

........

• • •

MIDLANDS REGION

AMP3 BENEFITS ASSESSMENT LOW FLOW ALLEVIATION SCHEMES

FINAL REPORT (INCLUDING BUSINESS CASES)

NOVEMBER 1998

Our Ref: NJW/E210/J98032A

9 December 1998

Environment Agency - Midlands Region Sapphire East 550 Streetsbrook Road Solihull West Midlands B91 1QT

For the attention of John Ratcliffe

GIBB LAWGIBB Group Member

GIBB LTD GIBB HOUSE LONDON ROAD READING BERKSHIRE RG& 1BL

TEL: 0118 963 5000 FAX: 0118 949 1054

> Contact: Nigel Widgery Extension: 2106 Email: nwidgery@gibb.co.uk Direct fax: 0118 966 9554

Dear Sirs

AMP3 Benefits Assessment Low Flow Alleviation Schemes Final Report (including Business Cases)

We are pleased to submit fourteen copies of our final report on the benefits assessment of the eleven low flow alleviation schemes proposed under AMP3.

A further copy in loose leaf form is also submitted, complete with cover sheets, tables of contents and executive summaries. The loose leaf copy will enable you to print separate Business Case documents should these be required for any of the schemes.

Yours faithfully for GIBB Ltd

Nogel Writgey.

Nigel Widgery Project Director

REGISTERED OFFICE: GIBB HOUSE, LONDON ROAD, READING, BERKSHIRE RG& 1BL. REGISTERED IN ENGLAND AND WALES No. 2387707 DOCUMENT CONTROL SHEET

PROJECT: AMP3 BENEFITS ASSESSMENT PROJECT NO: J98032A

LOW FLOW ALLEVIATION SCHEMES TITLE: FINAL REPORT (INCLUDING BUSINESS CASES)

	Prepared by	Reviewed by	Approved by
INTERIM REPORT	J.D.W. BUCKLAND	NAME N.J WIDGERY	NAME J.B.C. LAZENBY
DATE FEBRUARY 1998	SIGNATURE Original signed by J D W Buckland	SIGNATURE Original signed by N J Widgery	SIGNATURE Original signed by J B C Lazenby

DRAFT FINAL REPORT	N.J.WIDGERY		J.BAWDEN
APRIL 1998	BIGNATURE	SIGNATURE	signature
	Original signed by	Original signed by	Original signed by
	N J Widgery	R M Wingfield	J Bawden

FINAL REPORT (INCLUDING BUSINESS CASES)	NUME N.J.WIDGERY		
NOVEMBER 1998	kinget birthge	Million ford	phenoch

This report, and information or advice which it contains, is provided by GIBB solely for internal use and reliance by its Client in performance of GIBB's duties and itabilities under its contract with the Client. Any advice, opinions, or recommendations within this report should be read and reliad upon only in the context of the report as a whole. The advice and opinions in this report are based upon the information made available to GIBB at the date of this report and on current UK standards, codes, technology and construction practices as at the date of this report. Following final delivery of this report to the Client, GIBB will have no further obligations or duty to advise the Client on any matters, including development affecting the information of advice provided in this report. This report has been prepared by GIBB in their professional capacity as Consulting Engineers. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion. This report is prepared in accordance with the terms and conditions of GIBB's contract with the Client. Regard should be had to those terms and conditions when considering and/or placing any reliance on this report. Should the Client wish to release this report to a Third Party for that party's reliance, GIBB may, et its discretion, sgree to such release provided that:

GIBB's written agreement is obtained prior to such release, and

(a) (b)

(C)

By black written agreement is obtained prior to such release, and By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against GIBB and GIBB, accordingly, assume no duties, liabilities or obligations to that Third Party, and GIBB eccepts no responsibility for any loss or damage incurred by the Client or for any conflict of GIBB's interests arising out of the Client's release of this report to the Third Party.

ENVIRONMENT AGENCY MIDLANDS REGION

AMP 3 BENEFITS ASSESSMENT

LOW FLOW ALLEVIATION SCHEMES

.......

• • • •

FINAL REPORT (INCLUDING BUSINESS CASES)

NOVEMBER 1998

GIBB LTD

Cover Photograph : Pool on the River Sherbourne at Coundon Wedge near Coventry (Photo by Gareth Ward)

...

AMP 3 BENEFITS ASSESSMENT LOW FLOW ALLEVIATION SCHEMES

FINAL REPORT (INCLUDING BUSINESS CASES)

CONTENTS

Chapter	Description	Page
1	INTRODUCTION	1-1
	Package A Schemes (Upper and Lower Trent Areas) :	
2	BURNTWOOD POOLS / RIVER SOW	2-1
3	CROXDEN BROOK	3-1
4	DOVER BECK	4-1
5	RIVER NOE AND RIVER ASHOP	5-1
6	RAINWORTH WATER	6-1
	Package B Schemes (Upper and Lower Severn Areas) :	
7	BATTLEFIELD BROOK	7-1
8	BLAKEDOWN BROOK	8-1
9	BOW BROOK	9-1
10	HEWELL GRANGE LAKE	10-1
11	RIVER SHERBOURNE	11-1
12	RIVER WORFE	12-1

•••••

•

•

-

i

LIST OF APPENDICES

APPENDIX 1 Details of Cost Estimates

APPENDIX 2 Burntwood Pools / River Sow APPENDIX 3 Croxden Brook APPENDIX 4 Dover Beck

APPENDIX 5 River Ashop and River Noe

APPENDIX 6 Rainworth Water

APPENDIX 7 Battlefield Brook

APPENDIX 8 Blakedown Brook

APPENDIX 9 Bow Brook

APPENDIX 10 Hewell Grange Lake

APPENDIX 11 River Sherbourne

APPENDIX 12 River Worfe

1

INTRODUCTION

1.1 Background

The Environment Agency is responsible for the control of discharges to controlled waters and the licensing of abstractions under the provisions of the Water Resources Act 1991. As part of the Water Companies' Periodic Review 2000-2010 (Asset Management Planning Round 3 or AMP3) the Agency is currently preparing a submission identifying:

- sewage treatment works (STW) where improvements are necessary to ensure environmental quality objectives are met;
- low flow sites where action is required by Water Companies to alleviate low flow problems.

In undertaking its statutory duties the Environment Agency is required to take account of likely costs and benefits. As a result each STW improvement scheme and each low flow alleviation scheme, which is not driven by a statutory need, must have the environmental benefits assessed, so that both the costs and the benefits can be taken into account.

For the low flow alleviation schemes the Agency has to prepare individual business cases for the non-statutory schemes according to the guidelines in the Agency document "Periodic Review (AMP3) Sustainability Issues - Guidance on Preparation of Business Cases - November 1997". As a first step, an assessment of the benefits likely to accrue from the priority low flow schemes is required to be carried out following the guidelines in the Agency document "Low Flow Alleviation: Benefit Assessment Guidelines - Version 3 - November 1997".

1.2 Objectives

Following the start of the contract in mid January 1998 it was confirmed in discussions between GIBB and the Agency that the objectives of the assignment are to assess the benefits likely to accrue from the priority low flow schemes by applying the Environment Agency's "Low Flow Alleviation: Benefit Assessment Guidelines" Version 3. Cost data was made available at a later date and GIBB was also requested to undertake the comparative assessment in terms of net present values and benefit cost ratios in accordance with the Benefit Assessment Guidelines. Subsequently GIBB was requested to prepare Business Cases for each of the schemes and to assist the Agency in preparing Summary Business Case documents for submission to DETR and the Agency statutory committees.

1.3 Work Programme

The work programme for the study was amended in the Inception Report to facilitate the data collection and site visits by grouping the schemes into Environment Agency Areas. The revised grouping of schemes is summarised in Table 1.1, in which the type of scheme is indicated as WQ (water quality, i.e. STW improvement) or WR (water resources, i.e. low flow alleviation). The locations of the schemes within the Midlands Region are shown on Figure 1.1.

Table 1.1 Work Packages

Area	Work Package A	Work Package B
Lower Trent	WQ: Buxton STW WR: Dover Beck WR: Rivers Noe and Ashop * WR: Rainworth Water	
Upper Trent	WQ: Barston STW WR: Croxden Brook WR: Burntwood Pools / River Sow	
Lower Severn		WR: River Sherbourne WR: Hewell Grange Lake WR: Bow Brook
Upper Severn		WR: Battlefield, Sugar & Catshill Brooks WR: River Worfe WR: Blakedown Brook

*low flow alleviation scheme also known as Jaggers Clough

A separate volume of the Final Report presented the results for the water quality schemes (Barston and Buxton STWs) in Work Package A. The results for the low flow alleviation schemes in both Work Packages A and B are included in this report.

A preliminary benefit assessment of the schemes in Package A was included in the Interim Report which was submitted on 26 February 1998. A preliminary version of the draft final report for the Package B schemes, including the cost benefit analysis, was handed to the Agency on 8 April 1998, followed by the Package B schemes on 17 April. The formal issue of the consolidated Draft Final Report on the low flow alleviation schemes was submitted on 24 April 1998 and incorporated feedback from the Agency on the preliminary drafts.

Work on the benefit assessment of the eleven low flow schemes was completed within an overall period of about three months in which time the economic benefits were assessed and compared with the available cost estimates, based on information provided by the water companies. The analyses were based on the best information that was available within this tight timetable and a number of assumptions had to be made.

Further clarification and modification of costs was received from the Agency in early September 1998. On 15 September GIBB was requested to complete the Final Report incorporating the additional material needed for the Business Case for each scheme in accordance with the Agency Guidelines dated November 1997. In addition GIBB was requested to prepare a two page Summary Business Case for each scheme in the form required for submission to DETR and the Agency statutory committees. These requirements were confirmed at a meeting with the Agency on 22 September.

A first draft of the Summary Business Cases was submitted by e-mail on 14/15 October which incorporated further cost information received on 14 October. Following further inputs from the Agency, a revision was submitted on 11/12 November, which after a number of editorial changes by the Agency, formed the basis of the submission to the Agency Head Office and DETR.

1.4 Approach to Analysis

1.4.1 Low Flow Benefit Assessment Guidelines

The economic assessment of benefits for the low flow schemes has been undertaken using the Low Flow Alleviation: Benefit Assessment Guidelines (Version 3 November 1997).

The assessments have been based predominantly on the use of the Benefit Transfer technique. This approach involves taking a value or benefit estimate acquired for a previous project or policy decision and transferring it to the project in question. There are obvious limitations in this approach and the estimates of benefits must be used with caution as the technique only provides an indication of the order of magnitude of the potential benefits. The results however are valid for comparative purposes and the range of estimates that have been derived reflects the uncertainty associated with the assessments based on this approach.

The results for the low flow alleviation schemes are in a form which allows the present value of the benefits to be input into business cases in accordance with the Agency Guidelines.

1.4.2 Costs

Details of cost estimates were provided by the water companies and the Agency and are included in Appendix 1. The cost estimates provided by the water companies have not been reviewed in detail by the Agency or its consultants. However, a broad overview was undertaken to ensure as far as possible that the cost estimates are consistent with the details of the schemes being proposed and, where appropriate, are consistent between the various options and schemes. It is understood that the cost estimates will be examined by the Reporter acting for the water companies and/or by OFWAT.

1.4.3 Discounting and Rolling Forward

The discount rates used in the assessments are 6% (the Treasury discount rate) and 7% (the water companies' cost of capital). The discounting allowed the benefits to be summed over time to produce present values of the benefits which have been expressed in Q4 1997 prices.

A countering factor in the case of the benefits is population growth which can be expected to lead to a greater intensity of use of the limited supply of environmental resources. This is reflected by using a set of weighting factors based on annual population growth. This technique is known as 'rolling forward'., For the assessments in this report the benefits have been calculated without rolling forward and, as a sensitivity analysis, with the benefits rolled forward by 0.5% per annum in accordance with the FWR Manual.

1.4.4 Time Horizons

The time horizon for the water resource schemes has been taken as 50 years with the Treasury discount rate of 6% in accordance with the instructions given in the Environment Agency's "Periodic Review (AMP3) Sustainability Issues - Guidance on the Preparation of Business Cases" document (November 1997). A time horizon of 30 years has been taken with the water industry cost of capital (7% discount rate) as instructed by the Agency at the meeting on 22 September 1998.

A number of the schemes assessed in this report are essentially short term measures to be implemented pending longer term measures to raise regional groundwater levels. In the draft report it was noted that a shorter time horizon might be appropriate for some of the schemes, which would have the effect of reducing the benefits in present value terms. For this Final Report the costs of additional replacement water to effect a long term solution at four of the schemes (Blakedown Brook, Hewell Grange Lake, River Sherbourne and River Worfe) have been included as an additional option. In each of these cases it is the option which includes these additional costs which has been selected as the preferred option.

1.4.5 Use and Non-Use Benefits

The economic value of an environmental resource is the sum of use values (direct and indirect) plus non-use values. Use values are those associated with the benefits gained from actual use of the environment. In the context of this report this includes drinking water abstraction, agricultural uses, amenity (based on increased property) values and recreational activities.

A further impact category that is included is termed 'non-use' or 'conservation' which incorporates economic values that are not related to direct or indirect use of the environment. The analysis undertaken for the various use categories has been based on aggregating values held by individuals to use the low flow sites for recreational and other purposes. However people also hold values which reflect their desire to conserve an environmental asset. These 'non-use' benefits are derived from three sources:

- option values (which reflect an individual's willingness-to-pay to secure the future of an environmental good and thus express the potential benefits of that good);
- bequest values (which is attached to the conservation of the environment so that future generations may have the use of that environmental resource); and
- existence values (derived from an individual's altruistic desire to preserve an environmental asset in the future).

Therefore in this context the term 'non-use benefits' refers to the willingness-to-pay of the public for knowing that the various rivers do not suffer from low flows more than they would in natural conditions (i.e. with no human interference).

