW A GW A GW A Swoothed EB GW Imp er Flows in support dis	Ann A Ann A Ann A A Ann A A Ann A A A A A A A A A A A A A A	ed Yea w*dem Y 150 100 50 0 cified Y of all k Y 100 50 0 co 100 0 co 0 co	iand pro Consu J 4 J (ear ong terr Consu J 9	F F F F m est al mptiv F 9	rought e GW M 5 M bs + 60 e GW M 9	uptake Abstr A 6 0% G(Abs In A 9	factor action, M 14 M OGWS npacts M 9 M	MI/d J 20) abstra on Ri J 9	J 135 J ction iver F J 82 J	A 127 A Flows. A 32 A	S abst S 125 S S S S S S S	action 0 39 2020, 0 32 0 32	N S N N	N D Er ↓ D N D Er ♀	<u>n+/-</u> 6 /11/d
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation level of confidence in this data Scenario Surface Water Disc Include all sewage treatment w Year 1991 est actual 	bstraction i Cales in: r n imply av. a set is +/- bstraction fi reference: n imply av. a set is +/- a set is +/- charges imp vorks discha Cales in: (n the Month natcais91.xls 15 % mpacts on R assume fully 20 % 20 %	Impa er Flows in of Pumpin - 1993 lice: 20 Consu GW A GW A GW A Swoothed EB GW Imp er Flows in support dis	Ann A Ann A Ann A 41 Ann A 41 Ann A 41 Ann A 29 V Abs Dact Specific charges as 100 %	o ed Yea w*dem 150 100 50 0 stified Y of all lo 50 0 so 100 50 0 so 0 so 0 so 0 so 0 so 0 so 0 so	iand pro Consu J 4 J (ear ong tern Consu J 9 J import river up acted) (F F F F F m est al mptiv F 9 F 9 Stream natcals	rought e GW M s M bs + 60 e GW M 9	uptake Abstr A 6 A 0 % G(Abs In A 9 A s 1 A n Rive	factor action, M 14 M DGWS mpacts M 9 M Base r Flow	MI/d J J 20 j abstra on Ri J 9 i discha	J 135 135 135 135 1 1 1 1 1 1 1 1 1 1 1 1 1	A 127 A Flows. A 82 A ste on	S abst S 125 S S S S S S S S S S S S S S S S S S S	action 0 39 222 4 0 32 0 32 0 0 32 0 0 32 0 0 32 0 0 32 0 0 32 0 0 32 0 32 0 32 0 32 0 32 0 34 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0	N S N N P	N D Er 4 D D Er 9 D D Er 9 D	лг+/. 6 И//d пг+/. 6
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation level of confidence in this data Scenario Surface Water Disc Include all sewage treatment w 	bstraction i Cales in: r n imply av. a set is +/- bstraction fi reference: n imply av. a set is +/- charges imp vorks discha Cales in: (n imply av.	n the Month natcais91.xls 15 % mpacts on R assume fully 20 % 20 % pacts on River GOGWS Julj	Impa er Flows in of Pumpin - 1993 lice: 20 Consu GW A GW A GW A Swoothed EB GW Imp er Flows in support dis	Ann A Ann A Ann A A Ann A A Ann A A A A A A A A A A A A A A	ed Yea w*dem 150 100 50 0 all lo 50 0 all lo 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50	iand pro Consu J 4 J (ear ong tern Consu J 9 J import river up acted) (F F F F F m est al mptiv F 9 F 9 Stream natcals	rought e GW M 5 M bs + 60 e GW M 9	uptake Abstr A 6 0% G(Abs II A 9	factor action, M 14 M DGWS mpacts M 9 M Base	MI/d J J 20 j abstra on Ri J 9 s discha	J 135 135 135 135 1 1 1 1 1 1 1 1 1 1 1 1 1	A 127 A Flows. A 32 A	S abst S 125 S S S S S S S	action 0 39 2020, 0 32 0 32	N S N N	N D Er 4 D D N D Er 7 D	<u>n+/.</u> 6 /11/d
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation level of confidence in this data Scenario Surface Water Disc Include all sewage treatment w Year 1991 est actual Data compilation & calculation 	bstraction i Cales in: r n imply av. a set is +/- bstraction fi reference: n imply av. a set is +/- charges imp vorks discha Cales in: (n imply av.	n the Month natcais91.xls 15 % mpacts on R assume fully 20 % 20 % pacts on River GOGWS Julj	Impa er Flows in of Pumpin - 1993 lice: 20 Consu GW A GW A GW A Swoothed EB GW Imp er Flows in support dis	Ann A Ann A Ann A Ann A Ann A Ann A Ann A P Ann A P Ann A Ann Ann Ann Ann Ann Ann Ann Ann Ann Ann	0 ed Yea w*dem 150 100 50 0 cified Y 100 50 0 cified Yea 100 50 0 cified Yea 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 0 100 50 0 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 0 100 50 100 50 100 50 100 50 100 50 100 50 100 10	J A Consu J (ear ong terr Consu J or river up acted) (SW D J 2 T	F F F F F m est al mptiv F 9 F 9 Stream natcals	rought e GW M s M bs + 60 e GW M 9	uptake Abstr A 6 A 0 % G(Abs In A 9 A s 1 A n Rive	factor action, M 14 M DGWS mpacts M 9 M Base r Flow	MI/d J J 20 j abstra on Ri J 9 s discha	J IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	A 127 A Flows. A 82 A ste on A	S abst S 125 S S S S S S S	action 0 39 200 1 0 32 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0		N D Er 4 D D N D Er 7 D	///d ///d rr+/- 6
2	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation level of confidence in this data Scenario Surface Water Disc Include all sewage treatment w Year 1991 est actual Data compilation & calculation 	bstraction i Cales in: r n imply av. a set is +/- bstraction fi reference: n imply av. a set is +/- charges imp vorks discha Cales in: (n imply av.	n the Month natcais91.xls 15 % mpacts on R assume fully 20 % 20 % pacts on River GOGWS Julj	Impa er Flows in of Pumpin - 1993 lice: 22 Consu GW A tiver Flows smoothed EB GW Imp er Flows in support dis y - 10 Oct (Ann A Ann A Ann A Ann A Ann A Ann A Ann A Ann A Ann A 29 V Abs Data Specific charges as 100 % Ann A 35 Dis	0	J A J Vear ong terr Consu J S r river up acted) (SW D J 2 1 1 1 1 2	F F F F F m est al mptiv F 9 F 9 Stream natcals	rought e GW M s M bs + 60 e GW M 9	uptake Abstr A 6 A 0 % G(Abs In A 9 A s 1 A n Rive	factor action, M 14 M DGWS mpacts M 9 M Base r Flow	MI/d J J 20 j abstra on Ri J 9 s discha	J IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	A 127 A Flows. A 82 A ste on A	S abst S 125 S S S S S S S	action 0 39 200 1 0 32 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0		N D Er 4 D D N D Er 7 D	///d ///d rr+/- 6
:	 a. Scenario Groundwater Al Year est actual Data compilation & calculation level of confidence in this data b. Scenario Groundwater Ab Impact Calcs Assumptions & Data compilation & calculation level of confidence in this data Scenario Surface Water Disc Include all sewage treatment w Year 1991 est actual Data compilation & calculation 	bstraction i Cales in: r n imply av. a set is +/- bstraction fi reference: n imply av. a set is +/- charges imp vorks discha Cales in: (n imply av.	n the Month natcais91.xls 15 % mpacts on R assume fully 20 % 20 % pacts on River GOGWS Julj	Impa er Flows in of Pumpin - 1993 lice: B Consu GW A tiver Flows smoothed EB GW Imp er Flows in support dis y - 10 Oct (Ann A Ann A Ann A Ann A Ann A Ann A Ann A Ann A Ann A 29 V Abs Data Specific charges as 100 % Ann A 35 Dis	о	J A J Vear ong terr Consu J S r river up acted) (SW D J 2 1 1 1 1 2	F F F F F m est al mptiv F 9 F 9 Stream natcals	rought e GW M s M bs + 60 e GW M 9	uptake Abstr A 6 0% GO Abs In A 9 gauge) n Rive	factor action, M 14 M DGWS mpacts M 9 M Base r Flow	MI/d J J 20 j abstra on Ri J 9 s discha	J IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	A 127 A Flows. A 82 A ste on A	S abst S 125 S S S S S S S	action 0 39 200 1 0 32 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0		N D Er 4 D D N D Er 7 D	41/d 41/d 11/d 11/d 11/d


......

Same Acceptable Abs Impacts plot with

combined error bar of +/- 49 MI/d

50 0 -50 -100



Same Baseflow - GWAbs Impacts plot with combined error bar of +/- 11_MI/d

60 40 ŧ Ī T I Í 20 0 ·20 -40 Į Ī I -60 -80

RivThetmel91.xls, 16/02/00

sheet: River Outflow Calcs

	RivT	hetmel91.xls, 16/02/00 sheet: Conclusions & QA page 1 of 3
		Area R Thet at Melford Bridge GS ID ? Ver 1 Rev 1 Date 19/8/99
		Area Image: Revent and the image of t
		Specified Assessment Year Drought condition 1991 Conclusions & QA
	1	Results Summary for the Total Catchment to the Outflow Point
	1.1	Natural, Scenario and Target River Flows for Specified Year (with Annual Average Rate Summary)
		_ 200 -
		Scenario Flow, 86 MI/d 50 -
		JFMAMJJASOND
		Target Flows based on Monthly Minimum of nat QN95 plus 50% of naturalised flow above this
	1 2	
	1.2	Scenario Artificial Impacts (with Annual Average Rate Summary)
		Abs & Dis Scenario: Licensed 1993 Rates (No Restrictions)
	Ħ	GW Abstraction Impact, 29 MI/d $0 - \frac{1}{50} - \frac{1}{50}$
	\otimes	SW Abstraction Impact, 3 MI/d -100 -
	۵	SW Discharge Impact, -35 MI/d -150
		Net Abstraction Impact, -4 MI/d J F M A M J J A S O N D
		Maximum net abstraction impact for total catchment based on
		Max. (net abs impact/natural river flow from total catchment) = 20 % in Jun
	1.3	Surplus or Deficit Profile for Specified Year
		(= Scenario River Flow Minus Target River Flow)
		J F M A M J J A S O N D Ann Av 14 Mi/d 22 40 44 21 7 -2 1 2 12 8 6 11
		Uncertainty +/- 36 MI/d 0
		-50
		Surplus or Deficit as % of Natural River Flow: Ann Av 17% Min -3%
Ċ.	1.4	Interpreted Sustainability Status of Resource Management at Outflow Point
		Sustainability Status Category:
		Comments : Not assigned at this trial stage - see discussion in Section 1.3.8 and note in Section 9.1 of

.

_

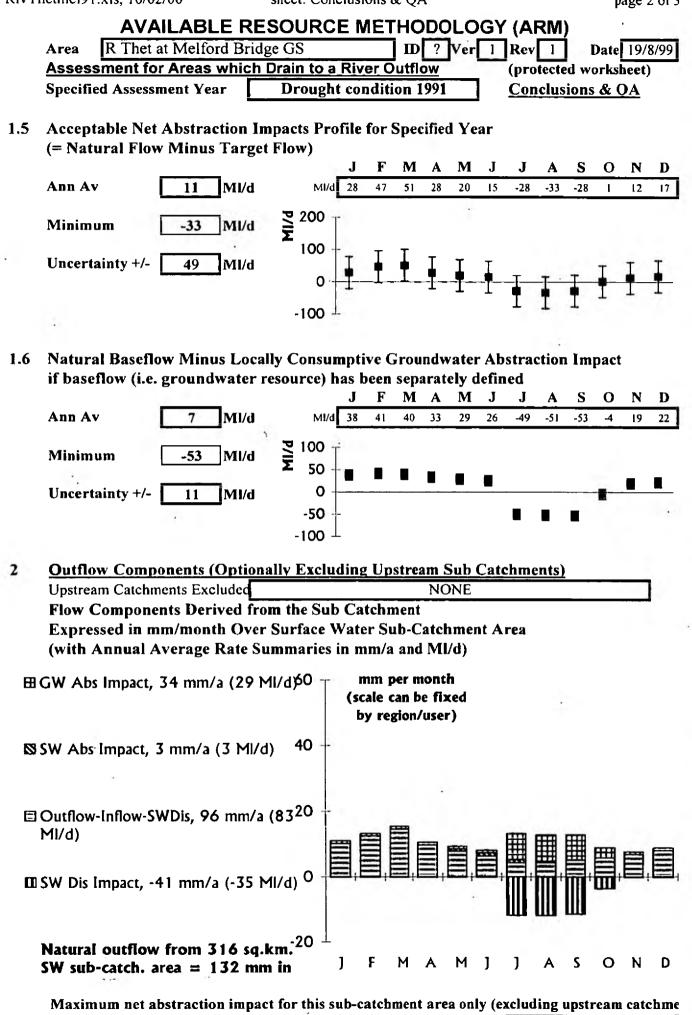
.

Comments: Not assigned at this trial stage - see discussion in Section 1.3.8 and note in Section 9.1 of the User Manual for further information. Step 3 (Management Action) also not complete

.