The Agency's Low Flow Alleviation Benefit Assessment Guidelines summarise the results of previous studies which have identified two different groups of non-users:

- individuals who visit rivers but not the specific river in question;
- individuals who do not visit rivers at all.

Local residents (typically those within 3 km of the river) have been found to hold a higher willingness-to-pay value than non-local non-users. This is explained by people having a greater desire to protect environmental resources nearer to where they live.

Consequently conservation estimates for the low flow sites have been generated for:

- local residents within 3 km;
- river users among the general public who do not visit this particular river and its tributaries but do hold non-use values towards the alleviation of low flows in rivers;
- the wider general public who are not river users.

The conservation benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

1.5 Structure of the Report

The Report is presented in twelve chapters.

Chapter 1 introduces the study and outlines its objectives and the approach followed in the assessments.

Chapters 2 to 6 present the Business Cases (including benefit assessment and cost benefit analysis) for the five schemes for the alleviation of low flows in the Trent area. Chapters 7 to 12 present the Business Cases for the six schemes in the Severn area.

Supporting information provided by the Agency and lists of contacts for each scheme are included in accompanying appendices.

1.6 Summary of Results

A summary of the results of the cost benefit analysis for the selected option in each of the schemes is given in Table 1.2.

Table 1.2 highlights the sensitivity of the benefit assessment to the extent to which non-use benefits are incorporated in the analysis. For the Business Cases presented in this report it should be noted that the assessment of benefits takes account of the local non-use values in accordance with the guidelines, together with 50% of the non-local non-use values based on the number of households in the water service company area.

Taking together the eleven low flow alleviation schemes described in this report, the present value of the total costs amounts to some £39 million, represented predominantly by the capital and operating cost for replacement water. These costs are justified by total benefits amounting in present value terms to £125 million (a benefit cost ratio of 3.2), comprising use benefits of £5 million, local non-use benefits of £22 million and non-local non-use benefits of £98 million.

1.7 Further Work

Most of the low flow alleviation schemes considered in this report are regarded by the Agency as interim solutions to the general problem of long term over-abstraction from a number of groundwater units. The longer term objectives and solutions will be confirmed and defined following further development of regional groundwater models.

Further refinements of the interim solutions considered in this report are expected to be carried out by the Agency over the next two years. Such further work will include additional spot gauging at a number of locations and trial releases to prove the concept of retaining flows in some of the river channels.

1-5

		Total	Total	-		1.4		· · · ·		6% Disc	ount Rate,	50 year tin	ne period	1	-	1		÷2	
Scheme	Option	compensation	replacement	Costs		Ben	efits		No	n-Use Ben	efits	1917	Total	NPV			Benefit C	ost Ratio	
	*	water releases (MI/d)	, water provided (MI/d)		incl full non-use	Incl local and 50% non-local non-use	inci local non-use	excl non- use	full non- use	local and 50% non- local non use	local non use only	inci fuli non-use	incl local and 50% non-local non-use	inci local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	inci local non-use	exci non- use
Burntwood Pools / River Sow	1	1	1	838	10,661	5,523	385	224	10,438	5,300	162	9,823	4,685	-453	-615	12.7	6.6	0. 46	0.27
Croxden Brook	1Ь	1	1	1,017	5,552	3,052	552	259	5,293	2,792	292	4,535	2,035	-465	-758	5.5	3.0	0.54	0.25
Dover Beck	5	1	1	1,117	17,807	9,461	1,114	409	17,398	9,051	705	16,690	8,344	-3	-708	15.9	8.5	1.00	0 37
River Noe and River Ashop	1	15		227	9,368	4,818	268	165	9,203	4,653	104	9,141	4,591	41	-63	41.2	21.2	1,18	0.72
Rainworth Water	25	2	2	2,107	19,794	10,915	2,036	495	19,299	10,420	1,541	17,687	8,809	-70	-1.612	9.4	5,2	0.97	0.23
Battlefield Brook	3	2	2	1,839	20,604	11,826	3,048	605	19,999	11,221	2,443	18,764	9,987	1,209	-1,234	11.2	6.4	1,66	0.33
Blakedown Brook	5 (long term)	6	10	6,855	19,687	12,013	4,339	1,391	18,297	10,622	2,948	12,832	5, 158	-2,516	-5,464	2.9	1.8	0. 6 3	0.20
Bow Brook	1	2	2	1,843	33,432	17,904	2,376	531	32,902	17,374	1,846	31,589	16,961	533	-1,313	18.1	9.7	1.29	0.29
Heweil Grange	1 (long term)	0.62	1	870	4,831	3,015	1,200	261	4,570	2,754	939	3,961	2,145	329	-609	5.6	3.5	1.38	0,30
River Sherbourne	6 (long term)	3	10	8,145	39,994	25,099	10,205	728	39,266	24,372	9,477	31,849	16,954	2,060	-7,417	4.9	3.1	1.25	0.09
River Worfe	6 (long term)	8	17	13,733	41,496	21,577	1,658	90	41,406	21,487	1,568	27,763	7,844	-12,075	-13,643	30	1.6	0.12	0.01
Totals for Selected	Options		47	38,592	223,226	125,204	27, 182	5 ,157	218,069	120,047	22.024	184,634	86,612	-11,411	-33,435	5.8	3.2	0.70	0.13

Table 1.2Summary of Costs and Benefits for Selected Options in each Scheme
(£ 000 Q4 1997 expressed as present values, with central estimates of benefits)

Pvsumm Summary

1-6

Issue 2.0 / November 1998

2

BURNTWOOD POOLS / RIVER SOW

2.1 Scheme Objectives

During the early 1980s problems with low flow were identified on the upper reaches of the River Sow, in the vicinity of Burntwood Pools. The area is illustrated on Figure 2.1. The reduction in flow is thought to be due to a reduction in base flows as a result of over-abstraction of groundwater, particularly from the Burntwood borehole which is used for public water supply.

There are two options to be considered for enhancing flows on the upper reaches of the River Sow as summarised in Table 2.1. In both cases the compensation release will be made from the existing borehole and will discharge to the river upstream of the fishing pool adjacent to Fairoak Grange. The schemes considered involve a reduction in the abstraction for public water supply at the existing Burntwood groundwater pumping station and augmentation of the river system from the borehole. The Agency considers that a compensation release of 1-2 MI/d will make up the deficit in flow.

Table 2.1	Low Flow	Alleviation	Options
-----------	----------	-------------	---------

Option	Description	Improvements
1	Compensation release of 1 MI/d to be in operation when the Agency gauging station at Walkmill is at Q50% (4.06 MI/d) or below	Rewater 3 km, significantly increased flows 11 km.
2	Compensation release of 2 MI/d to be in operation when the Agency gauging station at Walkmill is at Q50% (4.06 MI/d) or below	Rewater 3 km, significantly increased flows 11 km.

It is planned that the gauging station at Walkmill will be used to trigger the compensation when Q50% (4.06 MI/d) has been reached and a second trigger will be used to stop the release at 5.06 MI/d and 6.06 MI/d for Options 1 and 2 respectively.

Flow duration/frequency curves were provided by the Agency to define the impact of the alleviation options and these are included in Appendix 2. Graphical mean daily flow data for 1990 to 1997 are also included in the Appendix. Most of the available data relates to the gauging station at Walkmill, approximately at the mid-point of the river section considered. The Agency has also provided a limited amount of data from spot gauging in 1983 for the outflow from Burntwood Pools.

The available information has been used to derive appropriate factors for the economic benefits of each option for those uses which are frequency and duration dependent. The river has been divided into two reaches for this purpose:

Reach 1Burntwood Borehole to downstream of Fairoak (3 km)Reach 2Downstream of Fairoak to the discharge from the sewage treatment
works at Eccleshall (11 km)

Target flows for each reach have been assessed to determine the extent to which the low flow alleviation schemes will improve the situation. Flow improvement factors have been derived from a consideration of both the **proportional flow** improvement from the existing situation at

the Q95% level, and the **proportional time** improvement that the target flow is achieved. Corresponding return periods for very low flows (i.e. about 50% of the target flows) have also been assessed for the before and after situations. The figures which have been derived are summarised in Table 2.2.

	Reach 1	Reach 2
Target Flow (MI/d)	2	4
% of Time above Target		
Before	25%	50%
After Option 1 Option 2	75% 95%	80% 96%
Flow Improvement Factor		
Option 1 Option 2	60 % 100%	35% 55%
Return Period (years) before → after		
Option 1 Option 2	1 → 5 1 → 10	$\begin{array}{c} 2 \rightarrow 7 \\ 2 \rightarrow 10 \end{array}$

Table 2.2 Summary of Hydrological Assessment for River Sow

2.2 Scope of Study

Table 2.3 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

Restoration of the flow will improve the continuity of the river's linear wildlife habitat, which at present is not complete due to the river periodically suffering extremely low flows.

The categories that have been included in the benefit assessment are:

- informal recreation;
- angling;
- agriculture;
- property; and
- non-use.

Although the additional flow will provide some additional dilution to the discharge from the existing STW at Eccleshall, the proportional increase will be relatively small. It has therefore been agreed with the Agency that no additional economic benefits due to water quality improvements can be identified.

Table 2.3 Summary of Impacts

Impact Category		Comments		
Drinking Water S	upply	Groundwater abstraction at Burntwood.		
Industrial Abstrac	tion	Not applicable		
Agriculture	Livestock	Not applicable		
5	Irrigation	A number of groundwater abstractions but not considered in the analysis.		
In-stream Recreation	Boating	Not applicable		
	Bathing	Not applicable		
	Angling	Fishery at Cop Mere.		
Informal recreation	Walking, picnicking, photography	Some access along the length of the river.		
Amenity /Aesthetics	Property prices	Some properties adjacent to watercourse.		
Conservation (Non-Use or Passive Use)	Ecology	Yes		
,	Heritage	Not applicable		
Other		None		

2.3 Capital and Operating Costs

Severn Trent Water Ltd has provided the Agency with estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to provide for the replacement of 1 or 2 MI/d of water currently abstracted at the Burntwood borehole which would be diverted to the River Sow. In addition some minor works will be required in the vicinity of the pumping station to effect the flow augmentation. Details of the costs are summarised in Table 2.4.

Table 2.4	Summary	of Cost	Estimates	(£ 000 Q4	1997)
-----------	---------	---------	-----------	-----------	-------

	Option 1	Option 2
Capital expenditure		
Replacement water	690	1379
PWS option	10	10
Total	700	1389
Operating expenditure (per annum)		
Replacement water	9	21
PWS Option	3	6
Total	12	27

2-3

2.4 Estimation of Benefits

2.4.1 Informal Recreation

Staffordshire Wildlife Trust has a nature reserve adjacent to the River Sow at Jacksons Copse, but visitor numbers to the site are not monitored. Trust staff held the view that it was not an extensively used site. There are limited parking facilities. Trust staff believed that the site may attract around 30 visitors/day during the week and maybe 50 visitors/day at weekends and Bank Holidays. On the basis of these assumptions it is estimated that the site attracts around 13,000 visitors/year.

Staffordshire Wildlife Trust also confirmed that the area at Fairoak was quite popular with walkers. However examination of the Pathfinder Maps and further discussions with Environment Agency staff revealed that there was only limited access for the public to walk beside the River Sow in its upper reaches.

Staffordshire County Council's Countryside Services Department was also contacted and, though unable to provide any useful information on visitor numbers, was able to provide the leads that were subsequently followed up.

Stafford Borough Council was also contacted to seek assistance with estimating the potential number of visitors to the site. The Recreation Centre deals primarily with the Sow as it flows through Stafford and it was revealed that the Council would like to re-open the river in Stafford itself and introduce barges as a tourist attraction. There is also a canoeing club run by the Recreation Centre which uses the Sow for recreational purposes. Any increases in flow in the river's upper reaches will have a beneficial impact on downstream uses, but as these developments are currently being considered and low flows have not been cited as an obstacle, the associated benefits from alleviating the low flows are believed to be negligible.

For the purpose of the economic appraisal of the schemes the visitor numbers have therefore been based on the figures derived by the Wildlife Trust for Reach 2 of the river, with a nominal allowance of 3000 visitors for Reach 1 at the upper end of the catchment.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming that 40% of the willingness-to-pay is attributable to the presence of water:

- Upper bound estimate:
- £1.48 per visitor day;
- Central estimate:
- £0.60 per visitor day; and £0.20 per visitor day.
- Lower bound estimate:

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 2.2 produces the annual incremental benefits which are presented in Table 2.5.

2.4.2 Angling

Discussions with Environment Agency staff revealed that Cop Mere has hardly been affected by low flows in the River Sow. The flows from the lake are well controlled which means that the water level is stable. The lake contains still water fish such as tench and these species would not move upstream of Cop Mere itself. Informed opinion was that alleviating the low flows in the Sow would make practically no difference in terms of benefits to anglers. Therefore angling benefits have not been considered further in the economic appraisal.

2-4

	Option	Visitor Numl React	bers by River n (000)	Factored Benefit by River Reach (£000 Q4 1997)				
and the second second	13. 141 ⁹⁴ 3 - 14	- 1	2	(4. j.) (4. j.)	2 2	Total		
Upper	1	3	13	2.7	6.7	9.4		
Bound	2	3	13	4.4	10.6	15.0		
Central	1	3	13	1.1	2.7	3.8		
Estimate	2	3	13	1.8	4.3	6.1		
Lower	1	3	13	0.4	0.9	1.3		
Bound	2	3	13	0.6	1,4	2.0		

Table 2.5 Annual Informal Recreation Benefits

2.4.3 Property

Stafford Borough Council was contacted to provide Council Tax Bands for the properties identified as adjacent to the watercourses. These are summarised in Table 2.6.

Table 2.6	Properties A	Adjacent to i	River Sow by	Council Tax Band

Band	1997 Midpoint		No of properties					
	(£ 000)	Reach 1	Reach 2	Total	(£ 000 Q4 1997)			
А	40	3		3	121			
В	46	4		4	186			
С	61	2	3	5	303			
D	79	9	3	12	945			
E	105	2	3	5	525			
F	1 41	2	1	3	424			
G	242		2	2	485			
н	323							
Total		22	12	34	2,989			

Source: Stafford Borough Council

By applying the formulae given in the Benefit Assessment Guidelines, using the assumed changes in return periods for the low flows indicated in Table 2.2, the benefit to property owners has been estimated in terms of once-off changes in stock.

Table 2.7Amenity and Aesthetic Stock Benefits (£000 Q4 1997)

Option	То	tal Incremental Benefi	IS S
	Upper Bound	Central Estimate	Lower Bound
1	282	188	38
2	387	258	52

2.4.4 Non-Use

Non-use (conservation) benefit estimates for the River Sow have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit these particular rivers but do hold non-use values towards the alleviation of low flows in rivers; and
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are about 2,300 households within 3 km of the low flow site, approximately evenly divided between the two river reaches, based on population data obtained from the Agency GIS model and assuming 2.7 people/household.

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefits of each option, applying the flow improvement factors from Table 2.2 for each river reach, are summarised in Table 2.8 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

Table 2.8Annual Non-Use Benefits (£000 Q4 1997)

Option	Extent	Upper	Central	Lower
1	Local	13	11	8
	Full	880	704	528
2	Local	21	18	12
	Full	1,410	1,129	846

2.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the two options are presented in Table 2.9. The results are shown:

- both including and excluding non-use, together with intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

For all combinations of assumptions Option 1 generates a higher benefit cost ratio than Option 2. It can therefore be concluded that the incremental benefits of the greater degree of low flow alleviation achieved with the higher rate of pumping with Option 2 may not be sufficient to justify the incremental capital and operating costs. However, Option 2 does provide a higher net present value when non-local non-use benefits are included.

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios in the range 6 to 17 when the full non-use benefits are included. If only 50% of the non-local non-use benefits are included, the benefit cost ratio reduces to the range 4 to 7 with the central estimates. If no non-use benefits are included the benefit cost ratio reduces below 0.5.

A summary of the assessment of tangibles (i.e the quantifiable costs and benefits) for Options 1 and 2 is presented in Table 2.10. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- · central estimates without rolling forward of the benefits.

A breakdown of the total present value of the benefits for Option 1 by use category (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate, with no rolling forward, is shown on Figure 2.2, together with a breakdown of the present value of the costs.

Table 2.9 (Sheet 1)

Burntwood Pools / River Sow : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

		7% Discount Rate, 30 year time period											
Option	Costs	Costs Benefits					Total	NPV		Benefit Cost Ratio			
1		inci full non-use	inci local and 50% non-local non-use	inci local non-use	excl non- use	inci fuli non-use	inci local and 50% non-local non-use	inci local non-use	excl non- use	inci fuli non-use	incl local and 50% non-local non-use	inci locai non-use	excl non- use
Upper est 1 2	imates, no 792 1,608	rolling fo 10,450 16,687	ward 5,477 8,721	504 755	354 510	9,658 15,079	4,685 7,113	-288 -853	-438 -1,098	13.2 10.4	6.9 5.4	0.64 0.47	0.45 0.32
Upper est	imates, wi	ith rolling f	orward										
1 2	792 1,608	11,010 17,584	5,765 9,182	519 780	361 521	10,218 15,976	4,973 7,574	-272 -828	-431 -1,087	13.9 10.9	7.3 5.7	0.66 0.49	0.46 0.32
Central es	stimates, r	o rolling f	prward										
12	792 1,608	8,290 13,245	4,311 6,872	333 499	208 295	7,498 11,637	3,520 5,264	-459 -1,109	-584 -1,313	10.5 8.2	5.4 4.3	0.42 0.31	0.26 0.18
Central es	stimates, v	vith rolling	forward										
1 2	792 1,6 08	8,736 13,959	4,539 7,237	343 516	211 300	7,944 12,351	3,747 5,629	-449 -1,092	-581 -1,308	11.0 8.7	5.7 4.5	0.43 0.32	0.27 0.19
Lower est	imates, n	o rolling fo	rward					_			··· ·		
1 2	792 1,608	6,103 9,770	3,119 4,991	135 211	47 68	5,311 8,162	2,327 3,383	-657 -1,396	-744 -1,540	7.7 6.1	3.9 3.1	0.17 0.13	0.06 0.04
Lower est 1 2	imates, w 792 1,608	ith rolling f 6,435 10,303	o rward 3,288 5,262	1 41 221	48 70	5,644 8,695	2,496 3,654	-651 -1,387	-743 -1,538	8.1 6.4	4.2 3.3	0.18 0.14	0.06 0.04

Burnt2.xls Teb2-9-1

2-8

Issue 2.0 / November 1998

 $\mathbf{\hat{z}}$

Table 2.9 (Sheet 2)

Burntwood Pools / River Sow : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

	6% Discount Rate, 50 year time period												
Option	Costs		Ben	efits		2	Total NPV				Benefit Cost Ratio		
•		inci fuil non-use	inci local and 50% non-local non-use	incl local non-use	excl non- use	inci full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	inci fuli non-use	inci local and 50% non-local non-use	inci local non-u s e	exci non- use
Upper est	limates no	n rolling for	rward				1						
1 2	838 1,710	13,429 21,458	7,006 11,171	584 883	390 567	12,591 19,748	6,168 9,460	-254 -827	-448 -1,144	16.0 12.5	8.4 6.5	0.70 0.52	0.47 0.33
Upper est 1 2	ti mates, w 838 1,710	ith rolling f 14,456 23,103	orward 7,533 12,015	611 927	402 586	13,618 21,393	6,695 10,305	-227 -783	-436 -1,125	17.2 13.5	9.0 7.0	0.73 0.54	0.48 0.34
Central es 1 2	stimates, r 838 1,710	o rolling fo 10,661 17,043	5,523 8,813	385 584	224 320	9,823 15,333	4,685 7,103	-453 -1,127	-615 -1,391	12.7 10.0	6.6 5.2	0.46 0.34	0.27 0.19
Central es 1 2	stimates, v 838 1,710	vith rolling 11,479 18,353	forward 5,941 9,483	403 612	229 328	10,641 16,643	5,103 7,772	-435 -1,098	-609 -1,383	13.7 10.7	7.1 5.5	0.48. 0.36	0.27 0.19
Lower est 1 2	ti mates, n o 838 1,710	7,872 12,606	rward 4,019 6,433	166 261	52 76	7,034 10,895	3,181 4,723	-673 -1,450	-786 -1,634	9.4 7.4	4.8 3.8	0.20 0.15	0.06 0.04
Lower est 1 2	timates, w 838 1,710	i th rolling 1 8,483 13,583	orward 4,329 6,931	176 278	54 79	7,645 11,873	3,491 5,220	-662 -1,433	- 784 -1,632	10.1 7.9	5.2 4.1	0.21 0.16	0.06 0.05

.

Option	Agency	Water Co.	Economic	Net Present	Benefit Cost
	Costs	Costs	Benefit	Value	Ratio
6% discount	rate, 50 year	time period			
Do Nothing	0	0	0	0	0
Option 1	0	838	5,523	4,685	6.6
Option 2	0	1,710	8,813	7,103	5.2
7% discount	rate, 30 year	time period			
Do Nothing	0	0	0	0	0
Option 1	0	792	4,311	3,520	5.4
Option 2	0	1,608	6,872	5,264	4.3

Table 2.10Assessment of Tangibles (£000 Q4 1997)

2.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 2.11. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

2.7 Risk Assessment

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 2.12). The risks considered to be relevant in the appraisal are:

- Risk 1 Operational failure of flow alleviation
- Risk 2 Failure to provide anticipated benefits
- Risk 3 Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Note: The area of the circles is proportional to the present value of the benefits or costs at a 6% discount rate Burntwood Pools / River Sow Option 1 Present Value of Benefits and Costs Figure 2.2

Costs

Table 2.11 Assessment of Intangible Benefits

Intangible Weighting Benefit Factor		Option 1 1 MI/d release		Option 2 2 MI/d release		Comment
		points	weighted points	points	weighted points	-
1	3	2	6	3	9	Greater flow in river with Option 2
2	3	2	6	2	6	
3	3	2	6	3	9	STW effluent dilution downstream
Total weight	ed score		18		24	

Intangible Benefit 1:

Facilitation of Agency meeting objectives

Improved public relations and maintenance of credibility of Agency Longer term benefits not quantified in economic analysis

Intangible Benefit 2: Intangible Benefit 3:

Table 2.12 **Risk Register**

Identified Risk	Option 1 1 MVd release		Option 2 2 MI/d release		Comment
	Likelihood	Effect	Likellhood	Effect	
Operational failure of flow alleviation	L	L	L	L	
Failure to provide anticipated benefits	L	М	м	м	Long term yield only 1.4 Ml/d
Failure to supply a sustainable solution	L .	М	н	м	Long term yield only 1.4 MI/d

Relative risks:

н high М

medium low

2.8 Selection of Preferred Option

From the assessment of tangibles presented in Table 2.10 it can be seen that Option 2 represents the most cost effective solution in terms of maximum net present value (NPV). This conclusion is supported by the assessment of intangibles. However, at a late stage in the analysis it became apparent that the long term yield of the Burntwood PWS borehole was only 1.4 Ml/d. A compensation release of 2 Ml/d for about 75% of the time is therefore not sustainable and is incompatible with the long term objective of a recovery of groundwater levels. This is reflected in the risk register in Table 2.11, where Option 2 is shown as having a medium risk of failing to provide the anticipated benefits and a high risk of not supplying a sustainable solution.

It is therefore concluded that Option 1, with a compensation release of 1 MI/d, should be selected as the preferred option.

The expected improvement to the River Sow is to re-water 3 km of the river and to significantly increase the flows over 11 km. The increased flow length includes the SSSI site at Cop Mere which will help ensure the survival of these important habitats.

The assessed economic benefit takes account of these ecological improvements in addition to the increase in the amenity and recreational value of the area surrounding the watercourse.

There will also be some improvement to water quality due to the dilution of the effluent from the sewage treatment works at Eccleshall.

The benefits will be present all year round as the augmentation flow will be triggered whenever necessary. Reductions in the public water supply abstractions will allow more water to remain in the aquifer, thus reducing the amount of augmentation flow required.

2.9 Tasks and Dependencies

Investigations: Agency Midlands Region, Upper Trent Area

Design and implementation: Severn Trent Water Ltd

Programme for implementation of the preferred option:

1998	Submission of Business Plan
1999	Investigation and Design Planning and Consents
2000	Construction

2.10 Cost of Preferred Option

The estimated capital and operating costs of the preferred option are given in Table 2.13. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Table 2.13	Estimated	Costs of	the Pro	eferred O	ption (£ 00	(0)

Year	Water Company		Age	псу
ending 31/03	Capex	Opex	Сарех	Opex
1999	0	0	4 ¹	0
2000	0	0	0	0
2001	787	13	0	0
2002	0	13	0	0
2003	0	14	0	0

comprises submission of business plan, the cost of which has not been included in the assessment of tangibles

....

- - -

1 1 1 1 1

3

CROXDEN BROOK

3.1 Scheme Objectives

The proposed low flow alleviation scheme of Croxden Brook is a response to public complaints in recent years. The overall river system and the proposed augmentation points are shown on Figure 3.1. Trial releases into the Winnothdale Brook from the existing public water supply groundwater pumping station at Greatgate showed that there was a problem with loss of water through the brook bed. Severn Trent Water Ltd and the Agency aim to overcome this by lining a section of the bed. For the purposes of this assessment it is assumed that all the water released as compensation will remain in the watercourse until its confluence with Nothill Brook.

The currently proposed options for the alleviation of low flows on Croxden Brook are summarised in Table 3.1.

Table 3.1	Low Flow	Alleviation	Options
-----------	----------	-------------	---------

Option	Description	Improvements
1a	Compensation release of 1 MI/d at all times at release point A.	Rewater 0.7 km, significantly increased flows 3.0 km
1b	Compensation release of 1 MI/d at all times at release point B.	Rewater 1.4 km, significantly increased flows 3.0 km.
2	Compensation release of 2 MI/d at all times at release point A.	Rewater 0.7 km, significantly increased flows 3.0 km
3	Compensation releases of 1 MI/d at all times at both release points A and B.	Rewater 1.4 km, significantly increased flows 3.0 km.
4	Compensation release of up to 2 MI/d at all times at release point A. Replacement PWS supply from a new borehole.	Rewater 0.7 km, significantly increased flows 3.0 km

Flow duration/frequency curves were provided by the Agency to define the impact of the alleviation options and these are included in Appendix 3. The data relates to the gauging station at Greatgate. Tabulated mean daily flows for 1996 and 1997 are also included in the Appendix. It is noted that limited data are available and that figures for 1997 show the severity of the low flow conditions. The year 1996 is representative of the three years available.

The available information has been used to derive appropriate factors for the economic benefits of each option for those uses which are frequency and duration dependent. The river has been divided into three reaches for this purpose:

- Reach 1 Release point B to Release point A (0.7 km)
- Reach 2 Release point A to the gauging station at Greatgate (0.7 km)
- Reach 3 Gauging station at Greatgate to the confluence with the Nothill Brook (3.0 km).

Target flows for each reach have been assessed to determine the extent to which the low flow alleviation schemes will improve the situation. Flow improvement factors have been derived from a consideration of both the **proportional flow** improvement from the existing situation at the Q95% level, and the **proportional time** improvement that the target flow is achieved.

3-1

Issue 2.0 / November 1998

the Q95% level, and the **proportional time** improvement that the target flow is achieved. Corresponding return periods for very low flows (i.e. about 50% of the target flows) have also been assessed for the before and after situations. The figures which have been derived are summarised in Table 3.2.