معتقد والتبع ووارا وال

ت کے شرقہ محمد م


	RivThetmel91.xl	s, 16/02/00
--	-----------------	-------------

%

in

Jun

20

Max. (sub-catchment net abs impact/sub-catchment nat outflow) =

se	3							_	lge G					-	Ver	1		_		ate 19/
								<u>hich</u>		in to										rksheet
eci	ifie	ed .	As	sess	me	nt Y	ear	L	D	roug	ht co	ndit	tion	199	1		<u>Con</u>	<u>clusio</u>	ons	<u>& QA</u>
			f o (at Rí	1				atio	n Do		~ d								
										n Re on co			tion	of	other	yea	rs in	other	r sp	readsh
							-		opme							•			•	
ten	ntia	al f	or	add	itio	nal s	tead	y stat	e net	abstra	action	ı imp	bacts					Ml/d	((zero if 1
								-		abstra		-						MI/d		(zero if r
										n wint		1					1			
										Reduc										
		~								on im		•						MI/d	duri	no
			-								-		loot	Flor	v Tarj	rote		1411/0	Guil	ng
		•								-						-)			
l	(e.g	g. e	nn	anc	ea i	low	OF IG	everr	попц	oring	with	regu	ar n	cent	e revi	ewe	uc.)			
			_																	
)T	Γ Ε :					-	-								-			consid		ng:
		р	ro	xim	ity t	о гіч	/ers/	wetla	nds, o	consu	mptiv	enes	is/pc	oint (of retu	rn, s	easona	ality et	tc	
4/	Au	Jth	101	risa	atio	n a	nd '	Vers	sion	Con	trol									
					-			- 20						• .						
		_			Im	-				Review					lon					
rsi	ion	1		1		A	sses	sed b	y:		G	Coo	mbs	3			sign			
evi	iew	ved	by	y (h	ydro	ogeo	logis	it & F	iydrol	logist)): R	Sole	:y &	JB	loggs		sign			
the	ori	isec	зb	y				1				J	Blo	oggs			sign			
				-													•			
v	ner	ed/	/nŀ	ans	to	reas	sess	reso	irce s	soon?	•									
-	get		-				netho		,		•									
_	-					11	icun	jų.				~ A B/	TC 41		al thi					
)17	/01	/01	i									JAN	15 11	пе ге	al thi	ng .				
. 4	Ab	ostr	ac	tior	ı Le	dge	r Ur	date	Con	trol										
	ger i					0	r			ed on:					By:					
ug	501 1	100		ю.		v		U	puan	<i>,</i> u on.					Dy.					
						•	-	1												
				1 WI	in I	icen	ce ni	imbe	rs:											
SI	SHE	.ET	<u>!</u> "																	
									1											

- -

6

. . .

-

RIVER THET TRIAL OPTIONAL GAUGE NATURALISATION AND AQUIFER RESPONSE FUNCTION NATURAL FLOWS SPREADSHEETS FOR LTA & 1991 ASSESSMENTS

GAUGEthetmellta.xls & GAUGEthetmel91.xls: 2 pages each

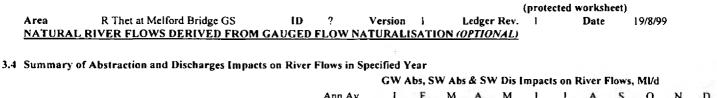
ARFthetmellta.xls & ARFthetmel91.xls: 2 pages each

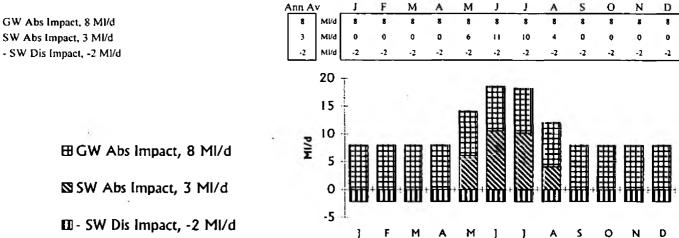
	GaugeThetmellta.xls, 16/02/00	sheet: Gauge			pag	ge: 1 of 3
		RESOURCE METHOD				
	Area R Thet at Melford Bridge GS NATURAL RIVER FLOWS DERIVED FROM GA	ID ? Version	1 Ledger Rev	(protected work . l Dat	•)
1.0	These calculations derive natural river flows by gauged Results summarised in Step 4 can be pasted into the 'Ri Year of Assessment		• •			lines.
• •	The year specified for this assessment is L T Average (these should be as specified in the 'River Outfl		r selection of this year	ltav compa	rison	
2.0	Gauged River Flows in Specified Year Enter the monthly averaged gauged river flows for the a Gauging Station Name Data Ref Melford Br (av.1970-90) thet-mel.xls Data compilation & calculation imply level of confidence in this data set i+/- 5	Ann Av J 162 Mild 272 300	I River Flow in Specil F M A M 285 253 220 156	JJA	S O 67 101	N D 137 191
	i.e. error bar assumed to be +/-	250 200 150 100 50 0				
		,	FMAM]] A	5 O	ND
	Gauged Flow Naturalisation: Removing Impacts of The flow rates used to derive the impacts of SWabs, GV or discharge during the specified year. Abstraction rate Public water supply abstractions should be considered a are accounted for separately. Surface water abstraction abstraction impacts on the river are entered separately a Surface Water Abstraction Impacts on River Flows	Wabs & SWdis should be based s should be locally consumptiv is fully consumptive because se s and discharges are assumed to s they may differ from the pur	f on best estimate of ac e (i.e. excluding any w wage treatment works o impact on river outfle	ctual abstraction water <i>locally</i> returns s or transfer discharg ows as they pump.	ed to the catchr ges Groundwater	nent)
3.1	Assumptions and Calculations Ref: natcalsLTA.xls - sp	ray irrigation licenses profiled				
	Data compilation & calculation imply level of confidence in this data set i +/- 10 %	Consun Ann Av J 3 Ml/4 0	nptive SW Abs Impa F M A M 0 0 0 6	cts on River Flows JJJA II 10 4	s, MI/d S_O 0 0	N Ď 0 0
	i.e. error bar assumed to be +/- 0 Mi/d	15 10 10 5				
		- م ا	<u>, , , , , , , , , , , , , , , , , , , </u>		s o	N D
	Groundwater Abstraction Impacts on River Flows is a. Groundwater Abstraction in the Month of Pump Assumptions and Calculations Ref: natcalsLTA.xls - 19	ing 93 licenced flow ignoring GOG	GWS * demand profile			
	Data compilation & calculation imply av. level of confidence in this data set i +/- 10 %	Ann Av J	F M A M 5 5 6 12	J J A	S O	N D
	i.e. error bar assumed to be +/-					
		I 0 222.2			, 222, 222, 2	
	<u> </u>	3	FMAM		s o	N D
3.2	b. Groundwater Abstraction Impacts on River Flow Impact Cales Assumptions & reference: assuming fully	smoothed steady state impacts				
	Data compilation & calculation imply av. level of confidence in this data set i +/- 20 %	Ann Av J a Mia a	pptive GW Abs Impa F M A M 8 8 8 8	J J A 8 8 8	S O B B	N D 8 8
•	i.e. error bar assumed to be +/- 2 Mird					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		1	FMAM]] A	s o	N D
3.3	Surface Water Discharges Impacts on River Flows in Include all sewage treatment works or river support disc Assumptions and Calculations Ref: taken from j barker	charges to the river upstream of report for 1993			lows.	
	Data compilation & calculation imply av. level of confidence in this data set i +/- 20 %	SW Dis Ann Av J 2 MVd 2	Impacts on River FloFMAM222222	$J = \frac{1}{2} - $	S O	N D
	i.e. error bar assumed to be +/- 0 Mt/d		D.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M. M. M.		.
) F	MAM	J J A		N D.

. . .

. . .

....

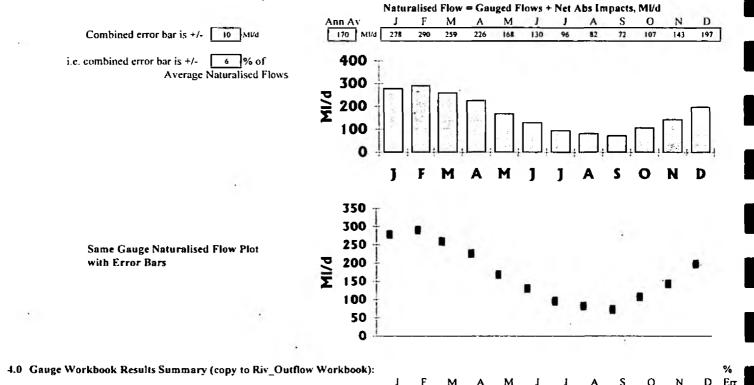



.

197

6

AVAILABLE RESOURCE METHODOLOGY (ARM)



3.5 Calculated Net Consumptive Abstraction & Discharge Impacts in Specified Year

		Net A	bs Im	pacts	= SW	+GW /	Abs In	npacts	- SW	Dis In	npacts	, MI/d	
	Ann Av	J	F	М	Α	м	J	1	Α	S	0	N	D
Combined error bar is +/- 2 MI/d	8 M1/d	6	6	6	6	12	16	16	10	6	6	6	6
Q. 1	20 -												
	15					,							
	P 10						节	<u>+ -</u>					
2	Z IV						÷	÷	÷				
	5	井	井	中	田	出		臣	昭	田	H	Ŧ	
	0.1		Ш.	ш.,	μ μ μ μ μ μ μ μ μ μ μ μ μ μ	Ha, I	T	H		ı, اط	\mathbf{H}^{+}	H .	
		1	F	м	A	м	1	1	A	s	0	N	D

3.6 Result: Calculated Naturalised River Flows in Specified Year

278

290

259

226

168

Naturalised Total River Flow (compare with other estimates!)

130 ('copy-paste special-values' into Step 3a of 'River Outflow Cales' sheet)

96

82

72

107

143

		she	æt: Ga	uge									pá	ige: 3 c	of 3
AVA		DURCE	ME	тно	DOL	OGY	' (AF	RM)							
										ected	works	heet)			
Area R Thet at Melford Bridg <u>NATURAL RIVER FLOWS DERIVE</u>		? <u>• FLOW</u>		rsion IRALI	I Satio			· Rev. <u>NAL)</u>			Date	2	19/8/9	99	
.0 Naturalised River Flow Composition in (For information only - equivalent of Surface Water Catchment to River Ga (area from which runoff enters the riv GW Abs Impact, 9 mm/a SW Abs Impact, 3 mm/a - SW Dis Impact, -3 mm/a Gauged Flows - SW Dis Impact, 188	ToH yearbook 'gauge auge in sq. km. = ter above the gauge)		• not ci (these		<i>forwar</i> ih hydu d be as	d in co rometr s specij	olculai ic regi fied in	tions) ister, 9 the 'h	River C					V catch N 1 0 1 1 3	a. [] ((
Total Naturalised River Flow J		W Catchn	nent =	201 m	m in (he Sp	ecified	i Yea	r (base	d on	Gauge	Data)		
(scale +	can be fixed by region	ı/user)	30	T	6333						•				
⊞GW Abs Impact, 9 mm/a ⊠SW Abs Impact, 3 mm/a	÷	onth	25 20 15											m	
⊡ Gauged Flows - SW Dis Impact	t, 188 mm/a	mm/month	10 5												
Total Naturalised River Flow SW Catchment = 201 mm						†									
(based on Gauge Data)															
(based on Gauge Data)			-5	1											
(based on Gauge Data)			-5	⊥ J	F	M	A	м]	J	A	S	0	N	D

1.00

.

-

.

.

÷

• • • •

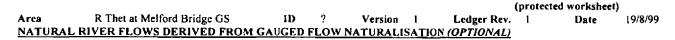
-

	GaugeThetme	191.xls, 16/02/00			sha	eet: G	auge									p	age: 1	of 3
		AV		E RESOL	URCE	ME	тно	DOL	-0G`	Y (A	RM)							
												(prot	ected	works	sheet)			
	Area <u>NATURAL F</u>	R Thet at Melford Brid RIVER FLOWS DERIVI		ID <u>GAUGED I</u>	? FLOW		ersion URAL	l Isati			r Rev. DNAL			Date	e	19/8/	9 9	
	Results summa	ions derive natural river fl arised in Step 4 can be pas		-				•		-					<u> </u>		lelin c s.	
1.0	• •	sment ified for this assessment is should be as specified in		ight conditio Dutflow Calc.		book)	Basis	for se	lection	of thi	s year		stres	sed res	Sources	s & G(ogws	
2.0	Enter the mon Gauging Stat		r flows for ti Data Ref		Ann A		1	F	ver Flo M	Α	M	J	J	Α	s	0	N	D
	•	991) ion & calculation imply lence in this data set i +/	thet-mel.xls	5		миа 200	104	140	149	103	81	67	55	56	66	63	72	82
	i.c. cr	ror bar assumed to be +/-	4 Mi/d		-	50 - 50 -							_	-				
						0 -	, 三 ,	F .	м	A.	М.,	, E ,) 1	A .	s	0	N N	D D
• •	Course of Fla	Naturalisation: Removi	1	-1.6		h		- 1 D			Dimen	. 61						
	The flow rates or discharge d Public water s are accounted abstraction im Surface Wate	used to derive the impact uring the specified year. A upply abstractions should for separately. Surface w pacts on the river are enter r Abstraction Impacts o and Calculations Ref: natc	s of SWabs, Abstraction be considere ater abstract red separate n River Flo	GWabs & S rates should ed as fully cu tions and dis ly as they m wws in Speci	SWdis s be local onsump charges ay diffe fied Yes	hould lly co tive b are a: r fron ar	be bas nsumpl ecause ssumed n the pu profile	ed on live (i. sewag l to im umped d as p	best es e. excl ge treat pact of profile er Ang	itimate uding ment n river e beca lian n	e of act any w works outfic use of aturali	tual ab ater <i>loc</i> or tran ows as ground sation	stracti cally in isfer di they p dwater guidel	ion returne ischarg ump. r storag	ed to th ges Groun ge chai	ne cate dwater nges.		,
	Data compilat	ion & calculation imply			Ann A	v	1	F	м	۸	М	J	J	A	S	0	N	D
	level of confid	ence in this data set i +/-	10 %		3] MI/d	0	0	0	0	6		10	4	0	0	0	0
	i.e. er	ror bar assumed to be +/-	0 MVd		РЛМ	15 10 5					8777							
						0		+		······)	000	UID ¹	2002				·i	1
							1	F	м	A	м	1	1	*	S	0	N	D
	a. Groundwa	Abstraction Impacts on ter Abstraction in the M and Calculations Ref: nate:	lonth of Pu	mping			nd profi	le*dro	ought u	ntake	factor	+ 100	% 60	GWS	abstra	tion		
	Assumptions	and Chiedranons Ker, hate	1.57 T.ATS - 1	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Consu	mpti	ve GW	Abs,	MI/d			0.00	2054 4			
	•	ion & calculation imply av lence in this data set i +/-	/. 15 %		Ann A	v] миа) . 4	F S	M 5	A 6	M 14	20 1	J 135	A 127	S 125	O 39	N 5	D 4.
	i.e. er	ror bar assumed to be +/-	6 M/d		РЛИ	150 100 50												
						0	- 	F	M	•	M]]	A	S	0	+ <u> </u>	D
3.2	b. Groundwa	ter Abstraction Impacts Assumptions & reference:	on River Fl assume full	lows in Spec ly smoothed	cified Y	ear s of al	li tong i	erm e	st abs -	+ 60 %	6 GOC	GWS al	bstract	tion				
		···· ,												Flows	, MI/d			
	•	ion & calculation imply av lence in this data set i +/-	′. 20 %		Алп А 29	MVd	•	F 9	м 9	A 9	9 9	9	J 82	A 82	S 82	0 32	9 9	D 9
	i.e. er	ror bar assumed to be +/-	6 MVd		P/IM	100 50	1						Ħ	Ħ	Ħ	m		
						0	1	F	M	A	M	1	1	A			+ coor	D
3.3	include all sev	r Discharges Impacts on vage treatment works or ri and Calculations Ref: GOO	ver support	discharges to	o the riv	er up			gauge	. Base		nated d	ry wea	ather fl	lows.			
	•		-						pacts o	on Riv	er Flo	ws, M	l/d					
••		ion & calculation imply av lence in this data set i +/-	/. 20 %		Ann A	v MVd	- <u>1</u>	F 2	M 2	A -2	- <u>i</u>	3	J 122	A 122	S 122	- O 38	- N 2	D 2
	i.e. er	ror bar assumed to be +/-	7 MVd		P/IM		Ţ						M	Π	M			
						0)	F	M	A	м	1	J	A	s.	0	N	. D
							÷		• •	ſ	1.1	,	1	G	-	5		
			1.0															

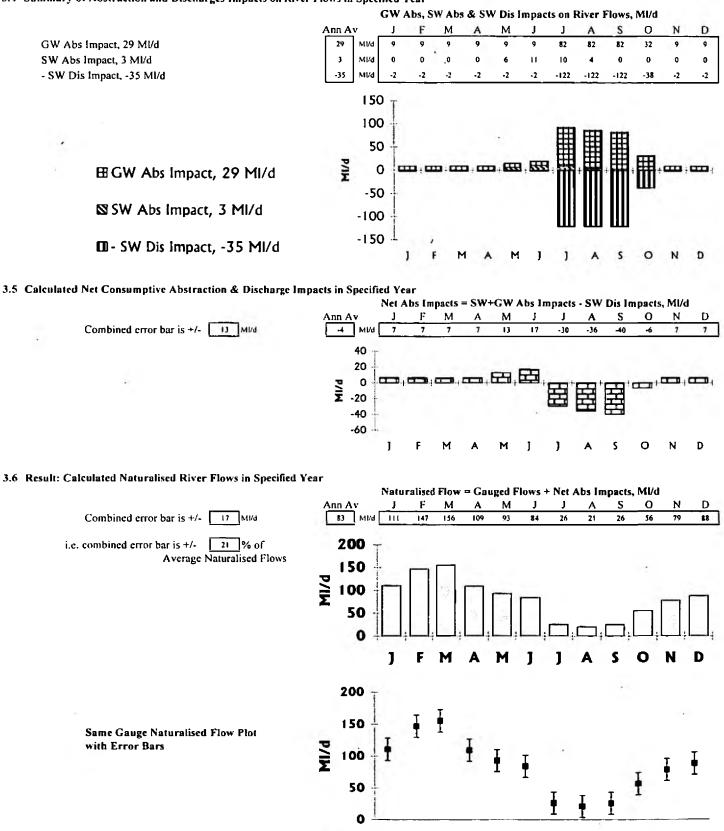
.

-

ł


20.00

2.2 - 2


-

.

AVAILABLE RESOURCE METHODOLOGY (ARM)

3.4 Summary of Abstraction and Discharges Impacts on River Flows in Specified Year

4.0 Gauge Workbook Results Summary (copy to Riv_Outflow Workbook):

Naturalised Total River Flow (compare with other estimates!)

('copy-paste special-values' into Step 3a of 'River Outflow Calcs' sheet)

26

21

M

93

109

M

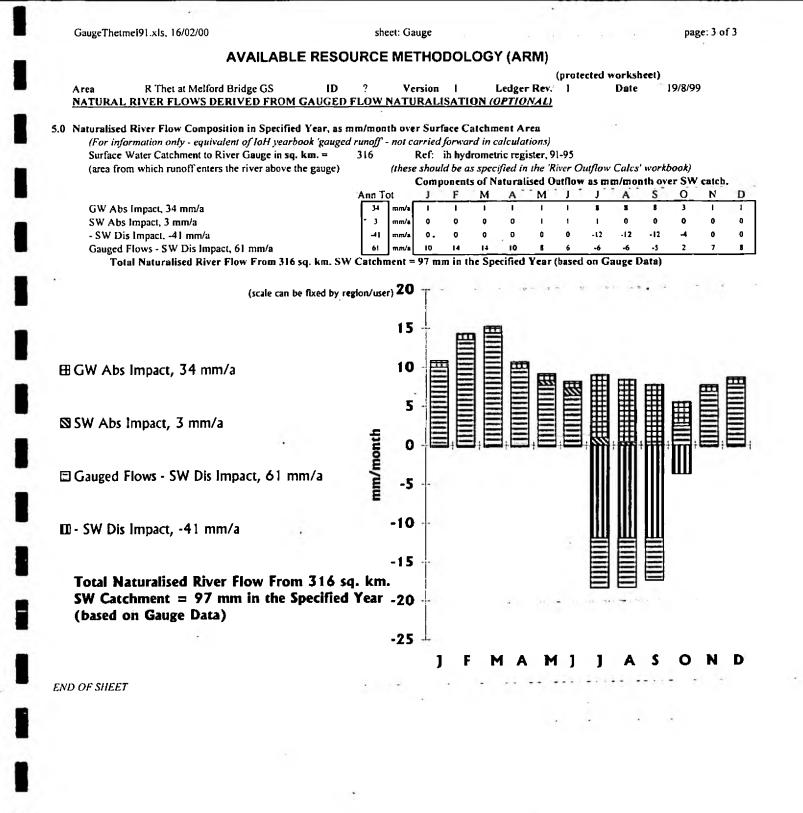
t Se

147

111

0

56


26

N

79

D En

88 21

ARFThetmellta.xls, 16/02/00

sheet: ARF

.

AVAILABLE RESOURCE METHODOLOGY (ARM)

		(protected worksheet)
Area R Thet at Melford Bridge GS <u>NAT. RIVER FLOWS & GW OUTFLOWS DERIVED</u>	ID ? Version 1 FROM EFF. RAINFALL USING	Ledger Rev. 1 Date 19/8/99 THE AQUIFER RESPONSE FUNCTION (OPTIONAL)
These calculations derive nat. total river flows & GW outflor and catchment characteristics using the 'Aquiter Response F	unction' (ARF). After restating the as	ssessment year (Step 1), Step 2 calculations consider:
2a. flows in a year of 'average' rainfall (to achieve a reasonab	•	
2b. flows in the specified assessment year (based on effectiv Results summarised in Step 3 can be pasted into the 'River C with other natural flow estimates (e.g. for river flows, estima	Dutflow Cales' or 'GW Outflow Cales'	worksheets for comparison
Vear of Assessment	tes based on gauge now naturalisatio	nt).
The year specified for this assessment is L T Average (these should be as specified in the 'River Outflow C	•	ection of this year Itav comparison ok)
2 a. Natural River Flows or GW Outflows in an 'Average'	Year Based on the Aquifer Respo	
Areas		sq km Based on:
Surface Water Catchment Area (For Rivers, area from which runoff drains above 1	the assessed point Far GW autflow	316 ih hydrometric register, 91-95
Aquifer Area within the Surface Water Catchment		316 assume all area receives recharge aquifer. For GW outflows, equals GW catchment area)
Groundwater Catchment Area		316 sw c.area (approx) under avg. conditions
(For rivers , aquifer area from which recharge wou	, ,	•
For GW outflow, aquifer area from which recharge		• • • • • • • • • • • • • • • • • • • •
Long Term Annual Average Hydrologically Effectiv Average Annual Total Hydrologically Effective Rain		mm/a Based on: 173.1 morecs sq 130 average 1970-90
Assumptions Splitting Hydrologically Effective Rain Aquifer recharge as % of effective rainfall	fall into Runoff and Recharge (so Aquifer runoff =[Based on: 44 % J. Barker & cales in sq130-mo.xls 56 %)
Calculated Long Term Annual Average Runoff and		
Ann. Av. Recharge draining to river or across GW outfle	ow boundary = 65.9 MI/d	= recharge % • eff rainfall • GW catch area over the GW catchment area)
Ann, Av. Runoff draining to river or 'lost' in GW outflow =cff rainfall*(SW catch area - aquifer area in		noff %*aquifer area in SW catch
For rivers, total discharge draining to river =	149.9 MI/d	=recharge input plus runoff input
Calculated Average Distribution of Runoff and Rech Based on:	large	over the SW catchment area) v Factors of Av. Ann. Rech & Runoff Rates
Default values = typical MORECS square Eff. Rain. fact	tors 1.00 3.04 2.22	1.53 0.74 0.22 0.04 0.03 0.02 0.10 0.53 1.31 2.29
	Ann Av J F	noff and Recharge, Ml/d M A M J J A S O N D
Runofî, 84 Ml/d Recharge, 66 Ml/d	84 Ml/d 255 186 66 Ml/d 201 146	128 62 18 3 3 1 9 44 110 192 101 49 14 2 1 7 35 \$66 151
	600 T	
🗆 Runoff, 84 M		
■ Recharge, 66	MI/d J F M	A M-J-J-A SOND
Aquifer Characteristics Controlling Natural River B Recharge % draining to River or GW Outflow in the san		to Recharge Based on: No karstic response
Aquifer Characteristics Controlling Slower Natural	Baseflow or GW Outflow Response	e from Remaining Recharge
Total length of rivers or GW boundary draining GW	catchment 30 km	measured length of Thet & main tribs
Average Storage (Specific Yield) Average Transmissivity	0.03 no unia 500 m2/d	ts approx, from Redgrave Model approx, from Redgrave model
	GW catchment area, the Aquifer R	
Average Natural Runoff and River Baseflow or GW	Outflow Av. Nat. Ru	noff and River Baseflow or GW Outflow, MI/d
Av. Nat. Runoff, 84 MI/d	Ann Av J F 84 M/d 255 186	M A M J J A S O N D 128 62 18 3 3 1 9 44 110 192
Av. Nat. Baseflow or GW Outflow, 66	MI/d 66 MI/d 80 84	<u>82 76 68 61 57 53 51 52 57 68</u>
4°	400 T	
□ Av. Nat. Runoff, 84 MI/d	200	
🖾 Av. Nat. Baseflow or GW Outflo	w, 66 MI/d] F	MAMJJASOND
		tal Outflow = Runoff + Baseflow or GW Outflow, MUd
Av. Nat. Total Outflow, 150.MI/d _	Av Min J F - 150 55 336 271	M A M J J A S - O - N - D 210 138 86 64 60 55 60 96 167 260
	⁴⁰⁰ T	
Av. Nat. Total Outflow, 15		I, m, m, m, m, m, m, M,
	J F M	A M 1 1 A S O N. D.
1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S		

sheet: ARF

D Err

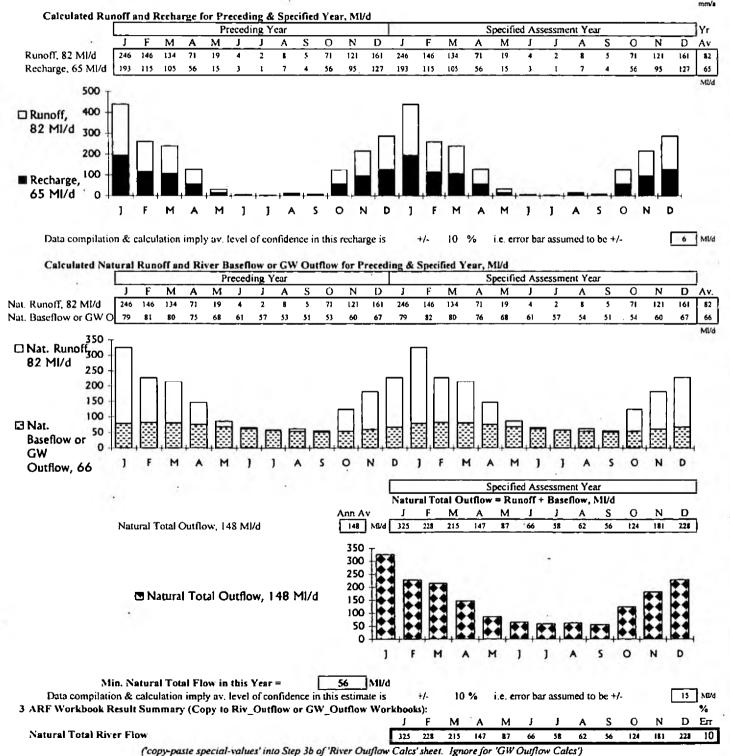
67 10

AVAILABLE RESOURCE METHODOLOGY (ARM)