	े सिर्वे से होते है	Reach 1	Reach 2	Reach 3
Target	Flow (MI/d)	0.8	0.8	1.5
% of Ti	me above Target			
Before		0%	0%	10%
After	Option 1a Option 1b Option 2 Option 3 Option 4	0% 100% 0% 100% 0%	100% 100% 100% 100% 100%	30% 30% 100% 100% 100%
Flow in	nprovement Factor			
	Option 1a Option 1b Option 2 Option 3 Option 4	0% 100% 0% 100% 0%	100% 100% 100% 100% 100%	45% 45% 100% 100% 100%
Return before	Period (years) → after			
	Option 1a Option 1b Option 2	$1.5 \rightarrow 10$ $1.5 \rightarrow 10$ $1.5 \rightarrow 10$ $1.5 \rightarrow 10$	$1.5 \rightarrow 10$ $1.5 \rightarrow 10$ $1.5 \rightarrow 10$ $1.5 \rightarrow 10$	1.5 → 10 1.5 → 10 1.5 → 10
	Option 4	1.5 → 10 1.5 → 10	$1.5 \rightarrow 10$ $1.5 \rightarrow 10$	1.5 → 10 1.5 → 10

Table 3.2 Summary of Hydrological Assessment for Croxden Brook

3.2 Scope of Study

Table 3.3 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

It is understood that there are, at present, no licences for industrial, potable or agricultural surface water abstractions. However, through correspondence with Agency staff it is understood that riparian owners may abstract water from Croxden Brook or allow livestock to feed from the river.

Restoration of the flow will improve the continuity of the brook's linear wildlife habitat (which at present is not complete due to the brook periodically drying up), will reduce the bed siltation and will provide a nursery area for brown trout.

The categories that have been included in the benefit assessment are:

- informal recreation;
- property; and
- non-use.

Table 3.3 Summary of Impacts

Impact Category		Comments				
Drinking Water St	upply	Not applicable				
Industrial Abstraction		Not applicable				
Agriculture Livestock		No licensed abstraction				
	Irrigation	Not applicable				
In-stream Boating Recreation		Not applicable				
	Bathing	Not applicable				
	Angling	Not applicable				
Informal recreation	Walking, picnicking, photography	Yes, mainly at Croxden Abbey and some access along the Brook.				
Amenity /Aesthetics	Property prices	A number of properties overlooking the brook.				
Conservation (Non-Use or Passive Use)	Ecology	Yes				
	Heritage	Not applicable				
Other		None				

3.3 Capital and Operating Costs

Severn Trent Water Ltd has provided the Agency with estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to provide for the replacement of the water currently abstracted at the Greatgate groundwater pumping station which could be diverted to alleviate low flows in the Croxden Brook. In addition to the costs of providing replacement water, the brook bed will need lining to prevent the loss of the augmented flow. Details of the costs are summarised in Table 3.4.

Table 3.4 Summary of Cost Estimates (£ 000 Q	1997)
--	-------

· · · · · · · · · · · · · · · · · · ·	Option 1a	Option 1b	Option 2	Option 3	Option 4
Capital expenditure					
Replacement water	690	690	1379	1379	1379
PWS option	10	80	10	80	4620
Bed lining costs ¹	13	25	13	25	13
Total	713	795	1402	1484	6012
Operating expenditure (pe					
Replacement water	14	14	29	29	21
PWS Option	4	4	8	8	6
Total	18	18	37	37	27

¹Agency costs to be recharged to STW Ltd under AMP3

3.4 Estimation of Benefits

3.4.1 Informal Recreation

The ruins of Croxden Abbey are close by the watercourse. English Heritage who manage the site were contacted to ask for visitor numbers. However it is an unmanned site with no record of visitor numbers. There are no parking facilities to accommodate visitors except at the side of the road and the brook itself is at least 50 m away from the boundary of the English Heritage site. Based on experience elsewhere it would be reasonable to assume 2,000 visitors a year to Croxden Abbey.

In the absence of reliable primary sources the estimation of visitor numbers to the rest of the site has been based on the indirect approach contained in the Manual. Realistic estimates of the likely number of visits have been derived from previous experience, utilising the GIS data to distribute the numbers between the river reaches.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming 40% of the willingness-to-pay is attributable to the presence of water:

- Upper bound estimate: £1
- Central estimate:
- £1.48 per visitor day; £0.60 per visitor day; and
- ate. £0.00 per visit
- Lower bound estimate: £0.20 per visitor day.

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 3.2 produces the annual incremental benefits which are presented in Table 3.5.

Table 3.5 Annual Informal Recreation Benefits

	Option	Visito	r Numb Reach	ers by ((000)	River	Facto	ored Bei	nefit by Q4 1997	River R ')	leach
		Abbey	د. پېر ،1	2	3	Abbey	1	2	3	Total
Upper	1a	2.0	0	2.1	6.5	1.3	0	3.1	4.3	8.8
Bound	1b	2.0	2.1	2.1	6.5	1.3	3.1	3.1	4.3	12.7
	2	2.0	0	2.1	6.5	3.0	0	3.1	6.6	15.7
]	3	2.0	2.1	2 .1	6.5	3.0	3.1	3.1	6.6	18.9
	4	2.0	0	2,1	6.5	3.0	0	3.1	9.6	15.7
Central	1a	2.0	0	1.6	5.0	0.5	0	1.0	1.4	2.9
Estimate	1b	2.0	1.6	1.6	5.0	0.5	1.0	1.0	1.4	3.9
	2	2.0	0	1.6	5.0	1.2	0	1.0	3.0	5.2
	3	2.0	1.6	1.6	5.0	1.2	1.0	1.0	3.0	6.2
	4	2.0	0	1,6	5.0	1.2	0	1.0	3.0	5.2
Lower	1a	2.0	0	1.3	4.0	0.2	0	0.3	0.4	0.8
Bound	1b	2.0	1.3	1.3	4.0	0.2	0.3	0.3	0.4	1.1
	2	2.0	0	1.3	4.0	0.4	0	0.3	0.8	1.5
	3	2.0	1.3	1.3	4.0	0.4	0.3	0.3	0.8	1.7
	4	2.0	0	1.3	4.0	0.4	0	0.3	0.8	1.5

3-4

3.4.2 Angling

Discussions with Agency staff revealed that there are no angling interests on Croxden Brook.

3.4.3 Agriculture

There are no licensed abstractions for agricultural or industrial purposes on Croxden Brook.

3.4.4 Property

East Staffordshire District Council was contacted to provide Council Tax Bands for the properties identified as adjacent to the watercourses. These are summarised in Table 3.6. All the properties are located on Reach 3, largely around Greatgate and Croxden. The property details on which the benefits are based are summarised in Table 3.6.

Table 3.6 Properties Adjacent to Croxden Brook by Council Tax Band

Band	1997 Midpoint	Economic Value				
	(£ 000)	Reach 1	Reach 2	Reach 3	Total	(£ 000 Q4 1997)
A	40			0	0	0
В	46			3	3	140
C	61			1	1	61
D	79			4	4	315
Е	105			5	5	525
F	141	* *	e –	- 7 -	- 7	990 -
G	242			3	3	727
н	323			0	0	0
Total		None	None	23	23	2,758

Source: East Staffordshire District Council

By applying the formulae given in the Benefit Assessment Guidelines, using the assumed changes in return periods for the low flows indicated in Table 3.2, the benefit to property owners has been estimated in terms of once-off changes in stock.

Table 3.7 Amenity and Aesthetic Stock Benefits (£000 Q4 1997)

Option	Total Incremental Benefits				
	Upper Bound	Central Estimate	Lower Bound		
1a	340	227	45		
1b	340	227	45		
2	340	227	45		
3	340	227	45		
4	340	227	45		

3-5

Non-use (conservation) benefit estimates for Croxden Brook have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit this particular river and its tributaries but do hold non-use values towards the alleviation of low flows in rivers;
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are almost 3,000 households within 3 km of Croxden Brook, distributed between the three river reaches as indicated below, based on population data obtained from the Agency GIS model and assuming 2.7 people/household:

Reach I	585
Reach 2	585
Reach 3	1,783

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefits of each option, applying the flow improvement factors from Table 3.2 for each river reach, are summarised in Table 3.8 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

Option	Extent	Upper	Central	Lower
1a	Local	17	14	10
	Full	331	265	198
1b Loca Full	Local	24	20	14
	Full	445	357	267
2 Lo Fi	Local	28	24	17
	Full	596	478	357
3	Local	35	30	21
	Full	710	569	426
4	Local	28	24	17
	Full	596	478	357

Table 3.8 Annual Non-Use Benefits (£000 Q4 1997)

3.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the various options are presented in Table 3.9. The results are shown:

- both including and excluding non-use, together with intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- · for the central estimates, with upper and lower bounds;
- · using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

With the inclusion of some non-local non-use value, all the options produce a positive net present value (NPV) and hence benefit cost ratios greater than unity. Where non-use values are included, Option 3 consistently produces the highest NPV, although Option 1b has the highest benefit cost ratio. Options 1a and 3 have generally similar benefit cost ratios. Option 2 has lower benefit cost ratios, the cost saving compared with Option 3 with the omission of the additional upstream release point being more than offset by the reduction in benefits. With much higher costs, Option 4 gives a consistently lower NPV and benefit cost ratio.

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios (except for Option 4) in the range 2.4 to 7.5 when the full non-use benefits are included. If only 50% of the non-local non-use benefits are included, the benefit cost ratio reduces to the range 1.8 to 3 with the central estimates. If only the local non-use benefits are included, the benefit cost ratio reduces to less than 1 in all cases, with values below 0.2 for the lower estimates.

A summary of the assessment of tangibles (i.e the quantifiable costs and benefits) for all options is presented in Table 3.10. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

A breakdown of the total present value of the benefits by use category for Option 1b, which, as indicated in Section 3.8 below, has been selected as the preferred option, is shown on Figure 3.2, together with a breakdown of the present value of the costs. The benefits are based on the central estimates, including 50% of the non-local non-use benefits, with the 6% Treasury discount rate, and with no rolling forward.
Table 3.9 (Sheet 1)

Croxden Brook : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

			1			Discount	Rate, 30 ye	ar time pe	riod				
Option	Costs	(1)	Ben	efits		· • • •	Total	NPV	2 * 19		Benefit C	ost Ratio	
-11		incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	inci full non-use	incl local and 50% non-local non-use	non-use	excl non- use	inci full non-use	incl local and 50% non-local non-use	inci local non-use	excl non use
	.												
1a 1b 2 3	873 950 1,735 1,811	4,198 5,546 7,317 8,664	2,394 3,128 4,060 4,792	589 706 804 920	398 434 478 514	3,325 4,59 6 5,582 6,853	1,521 2,176 2,326 2,981	-284 -243 -931 -891	-475 -515 -1,257 -1,298	4.8 5.8 4.2 4.8	2.7 3.3 2.3 2.6	0.68 0.74 0.46 0.51	0.46 0.46 0.28 0.28
4	5,929	7,317	4,060	804	478	1,388	-1,868	-5,125	-5,451	1.2	0.7	0.14	0.08
	L	L	L										
Upper es	timates, w	ith rolling	forward										
1a	873	4,413	2,510	607	405	3,540	1,637	-266	-468	5.1	2.9	0.70	0.46
10	950	5,835	3,282	730	443	4,080	2,333	-220	-206	15.1 A A	3.5	0.77	0.47
3	1.811	9.124	5.040	956	527	7,312	3,228	-856	-1.284	5.0	2.8	0.53	0.20
4	5,929	7,703	4,268	833	489	1,774	-1,661	-5,096	-5,440	1.3	0.7	0.14	0.08
Central e		I	l	<u> </u>	-								
1a	873	3,277	1,834	390	231	2,405	961	-482	-642	3.8	2.1	0.45	0.26
1b	950	4,341	2,405	469	243	3,391	1,455	-481	-707	4.6	2.5	0.49	0.26
2	1,735	5,740	3,135	530	258	4,005	1,400	-1,205	-1,477	3.3	1.8	0.31	0.15
4	5,929	6,803 5,740	3,705	530	269 258	-188	-2,794	-1,203	-1,542 -5,671	3.8 1.0	0.5	0.34	0.15
Central e	stimates	with rolling	forward				<u> </u>						
1a	873	3,447	1,925	402	234	2,574	1,052	-471	-639	3.9	2.2	0.46	0.27
16	950	4,569	2,527	485	246	3,619	1,577	-465	-704	4.8	2.7	0.51	0.26
2	1,735	6,045	3,297	549	262	4,310	1,562	-1,186	-1,473	3.5	1.9	0.32	0.15
3	1,811 5,929	7,166 6,045	3,899 3,297	549	274 262	5,354	-2,632	-1,180 -5,380	-1,538 -5,666	4.0 1.0	2.2 0.6	0.35	0,15
I OWET ES	timates n	n rolling fo						<u>├</u>					
1a	873	2,326	1,243	160	49	1,453	370	-712	-824	2.7	1.4	0.18	0.06
16	950	3,114	1,682	210	52	2,165	713	•739	-898	3.3	1.8	0.22	0.05
2	1,735	4,155	2,201	247	57	2,420	466	-1,488	-1,678	2.4	1.3	0.14	0.03
3	1,811 5,929	4,943	2,620	297 247	57	-1,774	-3,728	-1,515 -5,682	-1,752 -5,872	2.7 0.7	1.4 0.4	0.16 0.04	0.03 0.01
	l	ith rolling	forward		<u>.</u>			<u> </u>					
1a	873	2,451	1,309	167	50	1,578	436	-706	-823	2.8	1.5	0.19	0.06
16	950	3,283	1,751	220	53	2,333	802	-730	-897	3.5	1.8	0.23	0. 06
2	1,735	4,380	2,319	258	58	2,645	585	-1,476	-1,677	2.5	1,3	0,15	0.03
3	1,811	5,212	2,761	311	61	3,400	950	-1,500	-1,751	2.9		0.17	0.03
1	2,929	4,360	2,319	200	- 36	•1,340	-3,809	-3,0/0	-3,0/1	0.7	0.4	0.04	0.01

D

D

Crowden2 Tab3-9-1

Table 3.9 (Sheet 2)

÷ .