(protected worksheet) Area R Thet at Melford Bridge GS ID ? Version I Ledger Rev. I Date 19/8/99 NAT. RIVER FLOWS & GW OUTFLOWS DERIVED FROM EFF. RAINFALL USING THE AQUIFER RESPONSE FUNCTION (OPTIONAL)

2 b. Natural River Flows or GW Outflows derived from Hydrologically Effective Rainfall in the Specified Assessment Year

and Preceding Nine Years based on the Aquifer Response Function (ARF)


Hydrologically Effective Rainfall (HER) Data Entry

Enter 10 yrs of monthly HER values, yr 10 being that specified for assessment, in column DI from Row 24 down

Data Source: Morecs square 130 Itav1970-90

Hydrologically Effective Rainfall for Preceding & Specified Year, mm/month

					Р	reced	ing Y	ear								S	pecifie	d As	essmo	nt Ye	ar				Yr
<u>10 Yr Av</u>	J	F	М	_ A	Μ	J	J	Α	S	0	N	D	J	F	М	Α	М	J	J	Α	S	0	N	D	Tot
173 mm/a	43	26	24	12	3	I	0	1	ι	12	21	28	43	26	24	12	3	I	0	_1	1	12	21	28	173

 Natural River Baseflow or GW Outflow
 79
 12
 80
 76
 68
 61
 57
 54
 51
 54
 60

 END OF SHEET
 ('copy-paste special-values' into Step 4b of 'River Outflow Calcs' sheet or into Step 3b of 'GW Outflow Calcs' sheet)

F

Μ

•

sheet: ARF

- - - ----

. .

.....

AVAILABLE RESOURCE METHODOLOGY (ARM)

		(protected worksheet)
	Area R Thet at Melford Bridge GS ID ? NAT. RIVER FLOWS & GW OUTFLOWS DERIVED FROM EFF. J	Version Ledger Rev. Date 19/8/99 RAINFALL USING THE AQUIFER RESPONSE FUNCTION (OPTIONAL) 1
т	These calculations derive nat. total river flows & GW outflows from monthl	hy hydrologically effective rainfall, assumptions of recharge/runoff split
	and catchment characteristics using the 'Aquiler Response Function' (ARF). 2a, flows in a year of 'average' rainfall (to achieve a reasonable simulation o	
	2b. flows in the specified assessment year (based on effective rainfall data b	
	Results summarised in Step 3 can be pasted into the 'River Outflow Calcs' of	
	with other natural flow estimates (e.g. for river flows, estimates based on ga	
	Year of Assessment	· · · · · · · · · ·
T	The year specified for this assessment is Drought condition 1991	•
۰ .	(these should be as specified in the 'River Outflow Calcs' or 'GW C a. Natural River Flows or GW Outflows in an 'Average' Year Based o	•
28.	Areas	sq km Based on;
	Surface Water Catchment Area	316 ih hydrometric register, 91-95
	(For Rivers, area from which runoff drains above the assessed po	
	Aquifer Area within the Surface Water Catchment	316 assume all area receives recharge
	(For Rivers , area from which runoff drains above assessed point of	and recharge enters aquifer. For GW outflows, equals GW catchment area)
	Groundwater Catchment Area	296 sw catch area - ~20sq km for drought condition
	(For rivers, aquifer area from which recharge would naturally dis	
	For GW outflow, aquifer area from which recharge would natural	mn/a Based on:
	Long Term Annual Average Hydrologically Effective Rainfall Average Annual Total Hydrologically Effective Rainfall	173.1 morecs sq 130 average 1970-90
	Average Annual Total Hydrologically Effective Rannan	175.1 mores sq 150 average 1770-90
	Assumptions Splitting Hydrologically Effective Rainfall into Runo	off and Recharge Based on:
	Aquifer recharge as % of effective rainfall	44 % J. Barker & cales in sq130-mo.xls
		(so Aquifer runoff = 56 %)
	Calculated Long Term Annual Average Runoff and Recharge	
	Ann. Av. Recharge draining to river or across GW outflow boundary =	
	(equivalent	,
	Ann. Av. Runoff draining to river or 'lost' in GW outflow cales = =eff rainfall*(SW catch area - aquifer area in SW catch) + o	
	For rivers, total discharge draining to river =	145.7 MI/d =recharge input plus runoff input
	(equivalent	
	Calculated Average Distribution of Runoff and Recharge	
	Based on: Av =	= 1.00 Av. Monthly Factors of Av. Ann. Rech & Runoff Rates
	Default values = typical MORECS square Eff. Rain. factors	.00 3.04 2.22 1.53 0.74 0.22 0.04 0.03 0.02 0.10 0.53 1.11 2.29
		Average Runoff and Recharge, MVd
	_	n Av J F M A M J J A S O N D 84 M1/d 253 186 128 62 18 3 3 1 9 44 110 192
		62 MI/d 188 137 94 46 13 2 2 1 6 33 81 141
		○┆ ╨╜┼╜╜┼╙╜┼╔╤┼ ╼╾┼╶╌┼ <u>╶</u> ┼╼╌┼══┼╙┛ _┶ ╓┛╹┤
	■ Recharge, 62 MI/d	JFMAMJJASOND
	Aquifer Characteristics Controlling Natural River Baseflow or GW	V Outflow Response to Recharge - Based on:
	Recharge % draining to River or GW Outflow in the same month	0 % No karstic response
	Aquifer Characteristics Controlling Slower Natural Baseflow or G	W Outflow Response from Remaining Recharge
	Total length of rivers or GW boundary draining GW catchment	30 km measured length of Thet & main tribs
	Average Storage (Specific Yield)	0.03 no units approx. from Redgrave Model
	Average Transmissivity	500 m2/d approx. from Redgrave model
	From these parameters and the GW catchment	t area, the Aquifer Response Time = 1460 days
	Average Natural Runoff and River Baseflow or GW Outflow	Av. Nat. Runoff and River Baseflow or GW Outflow, Ml/d
		n Av J. F M A M J J A S O N D
		B4 MB/d 255 186 128 62 18 3 3 1 9 44 110 192
	Av. Nat. Baseflow or GW Outflow, 62 MI/d	62 MU/d 76 80 78 72 64 57 53 49 47 48 53 64
		400 _ĭ
	🗆 Av. Nat. Runoff, 84 Ml/d	
	Av. Nat. Baseflow or GW Outflow, 62 MI/d	
		J F M A M J J A S O N D
		Av. Nat. Total Outflow = Runoff + Baseflow or GW Outflow, Ml/d
		Av Min J F M A M J J A S O N D 46 51 332 267 206 134 82 60 56 51 56 92 163 256
		400 T
	Av. Nat. Total Outflow, 146 MI/d	200 -
		J F M A M J J A S O N D
		······

sheet: ARF

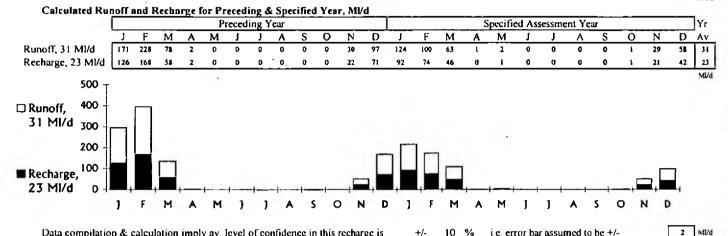
(protected worksheet)

AVAILABLE RESOURCE METHODOLOGY (ARM)

Area	R Thet at Melford Bridge GS	ID	?	Version l	Ledger Rev.	<u> </u>	Date	19/8/99
NAT. RIVER I	LOWS & GW OUTFLOWS DERIVED	FROM EF	7F. B	RAINFALL USING	THE AQUIFER	RESPO	NSE FUNCI	FION (OPTIONAL)

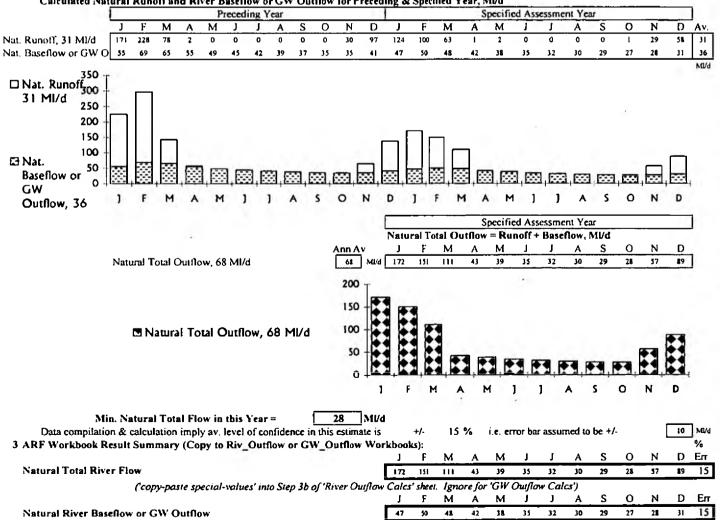
2 b. Natural River Flows or GW Outflows derived from Hydrologically Effective Rainfall in the Specified Assessment Year

and Preceding Nine Years based on the Aquifer Response Function (ARF)


Hydrologically Effective Rainfall (HER) Data Entry

Enter 10 yrs of monthly HER values, yr 10 being that specified for assessment, in column DI from Row 24 down

Data Source: Morecs square 130, 1982 - 1991 drought year



		-			Р	reced	lin <u>g</u> Y	'ear								S	pecifie	ed As	essme	пі Үс	ar				Yr
<u>10 Yr Av</u>	J	F	М	Ā	М	J	ł	Α	S	0	Ν	D	J	F	М	Α	М	1	J	A	S	0	N	D	Tot
158 mm/a	30	40	14	0	0	0	0	0	0	0	5	17	22	18	11	0	0	0	0	0	0	0	5	10	66

Data compilation & calculation imply av. level of confidence in this recharge is +/-10 % i.e. error bar assumed to be +/-

Calculated Natural Runoff and River Baseflow or GW Outflow for Preceding & Specified Year, MI/d

END OF SHEET (copy-paste special-values' into Step 4b of 'River Outflow Calcs' sheet or into Step 3b of 'GW Outflow Calcs' sheet)

BRIGHTON BLOCK 1996 TRIAL VERSION 1 ARM SPREADSHEET (ASSUMING 'AVERAGE' RATE GWABS IMPACTS)

Gwbritot96v1.xls (including Conceptual understanding sheet): 11 pages

GWBritot96v1.xls, 16/02/00

F

page 1 of 3

	G w Britol 96 v 1. xis, 16/02/00 sileet. Co	nceptua	i Understai	numg			pa	age 1 of 5
		URCE	метно	ODO	DLOGY	(ARM)		
	Conceptual Understanding					• •	tected v	vorksheet)
	Area Brighton Chalk Block (total) ID	?	Version	1	Ledger R	• •	Date	
1	Area Definition, Boundaries and Surface	-	•					
	Draw on the attached sheet, a simple sketch	•					-	
	Show/label the following features (as relevan GW contours & catchment boundaries as yo				-	hment bou tion, geol.	•	
	the coast, rivers flowing in and out, gauging		-					-
	location of major SW discharges and SW an					-		
2	Geology of the Area and Schematic Cross	Section	I		Bedrock		Drift	
	Main geological formation: Chalk / Greensa	and		Type:	Y	or		(tick)
	Is this an aquifer - is GW a significant part o	-	-	cycle?	? (Y/N)	Y	(if N,	go to 5)
		Gault Cla	•		1.10.1	•. •		
	Overlying solid or drift geology in Area: I If appropriate: Draw on the attached she				-	_		9790
	n appropriate. Draw on the attached she	et a sem	emane geo	logica	1 0055 500	uon(s) un	ougn me	dica.
3	Groundwater Recharge and Interaction b	etween	Groundwa	ater a	nd Surfa	ce Water		
	Aquifer Condition: Confined		nconfined			Mixed		
	if confined, by what?						•	
	Recharge: Relevant processes		Direct rec	-			١	
	(please tick):				-	off-recharge		
			'Urban' lea	-			٢	
				-		& smoothir	ոց': Դ	7
	8	All the a			art of the		-	
		-	reduced by			-		
		теакаде	considered	10 112	ike up for	uroan runo	off tosses	й П
	Aquifer Response to Recharge (in words):		year	seaso	on mon	th week	day	/
	please tick according to your concept	ual feel:			Y			
	Groundwater - River Interaction:		poorly con	nnecte	ed 🛛		l connec	ted
	please tick according to your concept	ual feel:				Y		
			baseflow i	-		baseflow	•	
	river flows a	are now:			-		-	ζ.
	to a true line design		baseflow i	-		baseflow	-	
	'naturally' rive If appropriate: Mark recharge and discha				-	r raachac	٢	ſ
	If appropriate: Mark recharge and discharge on the conceptual sketch	-			-		s section	n(s)
4	Hydrogeological Boundaries and Ground	water F	low					
	Are there significant groundwater flows into			<u>.</u>	Yes: Y	7	No:	
	show on sketch plan & section and desc	ribe	GW	flow to	o sea & to	tidal river:	S	
	Are there hydrogeological flow barriers or T	ransmis	sivity varia	tions:	Yes: Y	7	No:	
	show on sketch plan & section and desc	ribe	high	T dry	valleys &	high winte	er T/low	summer T
	Does water quality constrain abstraction (eg	saline in	ntrusion etc	:):	Yes: Y		No:	
	show on sketch plan & section and desc	cribe	Coas	tal aqu	uifer risk (of summer	saline in	trusion

-

.