Croxden Brook : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

1					6%	Discount	Rate, 50 ye	ar time pe	riod	0	10		
Option	Costs		Bene	efits	×.		Total NPV				Benefit C	ost Ratio	
	1	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	inci full non-use	incl local and 50% non-local non-use	inc) local non-use	excl non- use	inci full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use
		e relline fe	munral										
1a	amates, n 939	5.341	3.010	680	433	4.401	2.071	-259	-506	57	32	0.72	0.46
16	1.017	7.081	3.956	831	480	6.064	2.939	-186	-537	7.0	3.9	0.82	0.47
2	1.871	9,368	5,163	957	536	7,497	3,292	-914	-1,335	5.0	2.8	0.51	0.29
3	1,948	11,108	6,108	1,108	582	9,160	4,159	-841	-1,366	5 .7	3.1	0.57	0.30
4	6,072	9,368	5,163	957	536	3,297	-909	-5,115	-5,536	1.5	0.9	0.16	0.09
Upper est	timates. w	/ith rolling	forward										
1a	939	5.734	3.223	711	445	4,795	2.283	-228	-494	6.1	3.4	0.76	0.47
1b	1.017	7.610	4.242	873	495	6,593	3.225	-143	-521	7.5	4.2	0.86	0.49
2	1,871	10,075	5,542	1,009	555	8,205	3,671	-862	-1,316	5,4	3.0	0.54	0.30
3	1,948	11,950	6,561	1,172	606	10,002	4,613	-777	-1,343	6.1	3.4	0.60	0.31
4	6,072	10,075	5,542	1,009	555	4,004	-529	-5,062	-5,516	1.7	0.9	0.17	0.09
Central e	stimates.	no rollina (forward										
1a	939	4.179	2.314	450	245	3.239	1.375	-489	-695	4.4	2.5	0.48	0.26
1b	1.017	5.552	3.052	552	259	4.535	2.035	-465	-758	5.5	3.0	0.54	0.25
2	1.871	7,359	3,994	630	279	5,488	2,124	-1.241	1.592	3.9	2.1	0.34	0.15
3	1,948	8,731	4,731	731	293	6,783	2,783	-1.217	-1.655	4.5	2.4	0.38	0.15
4	6,072	7,359	3,994	630	279	1,287	-2,077	-5,442	-5,793	1.2	0.7	0.10	0.05
Central e	stimates	with colling									·		
1a	939	4 489	2 480	471	249	3 550	1 540	-469	-690	48	2.6	0.50	0.27
1h	1 017	5 969	3 274	580	265	4 952	2,258	-437	+752	59	32	0.57	0.26
2	1 871	7 917	4 291	- 664	286 -	6.046	2 4 2 0	-1 207	1.585	- 42	2.3	0.35	0.15
3	1.948	9,396	5.085	773	302	7.448	3.137	-1.175	-1.647	4.8	2.6	0.40	0.15
4	6,072	7,917	4,291	664	286	1,845	-1,781	-5,408	-5,786	1.3	0.7	0.11	0.05
	timates n	o rolling fr	rward										
1a	939	2.993	1.594	196	52	2.053	655	-743	-887	3.2	1.7	0.21	0.06
1b	1 017	4.011	2,136	261	56	2,994	1.119	756	-960	3.9	21	0.26	0.06
2	1.871	5,355	2,831	308	62	3.484	960	-1.563	-1.809	2.9	1.5	0.16	0.03
3	1,948	6.373	3,373	373	66	4,424	1,424	-1.576	-1.882	3.3	1.7	0.19	0.03
4	6,072	5,355	2,831	308	62	-717	-3,240	-5,764	-6,010	0.9	0.5	0.05	0.01
Loweres	timates. v	vith rolling	forward										
1a	939	3,223	1.716	209	54	2,283	776	-731	-886	3.4	1.8	0.22	0.06
1b	1,017	4,320	2,299	278	58	3,304	1,283	-738	-959	4.2	2.3	0.27	0.06
2	1,871	5,769	3,049	329	64	3,898	1,178	-1,542	-1,807	3.1	1.6	0.18	0.03
3	1,948	6,866	3,632	399	68	4918	1,684	-1,550	1,880	3.5	1. 9	0.20	0.04
4	6,072	5,769	3,049	329	64	-303	-3,023	-5,743	6,008	1.0	0,5	0.05	0.01
•	-,		-,					-,					

Croxden2 Tab3-9-2

Option	Agency Costs	Water Co. Costs	Economic Benefit	Net Present Value	Benefit Cost Ratio
6% discount	rate, 50 year	time period			
Do Nothing	0	0	0	0	0
Option 1a	12	927	2,314	1,375	2.5
Option 1b	24	993	3,052	2,035	3.0
Option 2	12	1,859	3,994	2,124	2.1
Option 3	24	1,925	4,731	2,783	2.4
Option 4	12	6,060	3,994	-2,077	0.7
ا 7% discount	rate, 30 year	time period			
Do Nothing	0	0	0	0	0
Option 1a	12	861	1,834	961	2.1
Option 1b	23	926	2,405	1,455	2.5
Option 2	12	1,723	3,135	1,400	1.8
Option 3	23	1,788	3,705	1,894	2.0
Option 4	12	5,916	3,135	-2,794	0.5

3.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 3.11. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

Risk Assessment 3.7

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 3.12). The risks considered to be relevant in the appraisal are:

Risk 1	Operational failure of flow alleviation
Risk 2	Failure to provide anticipated benefits
Risk 3	Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Note: The area of the circles is proportional to the present value of the benefits or costs at a 6% discount rate Croxden Brook Option 1b Present Value of Benefits and Costs Figure 3.2

Table 3.11	Assessment of Intangible Benef	its
------------	--------------------------------	-----

Intangible Benefit	Weighting Factor	Optio 1 Mi/d at po	on 1a release bint A	Optio 1 MVd at po	on 1b release pint B	Opti 2 MVd at po	ion 2 release pint A	Opt - 1 MI/d r both poin	ion 3 elease at its A and B	Opt 2 MI/d re new b	ion 4 lease from orehole	Comment
- ²⁶ 7 (27 9)	4 4 9 - 1 	points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted	
1	3	3	9	4	12	4	12	5	15	4	12	
2	3	3	9	5	15	4	12	5	15	4	12	
3	3											Not applicable
Total weight	ed score		18		27		24		30		24	

Intangible Benefit 1:

Intangible Benefit 2:

Facilitation of Agency meeting objectives Improved public relations and maintenance of credibility of Agency Longer term benefits not quantified in economic analysis Intangible Benefit 3:

Table 3.12 **Risk Register**

Identified Risk	Option 1 MI/d at po	on 1a release bint A	Optic 1 MVd at po	on 1b release int B	Opt 2 Mi/d at p	ion 2 release oint A	Option t Mi/d re both point	on 3 dease at is A and B	Opt 2 Mi/d rei new b	ion 4 ease from orehole	Comment
	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	
Operational failure of flow alleviation	L	L	L	L	L	L,	L	L	L	L	
Failure to provide anticipated benefits	L	м	L	м	м	м	м	М	L	М	Long term yield available for low flow
Failure to supply a sustainable solution	L	м	L	м	М	м	м	М	L	м	alleviation only about 1.7 Ml/d

Relative risks: high н M medium L low

3.8 Selection of Preferred Option

From the assessment of tangibles presented in Table 3.10 it can be seen that Option 3 represents the most cost effective solution in terms of maximum net present value (NPV). This conclusion is supported by the assessment of intangibles. However, at a late stage in the analysis it became apparent that the water available for compensation releases is limited by the long term yield of the Greatgate PWS borehole. The release of 2 MI/d required to effect Options 2 and 3 is therefore not sustainable and is incompatible with the long term objective of a recovery of groundwater levels. This is reflected in the risk register in Table 3.11, where Options 2 and 3 are shown as having a medium risk of failing to provide the anticipated benefits and a medium risk of not supplying a sustainable solution. Of the remaining options, Option 4 has excessive costs and Option 1a has substantially lower benefits compared with Option 1b, due to the shorter length of watercourse re-watered.

It is therefore concluded that Option 1b, with a compensation release of 1 MI/d to the upstream release point B, should be selected as the preferred option.

The total length of the Croxden Brook and its tributaries anticipated to benefit from the improved flows is 4.4 km.

The Winnothdale Brook, the Croxden Brook downstream of the Winnothdale confluence and a water-dependent Site of Importance for Nature Conservation (SINC) further downstream will all benefit if flows are restored. It is possible that these sites will degrade significantly if the situation is not improved.

The increased flows may provide a suitable habitat for brown trout spawning and a nursery area for the juvenile fish and should also help to reduce siltation of the stream bed.

The assessed economic benefit takes account of these ecological improvements in addition to the increase in the amenity and recreational value of the area surrounding the watercourses.

3.9 Tasks and Dependencies

Investigations:		Agency Midlands Region, Upper Trent Area			
Design and Implementa	ation:	Agency Midlands Region, Regional Office Severn Trent Water Ltd			
Programme for implementation of the preferred option:					
1998	Submission of Business Plan				
1999	Investigation and Design Planning and Consents				
2000	Constru	uction			

3.10 Cost of Preferred Option

The estimated capital and operating costs of the preferred option are given in Table 3.13. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Year	Water	Company	Ag	ency
ending 31/03	Capex	Opex	Capex	Opex
1999	0	0	4 ¹	0
2000	0	0	0	0
2001	866	19	28 ²	0
2002	0	20	0	0
2003	0	20	0	0

Table 3.13 Estimated Costs of the Preferred Option (£ 000)

comprises submission of business plan, the cost of which has not been included in the assessment of tangibles
 Agency costs for bed lining to be recharged to STW Ltd under AMP3

4

DOVER BECK

4.1 Scheme Objectives

The river system of Dover Beck, which has suffered from low flows in recent years, is shown on Figure 4.1. The Agency has recently commissioned a groundwater abstraction borehole at Oxton Golf Club. It was intended that this would rewater the Dover Beck from the borehole down to Bean Ford immediately downstream of Oxton Bogs. Downstream of this point through Thorndale Plantation the flow continues to be lost by seepage.

The Agency intends to identify the length of Dover Beck which is leaking and implement a scheme to line parts of the bed. Two options have been considered in which different lengths of the bed are lined. It has been assumed that the resulting outflow from the Oxton Bogs will be transferred to the River Trent.

On the Oxton Dumble, a tributary of the Dover Beck, a separate augmentation release from a new borehole is being considered to increase the flow. Alternatively an existing but un-used borehole might be used.

The currently proposed options for the alleviation of low flows on Dover Beck are summarised in Table 4.1.

Option	Description	Improvements
1	Sealing beck bed to produce 1.0 Ml/day below Oxton Bogs when existing borehole is in operation.	Rewater 2.5 km, significantly increased flows 8 km
2	Sealing of beck bed to produce 2.5 Ml/day flow below Oxton Bogs when existing borehole is in operation.	Rewater 2.5 km, significantly increased flows 8 km
3	Compensation release into Oxton Dumble of 1 MI/d at NGR SK 646530	Rewater 5.3 km, significantly increased flows 8 km
4	A combination of Options 1+3	Rewater 6 km, significantly increased flows 8 km
5	A combination of Options 2+3	Rewater 6 km, significantly increased flows 8 km

Table 4.1Low Flow Alleviation Options

The gauging station at Lowdham will be used to trigger the compensation releases. This will ensure a minimum target flow at Lowdham. The Agency has stated that the target flow is 15 MI/d which is the Q20% value (or natural flow which is exceeded for 20% of the time). Flow duration curves and and mean daily flows at Lowdham provided by the Agency are given in Appendix 4.

The available information has been used to derive appropriate factors for the economic benefits of each option for those uses which are frequency and duration dependent. The river has been divided into three reaches for this purpose:

- Reach 1 From the outlet from Oxton Bogs at Bean Ford to the confluence with the Grimesmoor Dyke near Calverton Lido, which receives the outfall from the Calverton STW (2.5 km, except in Option 3 where the reach excludes Thorndale Plantation and is 1.8 km long)
- Reach 2 From Calverton Lido to the confluence with the River Trent near Caythorpe (8 km)
- Reach 3 From the proposed augmentation borehole on the Oxton Dumble to the confluence with the Dover Beck downstream of Thorndale Plantation (3.5 km, not included in Options 1 and 2)

Target flows for each reach have been assessed to determine the extent to which the low flow alleviation schemes will improve the situation. Flow improvement factors have been derived from a consideration of the **proportional flow** improvement from the existing situation. In the absence of flow duration data it was not possible to estimate the **proportional time** improvement that the target flow is achieved. Corresponding return periods for very low flows (i.e. about 50% of the target flows) have also been estimated for the before and after situations. The figures which have been derived are summarised in Table 4.2.

		Reach 1	Reach 2	Reach 3	
Target	Flow (MI/d)	2	1		
% of Ti	me above Target				
Before		25%	67%	25%	
After	Option 1	60%	75%	-	
	Option 2	95%	90%	-	
	Option 3	60%	75%	95%	
	Option 4 (1 + 3)	95%	85%	95%	
	Option 5 (2 + 3)	95%	98%	95%	
Flow In	nprovement Factor				
	Option 1	50%	15%	-	
	Option 2	100%	35%	-	
	Option 3	50%	15%	100%	
	Option 4 (1 + 3)	100%	30%	100%	
	Option 5 (2 + 3)	100%	40%	100%	
Return	Period (years)				
before	→ after				
	Option 1	1 → 5	2 → 5	-	
	Option 2	1 → 10	2 → 10	-	
	Option 3	1 → 5	2→5	1 -> 10	
	Option $4(1 + 3)$	1 → 10	2 → 10	$1 \rightarrow 10$	
	Option 5 (2 + 3)	1 → 10	2 → 10	1 → 10	

Table 4.2	Summary of Hydrological Assessment for Dover Beck
-----------	---

In addition to the proposed interim remedial measures indicated above, Water Company groundwater licences in the Nottinghamshire aquifer will reduce by a total of 25 Ml/d as a result of existing licence conditions scheduled to take effect before the end of the AMP3 period. The Agency has also advised the Water Company that a further reduction totalling 40 Ml/d will be required over future AMP planning periods to bring groundwater abstractions from this aquifer down to a sustainable level. These proposals result from detailed hydrogeological modelling of the Nottinghamshire aquifer by the Agency. The Water Company has accepted these findings and the proposed cutbacks have been included in the Company's draft water resources plan. These reductions will benefit a wider area of Nottinghamshire, including the priority site on Rainworth Water, as well as assisting this local site.

4.2 Scope of Study

Table 4.3 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

Table 4.3	Summary	of Impacts
-----------	---------	------------

Impact	Саtедогу	Comments					
Drinking Water S	Supply	Not applicable					
Industrial Abstra	ction	Not applicable					
Agriculture	Livestock	Not applicable					
-	Irrigation	Intensively irrigated carrots, potatoes and sugar beet. Excellent soil for these types of crops. Mostly supplied from groundwater.					
In-stream Recreation	Boating	Not applicable					
	Bathing	Not applicable					
	Angling	Discussions with Agency staff revealed that there are no angling interests on Dover Beck.					
Informal recreation	Walking, picnicking, photography	Yes					
Amenity /Aesthetics	Property prices	A number of properties overlooking the river.					
Conservation (Non-Use or Passive Use)	Ecology	Yes					
,	Heritage	Not applicable					
Other		None					

Discussions with the Agency have clarified that the spray irrigation used for agriculture is from groundwater abstractions. There is however a fish farm, Epperstone Park Hatcheries, which has a licence to abstract from the Dover Beck. The proprietor was contacted and asked about the impact of the low flows on his surface water abstraction. He said that the fish farm had not used the Beck for at least five years due to the lack of water and as a result has found an alternative water source through sinking a borehole. Even with the alleviation of low flows the fish farm would not return to using the Beck as a water source due to its unreliability both in

terms of water quality and volume. Therefore the project offers no economic benefits to this user category.

Restoration of the flow will improve the continuity of the beck's linear wildlife habitat, which at present is not complete due to the beck periodically suffering extremely low flows.

The categories that have been included in the benefit assessment are:

- informal recreation;
- property; and
- non-use.

4.3 Capital and Operating Costs

The Agency has provided estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to line the beck course and to provide a new borehole for the compensation release to Oxton Dumble. Details of the costs are summarised in Table 4.4.

Table 4.4	Summary of	Cost	Estimates	(£	000 Q4	1997)	ļ
				•			

	Option 1	Option 2	Option 3	Option 4	Option 5
Capital expenditure					-
¹ Replacement water			690	690	690
² Bed lining	45	60		45	60
1 New borehole			120	120	120
Total	45	60	810	855	870
Operating expenditure (p	er annum)				
¹ Replacement water			11	11	11
¹ New borehole			9	9	9
Total	0	o	20	20	20

¹ By Severn Trent Water Ltd

² By Agency (costs to be recharged to STW Ltd under AMP3)

4.4 Estimation of Benefits

4.4.1 Informal Recreation

There is limited public access to the reaches of the watercourse affected by the scheme. In addition, though the site is close to Nottingham, there are large numbers of substitute sites in the area which attract visitors in preference to Dover Beck itself. In the absence of reliable primary sources, the estimation of visitor numbers to the site has been based on the indirect approach outlined in the Agency Guidelines, related to the population within 0.8 km of the river, obtained from the Agency's GIS system. Realistic estimates of the likely number of visits have

been derived from previous experience, utilising the GIS data to distribute the numbers between the river reaches.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming 40% of the willingness-to-pay is attributable to the presence of water:

- Upper bound estimate: £1.48 per visitor day;
- Central estimate:

.

- £0.60 per visitor day; and
- Lower bound estimate: £0.20 per visitor day.

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 4.2 produces the annual incremental benefits which are presented in Table 4.5.

Table 4.5 Annual Informal Recreation Benefits

	Option	Visitor	Numbers I Reach (000	oy River I)	Factor	ed Benefi (£000 Q	t by River 4 1997)	Reach
			2	3	1	2	3	Total
Upper	1	7	21	-	5	5	-	10
Bound	2 3 4	5	21 21 21	3	4	5 9	4	13
Ú.	5	7	21	3	10	12	4	26
Central Estimate	1 2	5 5	16 16	-	23	1 3	-	3 6
	3 4	4 5	16 16	2 2	1 3	2 3	1 1	4 7
	5	5	16	2	3	4	1	8
Lower Bound	1 2	4 4	13 13	-	0.4 0.8	0.4 1	-	0.8 2
	3 4	3 4	13 13	2 2	0.3 0.8	0.4 0.8	0.3 0.3	1 2
	5	4	13	2	0.8	1	0.3	2

4.4.2 Property

Newark and Sherwood District Council was contacted to provide Council Tax Bands for the properties identified as adjacent to the watercourse. These are summarised in Table 4.6

Band	1997 Midpoint		Economic Value			
	(£ 000)	Reach 1	Reach 1 Reach 2		Total	(£ 000 Q4 1997)
А	40	0	0	0	0	0
В	46	0	0	0	0	0
С	61	0	0	0	0	0
D	79	0	4	2	6	474
E	105	0	6	5	11	1,155
F	141	2	4	5	11	1,551
G	242	0	3	0	3	726
Н	323	0	0	0	0	0
Total		2	17	12	31	3,906

Table 4.6 Properties Adjacent to Dover Beck by Council Tax Band

Source: Newark and Sherwood District Council

By applying the formulae given in the Benefit Assessment Guidelines, using the assumed changes in return periods for the low flows indicated in Table 4.2, the benefit to property owners has been estimated in terms of once-off changes in stock.

Table 4.7 Amenity and Aesthetic Stock Benefits (£000 Q4 1997)

Option	Total Incremental Benefits							
	Upper Bound	Central Estimate	Lower Bound					
1	163	109	22					
2	277	185	37					
3	371	248	50					
4	485	323	65					
5	485	323	65					
	1							

4.4.3 Non-Use

Non-use (conservation) benefit estimates for Dover Beck have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit this particular river and its tributaries but do hold non-use values towards the alleviation of low flows in rivers;
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are about 8,000 households within 3 km of Dover Beck, distributed between the three river reaches as indicated below, based on

population data obtained from the Agency GIS model and assuming 2.7 people/household:

Reach	1,762 (options 1,2,4 and 5), 1,391 (option 3)
Reach 2	5,637
Reach 3	741 (options 3,4 and 5)

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefits of each option, applying the flow improvement factors from Table 4.2 for each river reach, are summarised in Table 4.8 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

Option	Extent	Upper	Central	Lower
1	Local Full	21 396	17 317	12 237
2	Local	45 856	37	26 513
3	Local	27	23	16
4	Local	50	42	29
5	Local	57	48	33
	Full	1,465	1,174	878

Table 4.8Annual Non-Use Benefits (£000 Q4 1997)

4.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the five options are presented in Table 4.9. The results are shown:

- both including and excluding non-use, together with intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- · for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios in the range 6 to over 200 when the full non-use benefits are included. If only the local non-use benefits are included, the benefit cost ratio reduces to the range 0.5 to 15 with the central estimates. If no non-use benefits are included the ratio reduces further to a range from below 0.3 to 5. The NPV remains positive for all cases where a proportion of the non-local non-use benefits are incorporated.

Compared with Option 3, Options 1 and 2 provide consistently higher cost benefit ratios under all cases considered. This indicates that the bed lining options, on the basis of current estimates, are more cost effective than the borehole, with the extended bed lining in Option 2 giving better results than Option 1.

Option 5 (which combines Options 2 and 3) produces the highest NPV where any part of the non-local non-use value is included. However, if the non-local non-use is excluded Option 2 produces a higher NPV. Option 2 also provides a consistently higher benefit cost ratio.

A summary of the assessment of tangibles (i.e the quantifiable costs and benefits) for all options is presented in Table 4.10. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

A breakdown of the total present value of the benefits by use category for Option 5 (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate, with no rolling forward, is shown on Figure 4.2, together with a breakdown of the present value of the costs.

GIBBF10/Env/Projects/Midlands/Reports/Final/RDover

Table 4.9 (Sheet 1)

•

Dover Beck : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

		7% Discount Rate, 30 year time period											
Option	Costs		Ben	efits	i		Total	NPV	Benefit Cost Ratio				
		incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	exci non use
Upper es	timates, n I 40	o rolling fo	orward 2 641	081	252	4 751	2 500	447	210	114.0	62.6	11.64	5.08
	56	10 303	5 648	992	478	10 247	5.592	936	422	183.7	100.7	17 70	853
3	986	10.619	5,701	783	469	9.633	4,715	-204	-518	10.8	5.8	0.79	0.48
4	1,029	16,019	8,643	1,266	689	14,990	7,614	238	-340	15.6	8,4	1.23	0.67
5	1,043	17,537	9,458	1,380	725	16,494	8,416	337	-318	16.8	9.1	1.32	0.70
	timates, v	rith rolling	forward									i	
1	42	5.049	2.779	509	258	5.007	2.737	467	216	120.0	66.1	12.11	6,14
2	56	10,855	5,945	1,035	492	10,799	5,889	979	436	193.6	106.0	18.45	8.78
3	986	11,185	5,997	810	478	10,198	5,011	-177	-508	11.3	6.1	0.82	0.48
4	1,029	16,875	9,095	1,315	706	15,846	8,066	286	-323	16.4	8.8	1.28	0.69
5	1,043	18,476	9,955	1,434	743	17,434	8,913	392	-299	17.7	9.5	1.38	0.71
Central e	stimates,	no rolling f	forward										
1	42	3,770	2,049	327	129	3,728	2,007	285	87	89.7	48.7	7.78	3.07
2	56	8,112	4,388	664	235	8,056	4,332	608	179	144.7	78.3	11.83	4.19
3	986	8,392	4,458	523	261	7,406	3,471	-463	-725	8.5	4.5	0.53	0.27
4	1,029	12,648	6,748	847	365	11,620	5,719	-182	-663	12.3	6.6	0.82	0.36
5	1,043	13,848	7,385	922	3/7	12,806	6,343	-120	-666	13.3	7.1	0.88	0.36
Central e	stimates,	- with rolling	forward										
1	42	3,972	2,156	340	131	3,930	2,114	298	89	94.4	51.3	8.09	3.13
2	56	8,548	4,620	692	240	8,492	4,564	636	184	152.4	82.4	12.34	4.28
3	986	8,841	4,691	541	265	7,855	3,705	-445	.722	9,0	4.8	0.55	0.27
4	1,029	13,327	7,103	879	371	12,298	6,074	-150	-657	13.0	6.9	0.85	0.36
5	1,043	14,592	7,776	959	383	13,550	6,733	-84	-659	14.0	7.5	0.92	0.37
Lower es	timates, n	o rolling fo	orward										
1	42	2,749	1,458	167	28	2,707	1,416	125	-14	65,4	34.7	3.97	0.67
2	56	5,938	3,145	352	52	5,882	3,089	296	-4	105.9	56,1	6.28	0.93
3	986	6,140	3,190	239	55	5,154	2,203	-748	-931	6.2	3.2	0.24	0.06
4	1,029	9,267	4,841	416	79	8,238	3,813	-613	-950	9,0	4.7	0.40	0.08
5	1,043	10,158	5,311	464	82	9,116	4,268	-579	-961	9.7	5,1	0.44	0.08
Lower es	timates, v	vith rolling	forward										
1	42	2,899	1,537	175	29	2,857	1,495	133	-13	68.9	36.5	4.16	0.68
2	56	6,262	3,316	370	53	6,206	3,260	314	-3	111.7	59.1	6.59	0.95
3	986	6,475	3,362	250	56	5,488	2,376	-737	-930	6,6	3,4	0.25	0.06
4	1,029	9,772	5,104	436	80	8,743	4,075	-593	-948	9.5	5.0	0.42	0.08
5	1,043	10,712	5,599	487	83	9,669	4,557	-556	-959	10.3	5,4	U.47	0.08
1		1	1	1							1		

Table 4.9 (Sheet 2)