Groundwater levels:

River flows:

GW abstraction:

SW abstraction:

5

5.1

page 2 of 3

AVAILABLE R	ESOL	JRCE	метно	ODC	DLOG	Y (A	RM	(IV	
Conceptual Understanding						•		•	vorksheet)
Area Brighton Chalk Block (total)	ID	?	Version	1	Ledger	Rev	1	Date	01-Feb-00
Observed Hydrological Trends and	l Enviro	onmenta	l Concer	ns					
Perceived Trends from 'Natural' to	o 1970	falling	steady	ri ri	sing i	mixed		comment/	data source

Groundwater levels:	Y?		No Data
River flows:		· ·	bournes only
GW abstraction:		Y	

Y

Y

SW abstraction: No Swabs **Trends Evident from 1970 to Present** 5.2 falling steady rising mixed

bournes only

No SW abs

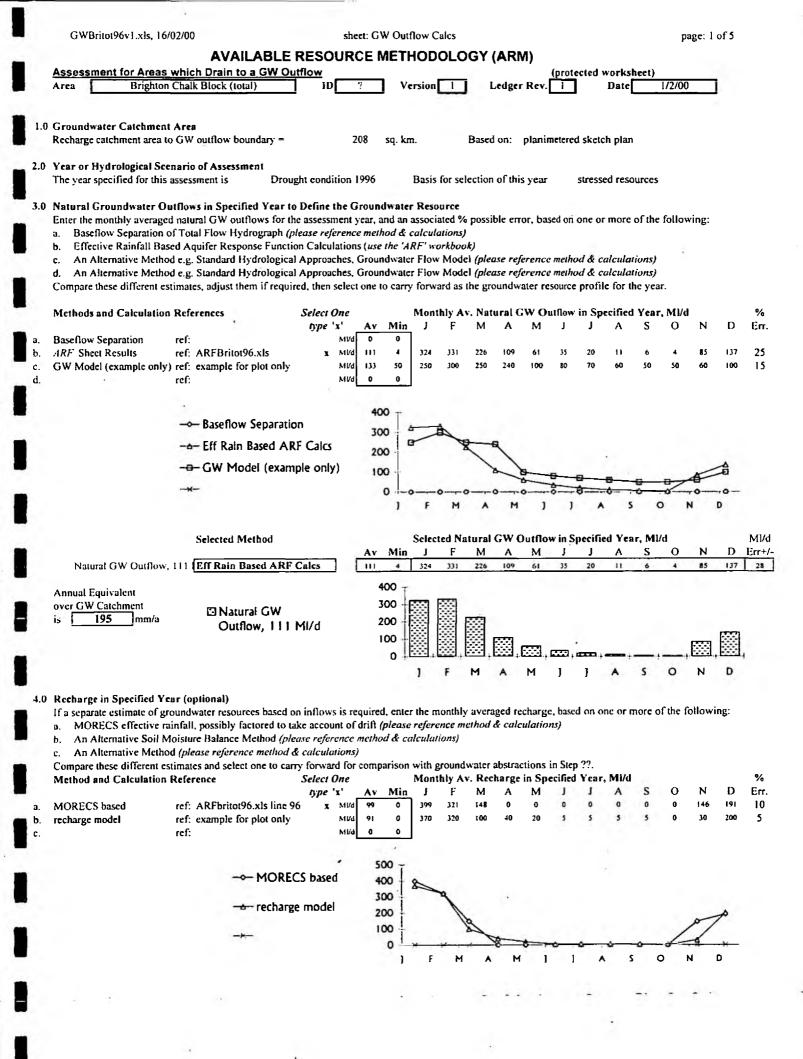
5.3 **Relative Magnitude of Current Artificial Influences**

Please rank by magnitude SW discharges, GW abstraction and SW abstraction GWabs >> SWabs = Swdis to rivers = 0 (all sea outfalls)

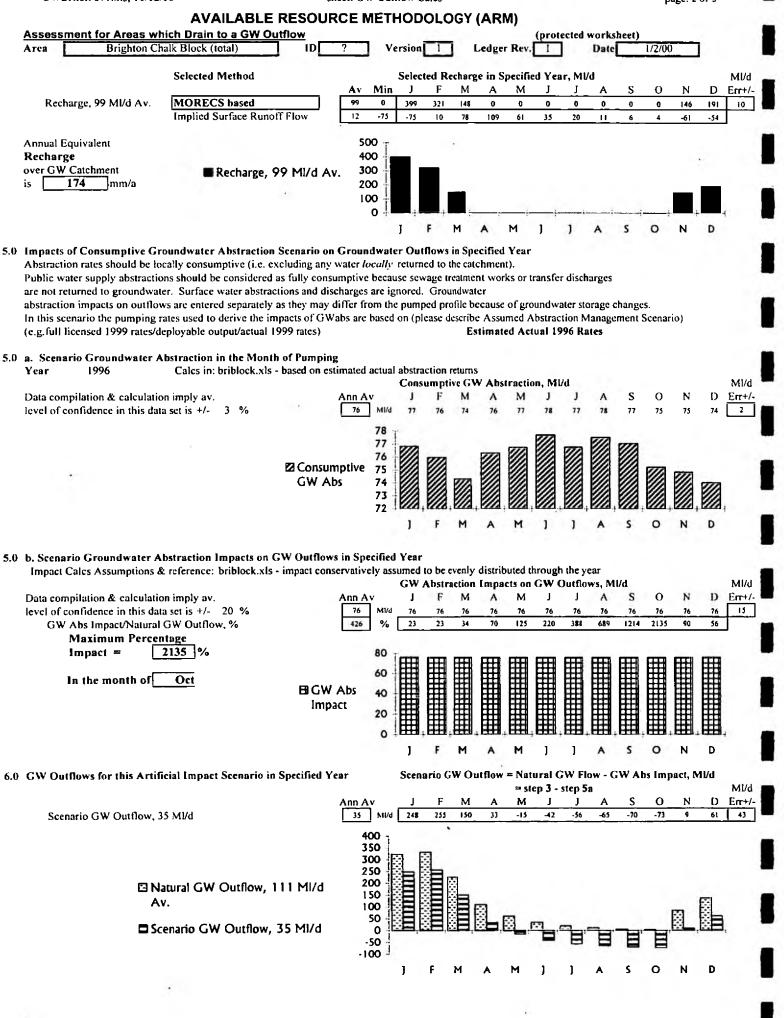
Are there any other artificial influences on the catchment? (e.g. reservoirs, bulk transfer schemes etc.)

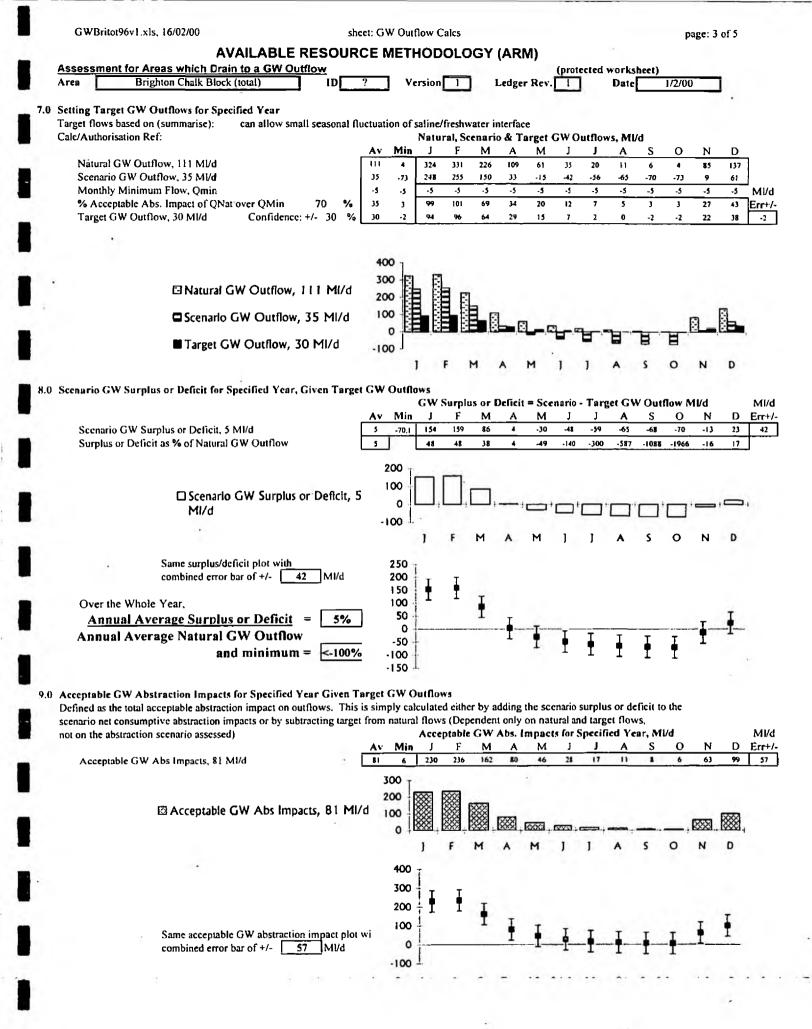
5.4	Water Resources Enviro	nmental Concerns			
	Please summarise	river flows	wetlands	salinity Y	other

Please explain: Risk of saline intrusion due to excessive pumping of coastal aquifer, winter flows in winterbourne & spring flows on northern scarp face


Previous Studies and Reason for this Assessment 6 Please List: Not fully reviewed. No recent modelling studies

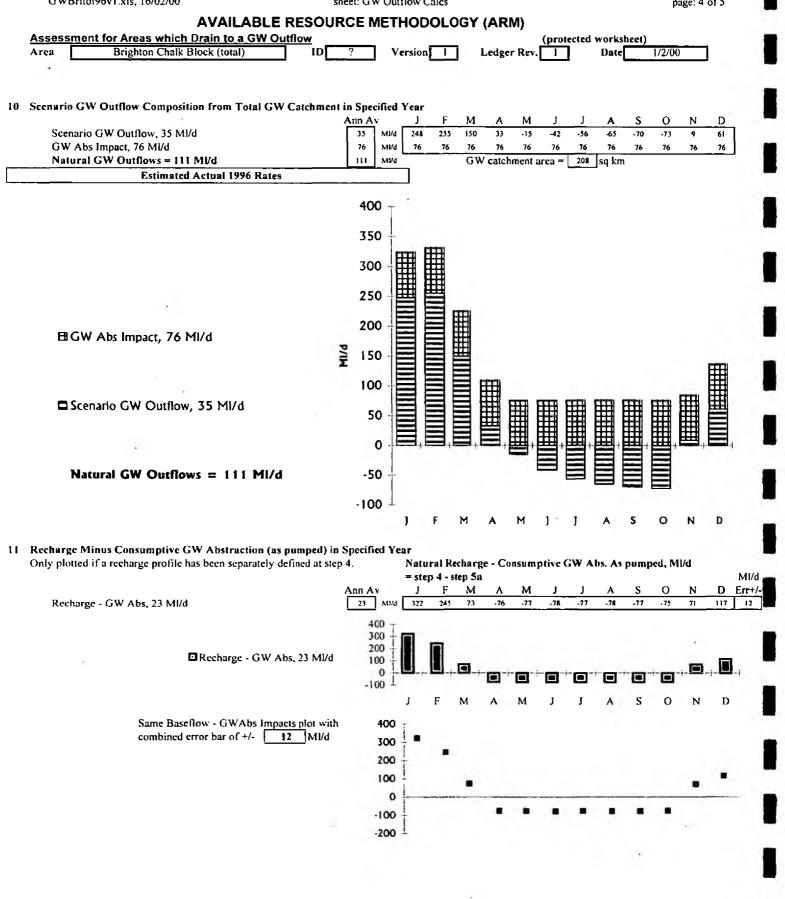
Please explain why you are carrying out this assessment now: To trial the spreadsheets in GW dominated area with spatially/seasonally variable T -