Dover Beck : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

	6% Discount Rate, 50 year time period												
Option	Costs		Ben	efits			Total	NPV	1		Benefit C	ost Ratio	
		incl full non-use	incl local and 50% non-local non-use	inci local non-use	exci non- use	inci fulì non-use	incliocal and 50% non-local non-use	incl local non-use	exc) non- use	inci fuli non-use	incl local and 50% non-local non-use	inci local non-use	excl non use
linner est	timates n	o colling fo	oward										
1 2 3 4 5	42 57 1,061 1,103 1,117	6,152 13,240 13,626 20,571 22,532	3,372 7,228 7,274 11,046 12,099	593 1,216 923 1,520 1,666	286 552 517 774 820	6,109 13,183 12,565 19,468 21,415	3,330 7,171 6,214 9,943 10,982	551 1,159 -138 417 549	244 495 -544 -329 -297	144.9 233.9 12.8 18.7 20.2	79.4 127.7 6.9 10.0 10.8	13.97 21.48 0.87 1.38 1.49	6.74 9.74 0.49 0.70 0.73
	timates w	ith folling	forward										
1 2 3 4 5	42 57 1,061 1,103 1,117	6,620 14,252 14,662 22,141 24,254	3,624 7,772 7,816 11,874 13,010	629 1,292 971 1,607 1,765	298 577 533 803 853	6,577 14,196 13,602 21,038 23,137	3,582 7,716 6,756 10,771 11,892	586 1,236 -90 504 648	255 520 -527 -300 -264	155.9 251.8 13.8 20.1 21.7	85.4 137.3 7.4 10.8 11.6	14.81 22.83 0.92 1.46 1.58	7.02 10.19 0.50 0.73 0.76
Central e 1 2 3 4 5	stimates, 1 42 57 1,061 1,103 1,117	no rolling 1 4,843 10,432 10,779 16,258 17,807	orward 2,620 5,623 5,698 8,637 9,461	397 813 617 1,016 1,114	141 260 279 395 409	4,801 10,376 9,719 15,155 16,690	2,578 5,566 4,637 7,534 8,344	354 757 -444 -87 -3	98 203 -782 -708 -708	114.1 184.3 10.2 14.7 15.9	61.7 99.3 5.4 7.8 8.5	9.35 14.37 0.58 0.92 1.00	3.32 4.59 0.26 0.36 0.37
Central e	stimates,	with rolling	forward										
1 2 3 4 5	42 57 1,061 1,103 1,117	5,213 11,232 11,602 17,502 19,172	2,817 6,048 6,125 9,288 10,176	421 864 649 1,075 1,180	145 268 284 40 5 420	5,171 11,176 10,541 16,399 18,055	2,774 5,992 5,065 8,185 9,059	378 808 -412 -28 63	102 211 -776 -698 -697	122.8 198.4 10.9 15.9 17.2	66.4 106.9 5.8 8.4 9.1	9.91 15.27 0.61 0.97 1.06	3.41 4.73 0.27 0.37 0.38
Lower es 1 2 3 4 5	timates, n 42 57 1,061 1,103 1,117	o rolling fo 3,545 7,660 7,918 11,952 13,103	1,878 4,053 4,107 6,237 6,843	210 446 296 521 584	31 58 60 86 90	3,503 7,604 6,858 10,849 11,986	1,835 3,996 3,047 5,134 5,726	168 389 -764 -582 -533	-11 2 -1,001 -1,017 -1,027	83.5 135.3 7.5 10.8 11.7	44.2 71.6 3.9 5.7 6.1	4.95 7.88 0.28 0.47 0.52	0.74 1.03 0.06 0.08 0.08
Lower es 1 2 3 4 5	timates, w 42 57 1,061 1,103 1,117	ith rolling 3,820 8,254 8,531 12,878 14,119	forward 2,023 4,366 4,424 6,718 7,372	225 478 316 558 625	32 61 61 89 93	3,777 8,198 7,471 11,775 13,002	1,980 4,310 3,363 5,615 6,255	183 422 -744 -545 -492	-10 4 -999 -1,014 -1,024	90.0 145.8 8.0 11.7 12.6	47.6 77.1 4.2 6.1 6.6	5.31 8.45 0.30 0.51 0.56	0.76 1.07 0.06 0.08 0.08

•

•

Dover Beck Option 5 Present Value of Benefits and Costs Figure 4.2

Note: The area of the circles is proportional to the present value of the benefits or costs at a 6% discount rate

Option	Agency Costs	Water Co. Costs	Economic Benefit	Net Present Value	Benefit Cost Ratio
6% discour	nt rate, 50 year	time period			
Do Nothing Option 1 Option 2 Option 3 Option 4 Option 5	0 42 57 0 42 57	0 0 1061 1061 1061	0 2,620 5,623 5,698 8,637 9,461	0 2,578 5,566 4,637 7,534 8,344	0 62 99 5.4 7.8 8.5
7% discount rate, 30 year time period		0	0	0	
Option 1 Option 2 Option 3 Option 4 Option 5	42 56 0 42 56	0 0 986 986 986	2,049 4,388 4,458 6,748 7,385	2,007 4,332 3,471 5,719 6,343	49 78 4.5 6.6 7.1

Table 4.10Assessment of Tangibles (£000 Q4 1997)

4.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 4.11. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

4.7 Risk Assessment

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 4.12). The risks considered to be relevant in the appraisal are:

- Risk 1 Operational failure of flow alleviation
- Risk 2 Failure to provide anticipated benefits
- Risk 3 Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Intangible Benefit	Weighting Factor	Opt 1 MI/d Oxtor	ion 1 I below n Bogs	Opt 2.5 MJ Oxto	ion 2 /d below n Bogs	Opt 1 MI/d re Oxton	ion 3 elease to Dumble	Opti Optior	ion 4 is 1 + 3	Opt Option	ion 5 ns 2 + 3	Comment
		points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	
1	3	3	9	3	9	2	6	4	12	5	15	
2	3	3	9	3	9	3	9	5	15	5	15	
3	3	2	6	4	12	2	6	3	g	5	15	STW effluent dilution and enhanced flows at fish farm downstream
Total weight	ed score		_24		30		21		36		45	

Table 4.11 Assessment of Intangible Benefits

Intangible Benefit 1:

Facilitation of Agency meeting objectives

Intangible Benefit 2: Improved public relations and maintenance of credibility of Agency Longer term benefits not quantified in economic analysis

Intangible Benefit 3:

Table 4.12 **Risk Register**

Н

Identified Risk	Option 1 MVd Oxton	on 1 balow 8ogs	Opti 2.5 MVc Oxton	on 2 below Bogs	Opti 1 Ml/d re Oxton D	on 3 lease to Dumble	Opti Option	on 4 s 1 + 3	Opti Option	on 5 s 2 + 3	Comment
	Likelihood	Effect	Likelihood	Effect.	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	
Operational failure of flow alleviation	L	L	м	м	Ĺ	L	Ĺ	L	М	м	
Failure to provide anticipated benefits	L	М	м	м	м	м	м	М	М	м	
Failure to supply a sustainable solution	L	L	L	L	м	М	м	М	м	М	In the long term, reductions in groundwater abstractions will provide a sustainable solution

4-12

low

Relative risks:

high Μ medium L

Intarisk Dover

Issue 2.0 / November 1998

4.8 Selection of Preferred Option

From the assessment of tangibles presented in Table 4.10 it can be seen that Option 5 represents the most cost effective solution in terms of maximum net present value (NPV). This conclusion is supported by the assessment of intangibles in Table 4.11.

Although the risk register presented in Table 4.12 suggests that Option 5, a combination of the options with maximum impact on low flows, may have slightly higher risks than some of the other options, these risks will be mitigated by further investigations before implementation. Monitoring of the flows will be undertaken to confirm the leakage lengths along the affected watercourses. Also, further refinement of the control rules for triggering compensation releases will be undertaken following the initial operation of the scheme.

It is therefore concluded that Option 5, comprising extended sealing of the bed of the Dover Beck below Oxton Bogs and a compensation release of 1 MI/d from a new borehole on the Oxton Dumble, should be selected as the preferred option.

The proposed remedial measures will re-water 6 km of the Dover Beck and the Oxton Dumble as well as significantly increasing the flow in a further 8 km down to the River Trent.

In the longer term, with reduced groundwater abstractions, rising groundwater levels should restore some baseflow to these watercourses, with a subsequent reduction in the requirements for compensation releases.

The re-instatement and increase of flows should improve the continuity of the linear wildlife habitat which is currently incomplete due to the negligible flows within the river reaches for several months of the year.

The assessed economic benefit takes account of these ecological improvements in addition to the increase in the amenity and recreational value of the area surrounding the watercourses.

Increases in flows further downstream could also result in some improvement to water quality as a result of better dilution of the effluent from the Calverton sewage treatment works.

4-13

4.9 Tasks and Dependencies

Investigations:	Agency Midlands Region, Lower Trent Area
Design and Implementation:	Agency Midlands Region, Lower Trent Area Agency Midlands Region, Regional Office Severn Trent Water Ltd

Programme for implementation of the preferred option:

1998	Submission of Business Plan
1999	Investigation and Design Planning and Consents
2000	Construction Part 1 (bed lining)
2001	Construction Part 2 (new borehole)

4.10 Cost of Preferred Option

The estimated capital and operating costs of the preferred option are given in Table 4.13. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Year	Water Com	pany	Agency	4
ending 31/03	Capex	Opex	Capex	Opex
1999	0	0	4 ¹	0
2000	0	0	0	0
2001	0	0	67²	0
2002	948	12	0	0
2003	0	12	0	0

Table 4.13Estimated Costs of the Preferred Option (£ 000)

comprises submission of business plan, the cost of which has not been included in the assessment of tangibles
 Agency costs for bed lining to be recharged to STW Ltd under AMP3

5

RIVER NOE AND RIVER ASHOP

5.1 Scheme Objectives

Both the River Noe and the River Ashop are diverted to the Derwent Valley Reservoirs with very little flow finding its way into the river channels below the points of diversion, which are indicated on Figure 5.1. On the River Noe there is a weir 2 km upstream of its confluence with Jaggers Clough and all water except at high flows is diverted by aqueduct to the reservoir system. To compensate for this loss, a flow of 17 Ml/d is discharged from the aqueduct into Jaggers Clough. This results in an unsightly dry river channel for 2 km of the River Noe. To alleviate this situation the proposed scheme will allow a compensation flow of 10 or 15 Ml/d to remain in the River Noe.

It was initially considered that the compensation release at Jaggers Clough should be split between Jaggers Clough and the River Noe diversion. This has now been discounted. The water course below Jaggers Clough is producing a reliable fishery and should not be modified. Therefore it has been decided that the Ladybower Reservoir compensation release of 57 MI/d should be considered for variation in order to allow the rewatering of the 2 km dry section of the River Noe. The options to be considered are releases of 10 and 15 MI/d. This is expected to improve the visual appearance of the river as well as providing an additional salmonid fishery.

On the River Ashop the diversion weir is just downstream of the confluence of the River Alport, some 3 km upstream of Ladybower Reservoir. Little water proceeds down the natural river channel, the majority of it being diverted by tunnel to the Derwent Reservoir. This results in a dry river bed for 3 km. The low flow alleviation scheme currently being considered would involve allowing some flow down the Ashop in order to allow the rewatering of the 3 km dry section of the river. There is currently no compensation-requirement at the abstraction point from the River Ashop to the Derwent Reservoir. The options to be considered (as for the River Noe) are releases of 10 and 15 Ml/d. This will enable the River Ashop to be brought back as a salmonid fishery and enhance the appearance of the river.

For this assessment the modifications to be considered are:

- Option 1 Compensation release from Ladybower Reservoir (Yorkshire Bridge) 47 Ml/d Compensation release at River Noe diversion 10 Ml/d Compensation release at River Ashop diversion 10 Ml/d
- Option 2 Compensation release from Ladybower Reservoir (Yorkshire Bridge) 42 MI/d Compensation release at River Noe diversion 15 MI/d Compensation release at River Ashop diversion 15 MI/d

Information provided by the Agency is given in Appendix 5. In the absence of further information, both in relation to the existing and naturalised flow regime and the impact of the proposed changes on the quality of fishery expected to be created, it has not been possible to distinguish benefits between the two options.

A PHABSIM investigation has recently been undertaken by the Agency to provide further information, although the results were not available in time for this analysis.

Final details of the compensation release facilities and associated fish passes at the existing weirs, including possible seasonal variations in the pattern of releases, are being investigated by the Agency and Severn Trent Water Limited.

5.2 Scope of Study

Table 5.1 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

Table 5.1 Checklist of Impacts

Impact Category		Comments
Drinking Water Su	pply	Not applicable
Industrial Abstracti	on	Not applicable
Agriculture	Livestock	Not applicable
-	Irrigation	Not applicable
In stream recreation	Boating	Not applicable
	Bathing	Not applicable
	Angling	Yes
Informal recreation	Walking, picnicking, photography	Yes
Amenity /Aesthetics	Property Pric e s	No
Conservation (Non-Use or Passive Use)	Ecology	Yes
	Heritage	Not applicable
Other		Not applicable

A schematic diagram of the river system is shown in Figure 5.1. The two lengths of dry river bed have been aggregated to a single 5 km reach for the purpose of the economic assessment; specifically these two lengths are:

- River Noe from SK 147 858 to the confluence with Jaggers Clough at SK 162 863 (2 km); and
- River Ashop from SK 141 895 to the point where it enters Ladybower Reservoir at SK 164 878 (3 km).

These lengths of the Noe and the Ashop are included for angling purposes within longer reaches designated by the Agency, namely:

- River Noe: SK 123 851 to SK 175832; and
- River Ashop: SK 109 915 to SK 141 895.

Both of these longer reaches are classified as RE1 and the River Noe is a designated salmonid fishery. This suggests that if water is allowed to flow through the low flow reaches a viable fishery could be created.

A site visit (23 January 1998) and discussions with Agency staff suggest that currently there is no expectation of a flow of water in the river channels of the low flow reaches. Consequently there are no abstractions and virtually no agricultural uses except the occasional *ad hoc* watering of stock when overflow from the weirs allows it. There is no property on the reaches. The benefits would therefore be derived by creating a fishery potential and gaining some

informal recreational benefit by making the areas more aesthetically pleasing and therefore attracting walkers and visitors to the areas. Despite being part of the Peak District National Park neither of these two locations currently attracts many visitors.

Therefore the uses that have been included in the appraisal are:

- informal recreation;
- angling; and
- non use.

5.3 Capital and Operating Costs

Severn Trent Water Ltd has provided the Agency with estimates of the capital expenditure (capex) necessary to provide modifications to the existing weirs, including compensation release facilities and fish passes. No change in existing operating expenditure (opex) is envisaged. In addition, the Agency has provided details of costs of the PHABSIM study. Details of the costs are summarised in Table 5.2.

Table 5.2	Summan	of Cost Estimates	(£ 000 Q4 1997)

	River Noe	River Ashop
Capital expenditure		
Modifications to existing weirs, including comp- ensation release facilities and fish passes	100	100
- PHABSIM study (Agency costs)		1
Operating expenditure (per annum)	no extra cost	no extra cost

5.4 Estimation of Benefits

5.4.1 Informal Recreation

During 1994 this area of the Peak District National Park (Kinder and the High Peak Fringe) attracted only 5% of day trip visitors and 13% of holiday makers (1994 All Parks Visitor Survey: The Peak National Park). The 1986/87 visitor survey identified 1,240,000 people as visiting the Upper Derwent and Woodlands Valleys and 250,000 as visiting the Vale of Edale. These are the areas which contain the dry river reaches.