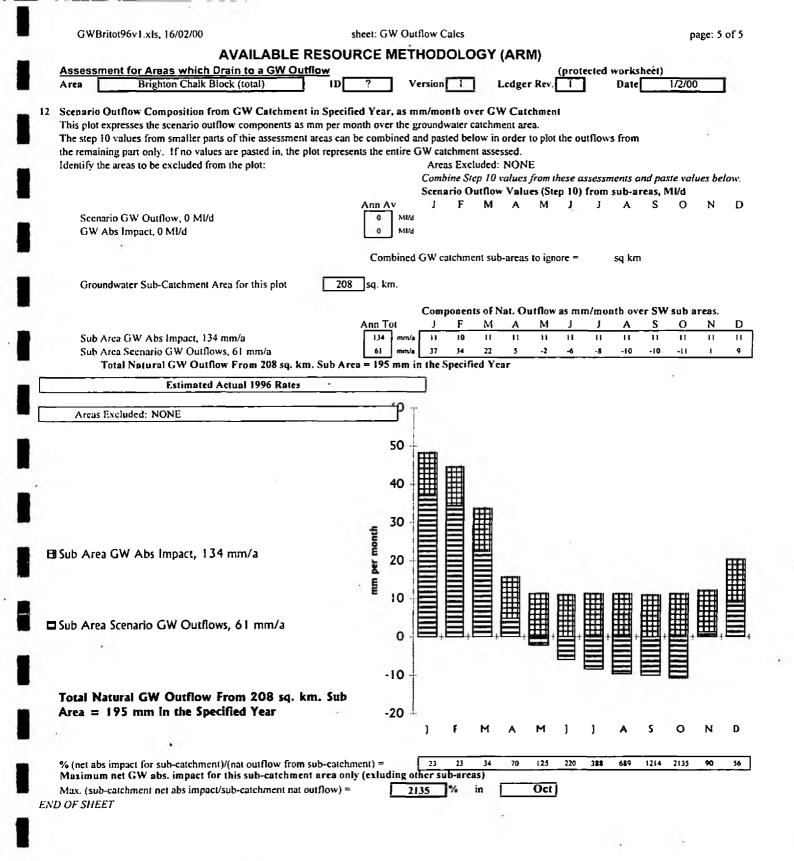

1

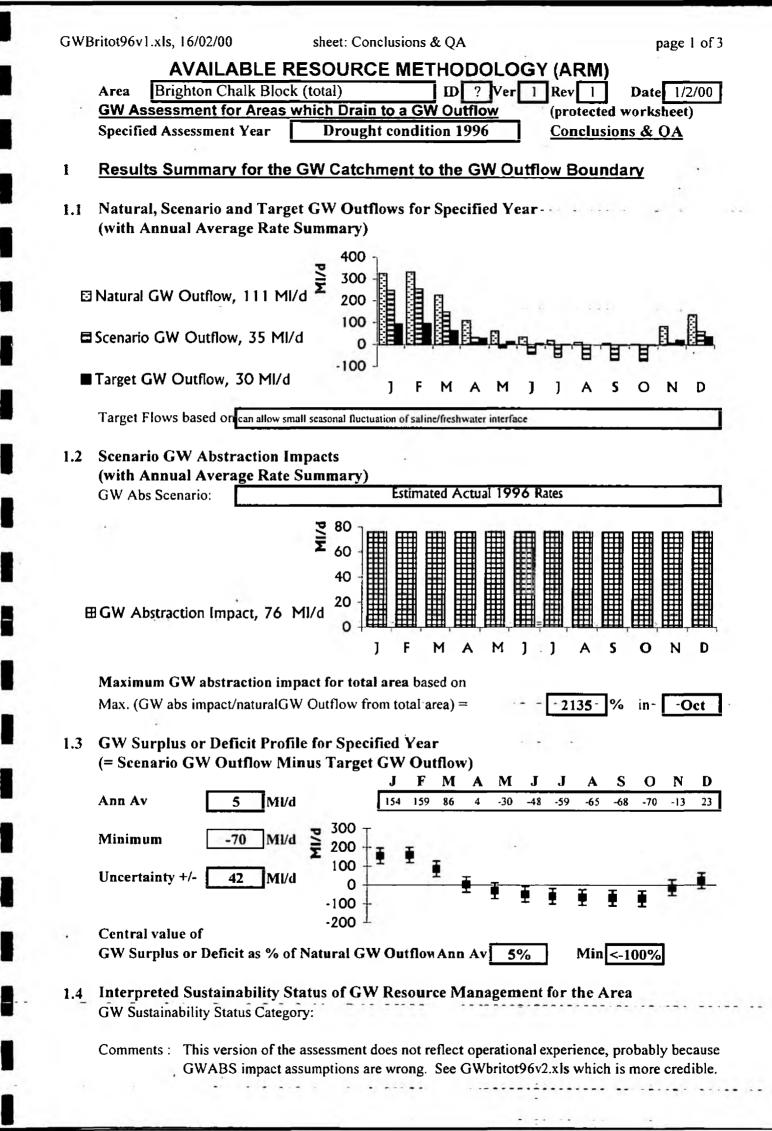

Conceptual Understanding rea Brighton Chalk Block (tota		Version	l Ledge	er Rev 1	rotected v Date	01-Fet
Conceptual sketch plan (hand	sketch or import a	s windows met	afile)			
see Figure 9.3 of main Use						
U U						
		*				
	•					
<i>2</i>				1		
	3.					
Assessment Area is coincid	ent with WHOLE	BRIGHTON E	LOCK wi	thin red bour	idary	
Assessment Area is coincid Schematic conceptual sketch o	cross-section(s) (h	and sketch or i	mport as v	vindows met	atīle)	
			÷	-4-		
						G. 44
		-				

. .

page: 2 of 5

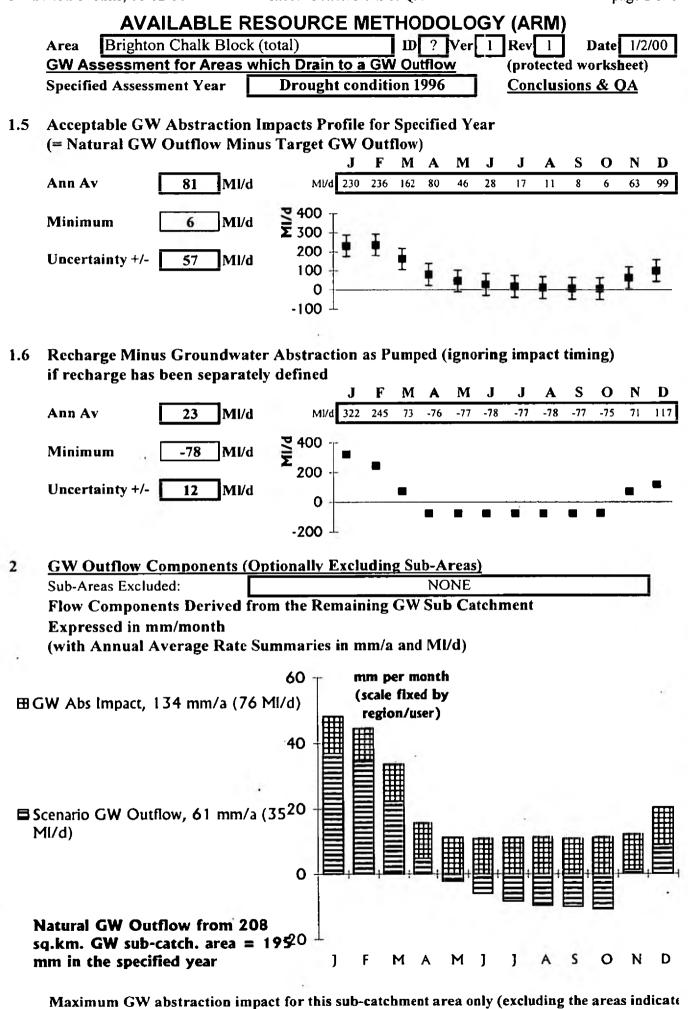



÷


GWBritot96v1.xls, 16/02/00

sheet: GW Outflow Calcs

page: 4 of 5



sheet: Conclusions & QA

page 2 of 3

Oct

Max. (sub-catchment GW abs impact/sub-catchment nat GW outflow) = 2135 % in

GWBritot96v1.xls, 16/02/00 sheet: Conclusions & QA page 3 of 3 AVAILABLE RESOURCE METHODOLOGY (ARM) ID ? Ver 1 Rev 1 Brighton Chalk Block (total) Date 1/2/00 Area GW Assessment for Areas which Drain to a GW Outflow (protected worksheet) **Drought condition 1996 Conclusions & QA** Specified Assessment Year 3 Interpreted Management Action Required Note: this section may be based on consideration of other years in other spreadsheets 3.1 Potential for Further Development Potential for additional steady state GW abstraction impacts Ml/d (zero if none) Potential for additional winter-only GW abstraction impacts Ml/d (zero if none) (difficult to manage in a 'slowly' responding aquifer) 3.2 Target For Abstraction Impact Reduction Overall target for reduction of GW abstraction impacts: MI/d during 3.3 Other Proposals to Improve GW Resource Management or Sustainability (e.g. enhanced water quality or level monitoring with regular licence review etc.) **NOTE:** Each licence application or reduction assessed on a case by case basis considering: proximity to rivers/wetlands/the coast, consumptiveness/point of return, seasonality etc **QA Authorisation and Version Control** 4.1 Acceptable Impact Assessment Review and Authorisation **G** Coombs

Version: Assessed by: sign Reviewed by (hydrogeologist & hydrologist): R Soley & J Bloggs sign Authorised by J Bloggs sign

Any need/plans to reassess resource soon?: target date method 01/01/01

CAMS the real thing

4.2 Abstraction Ledger Update Control 0 Updated on: Ledger rev. no:

By:

In connection with licence numbers: END OF SHEET

1

BRIGHTON BLOCK 1996 TRIAL VERSION 2 ARM SPREADSHEET (ASSUMING GWABS IMPACTS DISTRIBUTED ACCORDING TO NATURAL OUTFLOWS)

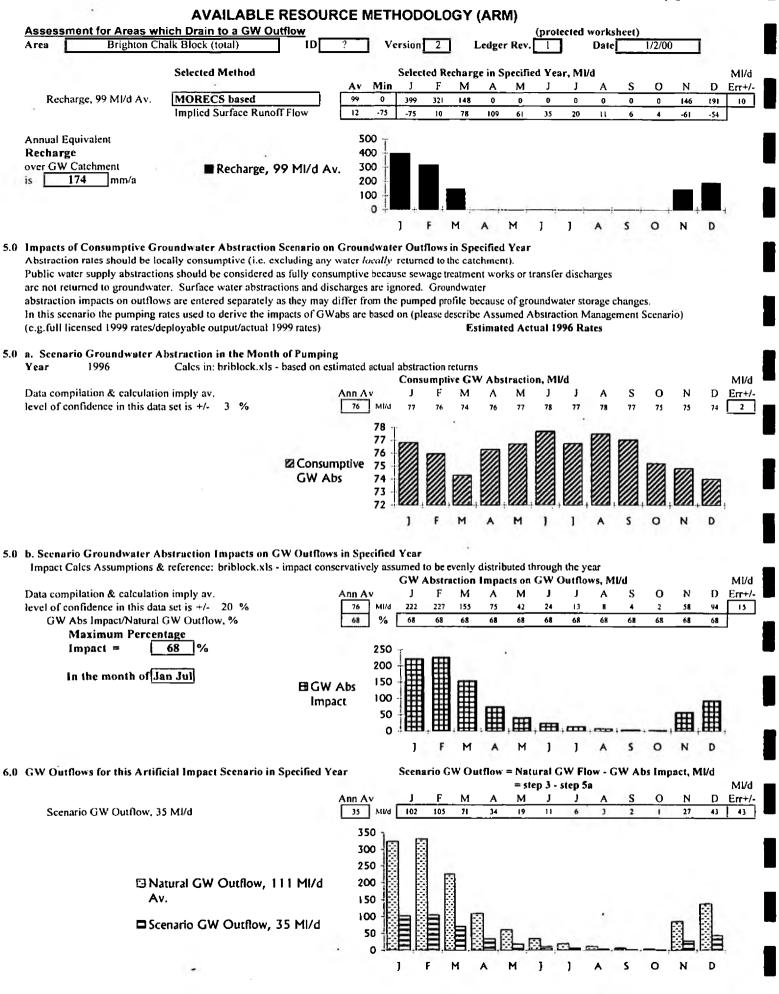
Gwbritot96v2.xls (not including Conceptual understanding sheet): 8 pages

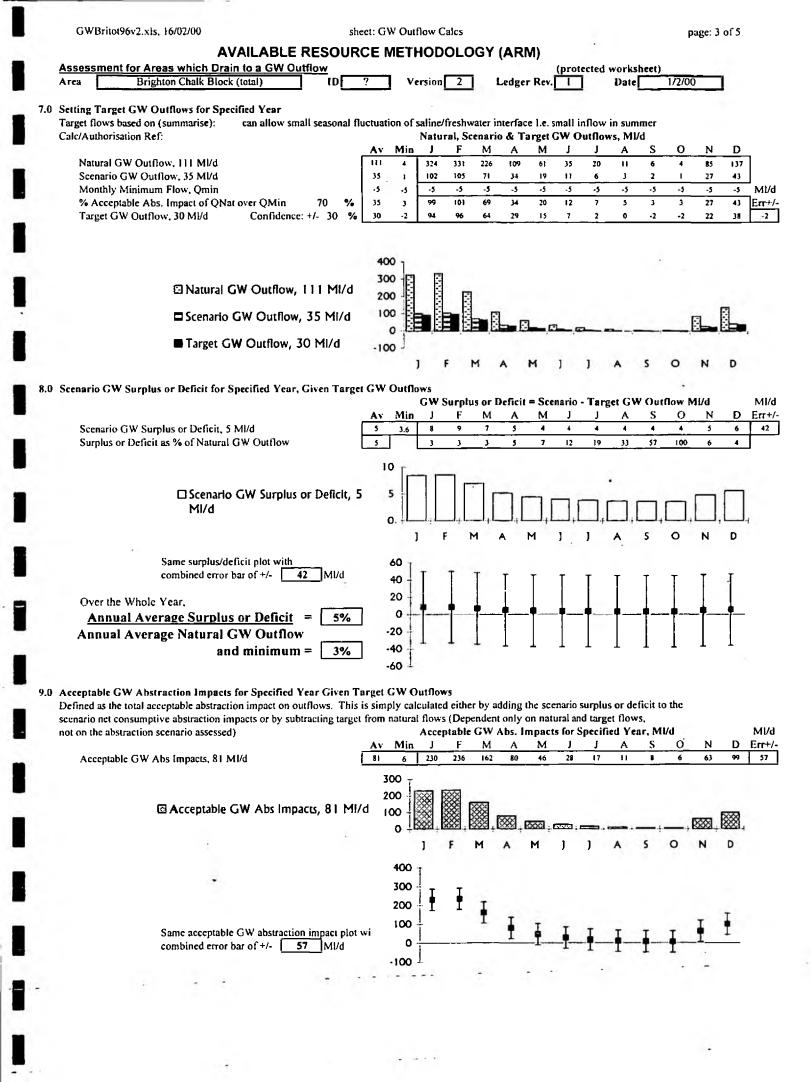
	GWBritot96v2.	xls, 16/02/00	shee	et: GW Out	flow Calcs					p	age: 1 (of 5	
				CE MET	HODOLO	DGY (AF	•			~			
		Areas which Drain to a GW C righton Chalk Block (total)	<u>υπιον</u> ΙD	? _ v	ersion 2] Ledg	ger Rev.	protected	Date	et) 1/2/00	<u> </u>		
							_		_		1.0		
1.0	Groundwater Cate	hment Area											
	Recharge catchment	t area to GW outflow boundary =	- 20	08 sq. ki	m.	Based on:	: planimo	etered sket	ch plan				
2.0		cal Scenario of Assessment for this assessment is Dro	ought condition 1	996	Basis for so	ection of t	this year	stress	ed resour	·çes			
3.0	 Enter the monthly a a. Baseflow Separation b. Effective Rainfield c. An Alternative d. An Alternative 	ater Outflows in Specified Year veraged natural GW outflows for ration of Total Flow Hydrograph fall Based Aquifer Response Func Method e.g. Standard Hydrologic Method e.g. Standard Hydrologic erent estimates, adjust them if requ	the assessment y (please reference tion Calculations cal Approaches, C cal Approaches, C	ear, and an e method & s (use the 'A Groundwate Groundwate	associated % calculations RF [*] workboar Flow Moder Flow Moder) ok) el (please) el (please)	reference i reference i	nethod & a nethod & a	calculatio calculatio	ns) ns)	wing:		
	Methods and Calc	ulation References	Select One	A., Min	Monthly A			flow in Sp				n	%
а,	Baseflow Separation	n ref:	type 'x' миd	Av Min 0 0	J F	M A	м	I I	A	S O	N	D	Еπ.
b.	ARF Sheet Results	ref: ARFBritot96.xls	x MI/d	111 4 133 50	324 331 250 300	226 IO 250 24		35 20 80 70	11 60	6 4 50 50	85 60	137 1 00	25
c. d.	UW MODEL (example	le only) ref: example for plot only ref:	y MVd MVd	133 50 0 0	230 300	230 24	0 100	au 70		30 30	80	100	15
				100									
		Baseflow Separat	lion	400									
		Eff Rain Based A	_	300		0							
				200		1	\						
		-B- GW Model (exa	mple only)	100		×	0-0		8 0	-87	4	Ĩ	
)(0	60 F M	••	-0Ö M 1		-0÷	0	-0	-0	
				· · ·									
		Selected Method		Av Min	Selected N J F	atural GW M A		in Specifi		MI/d S O	N	D	MI/c Err+/
	Natural GW O	utflow, 111 Eff Rain Based AR	F Cales	111 4	324 331	226 10	9 61	35 20		6 4	85	137	28
	Annual Equivalent			400									
	over GW Catchmen	^{it} . 🖸 Natural GW		300 -					2				
	is 195 n	outflow, 11	i Mi/d	200									
				100	M								
				0 11] F	MA	м	1 1	A :	s o	N	D	
		• • • • • •											
4.0	a. MORECS effect b. An Alternative	te of groundwater resources based et ive rainfall, possibly factored to Soil Moisture Balance Method (p Method (please reference method	take account of contract on contract of contract on co	drift (please method & cl	e reference n	y averaged nethod & co	recharge, alculations	based on ()	one or mo	re of the f	ollowi	ng:	
		crent estimates and select one to c			with ground	lwater abst	ractions in	Step ??.					
	Method and Calcu		Select One type 'x'		Monthly A		ge in Spec			s o	N	D	% Err.
a.	MORECS based	ref: ARFbritot96.xls line		<u>Av Min</u> 99 0	399 321	M A 148 0		0 0	0	0 0	1N 146	191	Епт. 10
b.	recharge model	ref: example for plot only	у миа миа	91 0 0 0	370 320	100 40	20	5 5	5	5 0	30	200	5
¢.		ref:	~120		L								
				500 T									
		→ MOR	ECS based	400	8								
		rechai	rge model	300 +	1								
			• ·	200 +	1	B					01	~	
				0	× . *	* 8	-0-0-			-6	-	****	
				3	FM	A	M J	1 .	A S	0	NI	þ	
										1.11			
											• •		

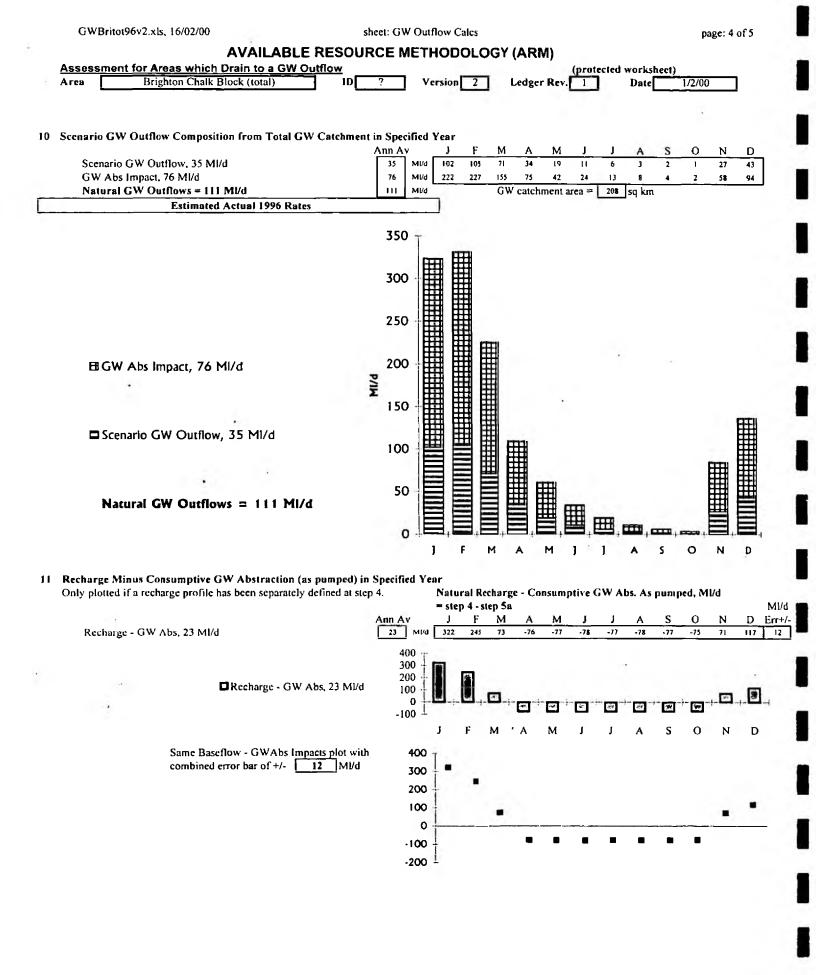
× –

-

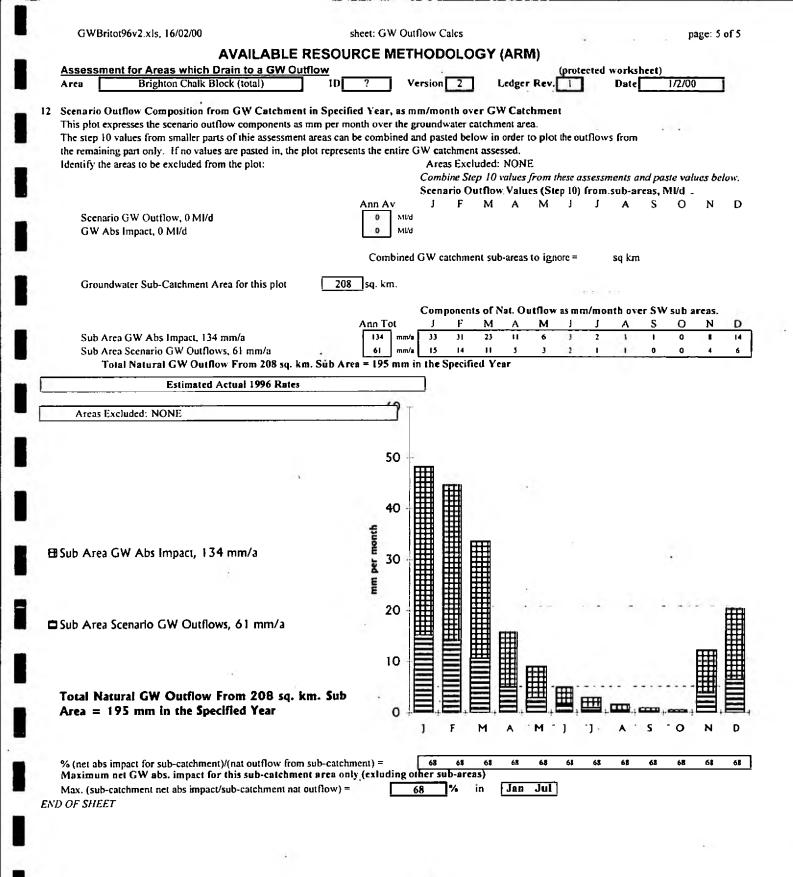
.


•


••


I

-


.

.

a total

GW	Britot96v2.xls, 16/02/00 sheet: Conclusions & QA page 1 of 3
	AVAILABLE RESOURCE METHODOLOGY (ARM)
	AreaBrighton Chalk Block (total)ID ? Ver 2Rev 1Date 1/2/00GW Assessment for Areas which Drain to a GW Outflow(protected worksheet)
	Specified Assessment Year Drought condition 1996 Conclusions & QA
1	Results Summary for the GW Catchment to the GW Outflow Boundary
1.1	Natural, Scenario and Target GW Outflows for Specified Year (with Annual Average Rate Summary)
	ANatural GW Outflow, 111 MI/d 200
	Scenario GW Outflow, 35 MI/d
	Target GW Outflow, 30 MI/d J F M A M J J A S O N D
	Target Flows based on can allow small seasonal fluctuation of saline/freshwater interface Le. small inflow in summer
1.2	Scenario GW Abstraction Impacts (with Annual Average Rate Summary) GW Abs Scenario: Estimated Actual 1996 Rates
	$\blacksquare GW Abstraction Impact, 76 MI/d \stackrel{50}{0} = \blacksquare , \blacksquare$
	Maximum GW abstraction impact for total area based on
	Max. (GW abs impact/naturalGW Outflow from total area) = 68% in Jan
1.3	GW Surplus or Deficit Profile for Specified Year
	(= Scenario GW Outflow Minus Target GW Outflow) J F M A M J J A S O N D
	Ann Av 5 Ml/d 8 9 7 5 4 4 4 4 5 6
	Uncertainty +/- 42 Mi/d 0 0 1 1 1 1 1 1 1 1 1 1
	-50 ¹ Central value of GW Surplus or Deficit as % of Natural GW Outflow Ann Av 5% Min 3%
1.4	Interpreted Sustainability Status of GW Resource Management for the Area GW Sustainability Status Category:

Comments: Not assigned at this trial stage - see discussion in Section 1.3.8 and note in Section 9.1 of the User Manual for further information. Step 3 (Management Action).also not complete

. .

.

....

page 2 of 3

Max. (sub-catchment GW abs impact/sub-catchment nat GW outflow) =

68

% in

Jan

	GW Assessment	for Areas which Drain	to a GW Outflow	(protected	worksheet)		
	Specified Assessme	ent Year Drough	t condition 1996	<u>Conclusio</u>	ons & OA		
		÷					
					·		
;		agement Action Rec					
		-	nsideration of other ye	ears in other	spreadsheet		
		urther Development		N 4174	(
		nal steady state GW abstra nal winter-only GW abstra	•	MI/d MI/d	(zero if none (zero if none		
		IV11/U					
	· •	in a 'slowly' responding a straction Impact Reduct					
	U	duction of GW abstraction		Ml/d during			
			urce Management or Sus		241116		
	-	-	itoring with regular licence	•			
	proximity	to rivers/wetlands/the coas	si, consumptiveness/point	or return, seus	······) -···		
ļ		to rivers/wetlands/the coas		or rectany, seus			
ŀ	QA Authorisatic	on and Version Cont	rol and Authorisation				
ļ	QA Authorisatic	on and Version Cont	rol	sign			
ļ	QA Authorisatic 4.1 Acceptable Im Version: 1	on and Version Cont	rol and Authorisation G Coombs				
ţ	QA Authorisatic 4.1 Acceptable Im Version: 1	on and Version Cont pact Assessment Review Assessed by:	rol and Authorisation G Coombs	sign			
ļ	QA Authorisatic 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by	on and Version Cont pact Assessment Review Assessed by:	rol and Authorisation G Coombs R Soley & J Bloggs J Bloggs	sign sign			
	QA Authorisatic 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by	on and Version Cont pact Assessment Review Assessed by: ogeologist & hydrologist):	rol and Authorisation G Coombs R Soley & J Bloggs J Bloggs	sign sign			
ŀ	QA Authorisatic 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date	on and Version Cont pact Assessment Review Assessed by: ogeologist & hydrologist): reassess resource soon?:	rol and Authorisation G Coombs R Soley & J Bloggs J Bloggs	sign sign			
ł	QA Authorisatic 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01	pact Assessment Review Assessed by: ogeologist & hydrologist): reassess resource soon?: method	rol and Authorisation G Coombs R Soley & J Bloggs J Bloggs	sign sign			
ł	QA Authorisatic 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01	on and Version Cont pact Assessment Review Assessed by: ogeologist & hydrologist): reassess resource soon?:	rol and Authorisation G Coombs R Soley & J Bloggs J Bloggs	sign sign			
ŀ	 QA Authorisatic 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01 4.2 Abstraction Lo Ledger rev. no: 	on and Version Cont pact Assessment Review Assessed by: ogeologist & hydrologist): reassess resource soon?: method edger Update Control 0 Updated on:	rol and Authorisation G Coombs R Soley & J Bloggs J Bloggs CAMS the real thing	sign sign			
	 QA Authorisatic 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01 4.2 Abstraction La Ledger rev. no: In connection with I 	on and Version Cont pact Assessment Review Assessed by: ogeologist & hydrologist): reassess resource soon?: method edger Update Control 0 Updated on:	rol and Authorisation G Coombs R Soley & J Bloggs J Bloggs CAMS the real thing	sign sign			
	 QA Authorisatic 4.1 Acceptable Im Version: 1 Reviewed by (hydro Authorised by Any need/plans to target date 01/01/01 4.2 Abstraction Lo Ledger rev. no: 	on and Version Cont pact Assessment Review Assessed by: ogeologist & hydrologist): reassess resource soon?: method edger Update Control 0 Updated on:	rol and Authorisation G Coombs R Soley & J Bloggs J Bloggs CAMS the real thing	sign sign			

I

E

i.

Call - They

BRIGHTON BLOCK 1996 TRIAL OPTIONAL AQUIFER RESPONSE FUNCTION SPREADSHEET FOR NATURAL GW OUTFLOWS

ARFbritot96.xls: 2 pages

sheet: ARF

page: 1 of 2

.

•

÷

AVAILABLE RESOURCE METHODOLOGY (ARM)

.

						(protected we	orksheet)	
	Area Brighton Chalk Block (total) ID		Version		Ledger Rev.		ate 01-Fel	
	NAT. RIVER FLOWS & GW OUTFLOWS DERIVED FROM EFF	F. RAIN	<u>FALL U</u>	SING T	<u>HE AUUIFER</u>	RESPONSE	FUNCTION	<u>(OPTIQNAL)</u>
	These calculations derive nat, total river flows & GW outflows from mor	nthiv hvd	rologica	llv effecti	ve rainfall assu	motions of rec	harge/gupoff s	nlit
	and catchment characteristics using the 'Aquiter Response Function' (AR							
	2a. flows in a year of 'average' rainfall (to achieve a reasonable simulation							
	2b. flows in the specified assessment year (based on effective rainfall dat		-		-	-		tions)
	Results summarised in Step 3 can be pasted into the 'River Outflow Calc						polise assumpt	
	with other natural flow estimates (e.g. for river flows, estimates based on					отратот		
	Year of Assessment	Bunge II		un san on				
•	The year specified for this assessment is Drought condition 199	96	Basis	for selec	tion of this year	stressed	resources	
	(these should be as specified in the 'River Outflow Calcs' or 'GW				-			
2	a. Natural River Flows or GW Outflows in an 'Average' Year Based					RF)		
	Агеаз		-		sq km	Based on:		
	Surface Water Catchment Area				208	planimetered :	sketch plan	
	(For Rivers, area from which runoff drains above the assessed	point. F	For GW	outflows ,	equals GW ca			
	Aquifer Area within the Surface Water Catchment				208	planimetered :	•	
	(For Rivers, area from which runoff drains above assessed point	int and re	charge e	enters aq	•			nent area)
	Groundwater Catchment Area		_		208	planimetered :	sketch plan	
	(For rivers, aquifer area from which recharge would naturally							
	For GW outflow, aquifer area from which recharge would natu	urally dis	charge o	over the o				
	Long Term Annual Average Hydrologically Effective Rainfall				mm/a	Based on:		ECE 4- 1940
	Average Annual Total Hydrologically Effective Rainfall				336	EX map (c) 50	04mm/a MOR	ECS SQ 184)
	Assumptions Solitting Underlagigably Effective Dainfell into Du	noff and	Decha			Based on:		
	Assumptions Splitting Hydrologically Effective Rainfall into Ru Aquifer recharge as % of effective rainfall		Actuar	ge.	100 %		with Paul Shav	
	Aquiter recharge as 70 of encentre faithait	(so A	guifer ru	noff =	0 %	conversation		•
	Calculated Long Term Annual Average Runoff and Recharge	(30 / 4	quiter tu					
	Ann. Av. Recharge draining to river or across GW outflow boundary	/= [191.5]MI/d	= recharge '	% • eff rainfall	+ GW catch a	rea
	(equivale		336		er the GW cate		U	
	Ann. Av. Runoff draining to river or 'lost' in GW outflow cales =		0.0	M1/d		·····,		
	=eff rainfall*(SW catch area - aquifer area in SW catch)	+ eff rais	nfall*aqı	uifer runo	ff%•aquifer ar	ea in SW catch		
	For rivers, total discharge draining to river =		191.5	MI/d		nput plus runo		
	(equivale	ent to	336	mm/a ov	er the SW catcl	hment area)		
	Calculated Average Distribution of Runoff and Recharge	. 7	·	1.11				
	Based on: A	v = 1.00	Av. A	fonthly	Factors of Av.	Ann. Rech &	Runoff Rates	1
	Default values = typical MORECS square Eff. Rain. factors	1.00	3.04	2.22 1.	53 0.74 0.22	004 0.03 0	0 0 2 0 10 0 5	3 1.31 2.29
			Aver		off and Rechau	ge, Mi/d		
		Ann Av			<u>4 Λ Μ</u>	<u> </u>	<u>^ S_O</u>	
	Runoff, 0 MI/d	0 M		-	в о о	C D	0 0	
	Recharge, 191 MI/d	191 M	1/d 582	425 2	92 142 41	7 7	3 20 10	250 438
		1000	 -					
			_					
	□ Runoff, O MI/d	500 ·			1.2.2			
		0		+	l + ■∎.++-	-++	++	······
	■ Recharge, 191 MI/d		J	FM	A M	JJA	s o	ND
	Aquifer Characteristics Controlling Natural River Baseflow or C	GW Out	flow Re	spanse to	Recharge	В	ased on:	
	Recharge % draining to River or GW Outflow in the same month		30	%		6 of flow is ka		
	Aquifer Characteristics Controlling Slower Natural Baseflow or	r GW Ou	itflow R	esponse (rom Remaini	ig Recharge		
	Total length of rivers or GW boundary draining GW catchment		80	km			& high T dry v	alleys
	Average Storage (Specific Yield)		0.01	no units	Typical Cha	alk	• •	•
	Average Transmissivity		127	m2/d	Map of hyd	raulic conducti	ivity not inc hi	gh T
					• -		-	-
	From these parameters and the GW catching	ent area,	, the Aq	uifer Res	ponse Time =	d	ays	
	Average Natural Runoff and River Baseflow or GW Outflow		Av. 🛚	Nat. Runo	off and River I	Baseflow or G	W Outflow, M	11/d
	A CONTRACTOR OF	Ann Av			<u>4 A M</u>		A S O	<u>N</u> D
	Av. Nat. Runoff, 0 MI/d	0 M			D O O	9 O	0 0 0	
	Av. Nat. Baseflow or GW Outflow, 191 MI/d	<u>191</u> М	1/d 446	420 3	47 240 140	78 47	27 26 69	165 307
		600) —					
	□ Av. Nat. Runoff, O Ml/d	400		C23	1. A			
		200			E			
	Av. Nat. Baseflow or GW Outflow, 191	0) teach	real free	artest test			Hered Hered
	MI/d)	FM	AM	1 1 /	A S O	N D
	1° 17 U			1-4 7	0			All and Africa
					Outflow = Ri			
		Av M			<u>A M</u> 47 240 140		A S O 27 26 69	
	Av. Nat. Total Outflow, 191 Ml/d	191 2	6 446	420 3	ar 240 140	/8 4/	27 20 69	103 307
•		600 T						
		400 -			1000			
	Av. Nat. Total Outflow, 191 MI/d	200						
		0+	1			1 1 4		ND
			1	r M	A M	1) A	s o	NU

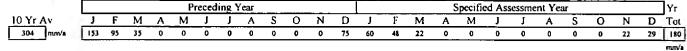
sheet: ARF

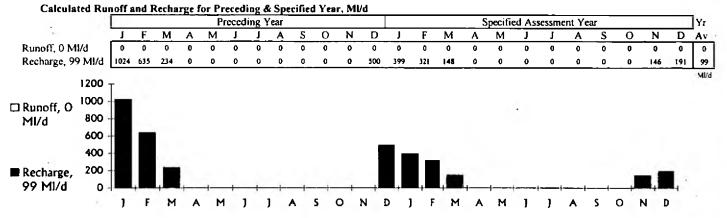
IO MI/d

AVAILABLE RESOURCE METHODOLOGY (ARM)

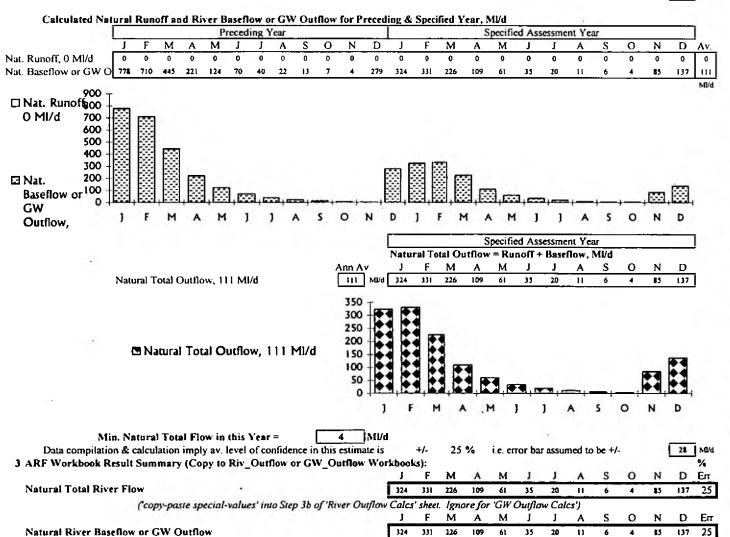
(protected worksbeet) Area Brighton Chalk Block (total) ID ? Version 1&2 Ledger Rev. 1 Date 01-Feb-00 NAT. RIVER FLOWS & GW OUTFLOWS DERIVED FROM EFF. RAINFALL USING THE AOUIFER RESPONSE FUNCTION (OPTIONAL)

2 b. Natural River Flows or GW Outflows derived from Hydrologically Effective Rainfall in the Specified Assessment Year


and Preceding Nine Years based on the Aquifer Response Function (ARF)


Hydrologically Effective Rainfall (HER) Data Entry

Enter 10 yrs of monthly HER values, yr 10 being that specified for assessment, in column DI from Row 24 down


Data Source: Morecs square 184, 1987-96

Hydrologically Effective Rainfall for Preceding & Specified Year, mm/month

Data compilation & calculation imply av. level of confidence in this recharge is +/- 10 % i.e. error bar assumed to be +/-

END OF SHEET (copy-paste special-values' into Step 4b of 'River Outflow Calcs' sheet or into Step 3b of 'GW Outflow Calcs' sheet)