The figures suggest that the visitor potential for these reaches is good, while the site visit suggested that other parts of these areas are currently visited in preference as the dry river channels do not present attractive locations for walking or picnicking. It is envisaged that informal recreation would take place more readily on the River Ashop as it is more accessible and there are footpaths nearby. The River Noe is less accessible and does not currently have a network of footpaths although it is on National Trust Land with the viewpoints of Hollins Cross and Lose Hill nearby.

Use of the Low Flow Guidelines to ascertain the numbers of visitors to the sites is unlikely to provide an accurate assessment. The sites fit into neither the honeypot nor the local park descriptions. They will attract fewer visitors than honeypot sites and are more similar to local

parks in the context of the guidelines but, unlike local parks, these sites are likely to attract visitors from further afield as they lie within the National Park. Both sites lie close to major roads and other visitor attractions. The River Noe in the Vale of Edale is close to National Trust land off the A625. Based on experience, in view of the lack of data and inappropriateness in this case of the procedures given in the Guidelines it is assumed that the potential number of visitors would be within the range of 2,500 to 7,500 per annum. The uncertainty associated with these estimates is reflected in the wide range.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming that 40% of the willingness-to-pay is attributable to the presence of water:

- Upper bound estimate: £1.48 per visitor day;
 - £0.60 per visitor day; and
- Central estimate:
 Lower bound estimate
- £0.20 per visitor day, and
- Lower bound estimate:
 - policing contract. 20.20 per Visitor day.

The impact of the options on the frequency of low flows has not been provided by the Agency. For the purpose of this analysis it has been assumed that future low flows would be avoided by both options and that the benefit would apply to all trips.

Combining this assumption with the willingness-to-pay values and participation rates generates annual informal recreation benefits of between £500 and £11,100 for the scheme as shown in Table 5.3.

	Visitor Numbers	£000 Q4 1997
Upper bound	2,500	11.1
Central estimate	5,000	3.0
Lower bound	7,500	0.5

Table 5.3 Annual Informal Recreation Benefits

5.4.2 Angling

The natural brown trout populations in the Noe and the Ashop suffer from the low flows associated with the operation of the reservoir system (Derbyshire Derwent LEAP 3.6). The Agency expects that the proposed investment will allow the fish population to spread and become more secure. This will not only require a change in the regime of water release but also the construction of fish passes in the weirs on the Noe and Ashop to allow the migration of trout populations.

Currently there is no angling on these low flow reaches as there are negligible quantities of water flowing down them. It is hoped that the "with project" scenario of allowing some flow down the river channels and creating fish passes will create a viable trout fishery.

The River Noe is currently fished by the Peak Forest Angling Club (PFAC), whilst the Ashop has no angling interests. Discussions with the PFAC have provided primary data concerning the number of anglers active in the area. They have exclusive rights to the Noe with a bailiff on site and there is a membership of 30. The river is stocked below the confluence with Jaggers Clough; few fish find their way above the railway/road bridge at SK167858, 2 km north of Hope village. Therefore the trout in the upper parts of the Noe are wild stock and it is these which would be expected to migrate into the new areas. However the fishing is considered of good

quality by those who fish it. The alleviation of the low flow in this section of the Noe would result in the creation of 2 km of new trout fishery.

The Low Flow Benefit Assessment Guidelines suggest anglers willingness-to-pay values for the creation of new trout fisheries, depending on their quality, as follows:

- Good: £16.28/person/trip
- Moderate: £10.39/person/trip
- Poor: £8.92/person/trip

The Manual also provides figures for the number of trips made per angler per year to new fisheries:

Table 5.4	Estimates of the number of	trips/angler/ye	ar to new fisheries.
-----------	----------------------------	-----------------	----------------------

From	То	Number
No Fishery	Poor Trout Fishery	3.02 trips/person/year
No Fishery	Moderate Trout Fishery	13.02 trips/person/year
No Fishery	Good Trout Fishery	10.98 trips/person/year

The quality of the fishery below the bridge is considered to be good but this is artificially stocked. The rest of the fishery below Jaggers Clough relies on wild stocks and is of moderate quality. Therefore the central estimate for the benefit of relieving the low flows in the dry reaches of the rivers is based on the creation of a moderate trout fishery.

However there remain some uncertainties. These include habitat queries and the lack of access to a large proportion of the river banks.

Engineering works may be required to provide the necessary wetted perimeter for trout in the newly watered river channels. This may cost a significant sum and negate any benefits gained from the few kilometres of fishing created. As there is currently no water flowing in the river channels there are no fish stocks. If the proposed fish passes fail to encourage the natural stocks to migrate, a further outlay would be required to stock the river to a suitable level to attract fishermen from the alternative sites in the vicinity.

On the River Noe there is no network of footpaths to provide access for the fishermen who may be attracted to the site. Although there is better access to the Ashop it is still not adequate to provide complete access to the whole 3 km reach.

It is therefore considered that the most realistic way to estimate the likely number of anglers who will be attracted to the new sites (which will include the reaches upstream of the existing weirs) is to assume that new fisheries will be created on each river with a similar number of members as the existing membership of the PFAC.

Combining the total of 60 new anglers with the number of trips per angler provides an estimate of the potential economic value to be derived based on the willingness-to-pay figures given above. These are summarised in Table 5.5.

Table 5.5 Annual Angling Benefits

Quality of Fishery	Annual Benefit (£000 Q4 1997)
Upper bound (good)	10.6
Central estimate (moderate)	8.1
Lower bound (poor)	1.6

It may be noted that similar benefits can be derived using the indirect approach given in the Manual, based on Agency estimates for rod licence sales of about 8000 within a 17 km radius of the site, assuming 20% of these are trout anglers and allowing for an overall increase in angling visits of about 5% due to the prevalence of substitute sites.

5.4.3 Conservation/Non Use

Non-use (conservation) benefit estimates for the Rivers Noe and Ashop have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit these particular rivers but do hold non-use values towards the alleviation of low flows in rivers; and
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are about 700 households within 3 km of the low flow sites, based on population data obtained from the Agency GIS model and assuming 2.7 people/household:

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefits are summarised in Table 5.6 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

Table 5.6 Annual Non-Use Benefits (£000 Q4 1997)

Extent	Upper	Central	Lower
Local	8	7	5
Full	776	621	465

5.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the two options are presented in Table 5.7. The results are shown:

- both including and excluding non-use, together with intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios in the range 24 to over 50 when the full non-use benefits are included. If only the local non-use benefits are included, the benefit cost ratio reduces to the range 0.9 to 1.3 with the central estimates.

It should be noted that no disbenefit has been evaluated for the reduction from 57 to 47 MI/d in the 4 km of river downstream of Ladybower Reservoir.

A summary of the assessment of tangibles (i.e. the quantifiable costs and benefits) is presented in Table 5.8. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

A breakdown of the total present value of the benefits by use category (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate, with no rolling forward, is shown on Figure 5.2, together with a breakdown of the present value of the costs.

Table 5.7 (Sheet 1)

River Noe and River Ashop : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

		7% Discount Rate, 30 year time period											
Option	n Costs Benefits					Total	NPV		Benefit Cost Ratio				
		incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local กอก-use	excl non- Use	inci fuli non-use	incl local and 50% non-local non-use	incl local non-use	excl non use
Upperes 1/2	timat es, n 225	o rolling fa 9,153	Fward 4,750	346	249	8,928	4,524	120	24	40.6	21.1	1.53	1.11
Upperes 1 / 2	timates, w 225	vith rolling 9,655	forward 5,010	365	263	9,429	4,784	139	38	42.9	22.2	1.62	1,17
Central e 1 / 2	stimates, 225	no rolling 7,254	forward 3,731	208	128	7,029	3,506	-17	-98	32.2	16.6	0.92	0.57
Central e 1 / 2	stimates, 225	with rolling 7,651	g forward 3,935	219	135	7,426	3,710	-6	-91	34,0	17.5	0.97	0.60
Lower es 1 / 2	timates, n 225	o rolling fo 5,365	2,723	80	24	5,140	2,498	-145	-201	23.8	12.1	0.36	0.11
Lower es	timates, v 225	vith rolling 5,659	forward 2,872	85	26	5,434	2,647	-140	-200	25.1	12.8	0.38	0.11

Table 5.7 (Sheet 2)

River Noe and River Ashop : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

	6% Discount Rate, 50 year time period												
Option	Costs Benefits					Total NPV				Benefit Cost Ratio			
		incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	inci full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use
Upper es 1 / 2	timates, n 227	o rolling fo 11,821	rward 6,134	446	322	11,594	5,906	219	95	52.0	27.0	1,96	1.42
Upperes 1/2	timates, w 227	ith rolling 12,741	forwa rd 6,611	481	347	12,514	6,384	254	120	56.0	29.1	2.12	1.53
Central e 1 / 2	stimates, 227	no rolling (9,368	orward 4,818	268	165	9,141	4,591	41	-63	41.2	21.2	1.18	0.72
Central e 1 / 2	stimates, 227	with rolling 10,097	forward 5,193	289	178	9,870	4,966	62	-50	44,4	22.8	1.27	0.78
Lower es 1 / 2	timates, n 227	o rolling fo 6,929	rward 3,516	104	31	6,701	3,289	-123	-196	30.5	15.5	0.46	0.14
Lower es 1 / 2	timates, w 227	vith rolling 7,468	forward 3,790	112	34	7,241	3,563	-115	-194	32.8	16.7	0.49	0.15

Option	Agency	Water Co.	Economic	Net Present	Benefit Cost
	Costs	Costs	Benefit	Value	Ratio
6% discoun	t rate, 50 year	time period			
Do Nothing	0	0	0	0	0
Option 1	39	189	4,818	4,591	21.2
Option 2	39	189	4,818	4,591	21.2
7% discoun	i t rate, 30 year	time period			
Do Nothing	0	0	0	0	0
Option 1	38	187	3,731	3,506	16.6
Option 2	38	187	3,731	3,506	16.6

Table 5.8 Assessment of Tangibles (£000 Q4 1997)

5.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 5.9. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

5.7 Risk Assessment

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 5.10). The risks considered to be relevant in the appraisal are:

- Risk 1 Operational failure of flow alleviation
- Risk 2 Failure to provide anticipated benefits
- Risk 3 Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Costs

•

•

Capex (PHABSIM Study) 17.0%

Note: The area of the circles is proportional to the present value of the benefits or costs at a 6% discount rate River Noe and River Ashop Option 1/2 Present Value of Benefits and Costs Figure 5.2

Table 5.9 Assessment of Intangible Benefits

Intangible Benefit	Weighting Factor	Opt 10 M/d	ion 1 releases	Option 2 15 MVd releases		Comment
		points	weighted points	points	weighted points	
1	3	3	9	4	12	Greater flow will facilitate meeting objectives
2	3	4	12	4	12	
3	3					Not applicable
Total weight	ed score		21		24	

Intangible Benefit 1: Intangible Benefit 2: Intangible Benefit 3:

Facilitation of Agency meeting objectives

Improved public relations and maintenance of credibility of Agency

: Longer term benefits not quantified in economic analysis

Table 5.10

Risk Register

Identified Risk	Option 1 10 Ml/d releases		Option 2 15 MI/d releases		Comment
	Likelihood	Effect	Likelihood	Effect	
Operational failure of flow alleviation	L	L	L	L	
Failure to provide anticipated benefits	L	М	L	М	
Failure to supply a sustainable solution	L	L	L	L	

Relative risks:

H high

M medium

L low
5.8 Selection of Preferred Option

As noted in Section 5.1, it has not been possible to differentiate the tangible benefits between the two levels of compensation releases considered - i.e. 10 MI/d with Option 1 and 15 MI/d with Option 2. However, as indicated in the assessment of intangibles presented in Table 5.9, it is considered that the higher compensation releases with Option 2 will facilitate the Agency meeting its objectives to a greater extent than Option 1.

It is therefore concluded that Option 2, with compensation releases of 15 MI/d at each of the two existing weirs, should be selected as the preferred option.

Some 2 km of the River Noe and 3 km of the River Ashop will be re-watered.

The re-instatement of flows through the low flow reaches on both the Noe and the Ashop will improve the continuity of the linear wildlife habitat which is currently interrupted by the negligible flows within the river reaches at present.

The water flowing above and below the current diversion points is of the highest water quality classification (RE1) which supports populations of brown trout. Increasing the flow within the dry sections should allow the creation of a viable fishery with both economic and ecological benefits. The provision of fish passes should allow the new fishery to extend to the reaches upstream of the existing weirs.

The popularity of the Peak District National Park means that there are large numbers of visitors. This area of the Park does not reach its full potential due to the unsightly nature of the dry reaches. With improved flows more people will visit these areas, providing more income for local services and relieving pressure on more traditionally popular areas within the Park.

Local farmers will benefit by being able to water their stock on an ad hoc basis in the reaches with an increased flow.

5.9 Tasks and Dependencies

Investigations:		Agency Regiona	Midlands I Office	Region,	Lower	Trent	Area	and
Design and implementa	ition:	Severn 1	Frent Wate	r Ltd.				
Programme for imple	nentation of pr	eferred c	ption:					
1998	Submission of I PHABSIM Inve	Business stigation	Plan					
1999	Investigation an Planning and C	nd Design onsents	I					
2000/2001	Construction							

5.10 Cost of Preferred Option

1

-

The estimated capital and operating costs of the preferred option are given in Table 5.11. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Year	Water C	ompany	Age	ncy
ending 31/03	Capex	Opex	Capex	Opex
1999 2000 2001 2002 2003	0 0 225 0 0	0 0 0 0 0	45' 0 0 0 0	

Table 5.11 Estimated Costs of the Preferred Option (£ 000)

includes submission of business plan, the cost of which has not been included in the assessment of tangibles

6

RAINWORTH WATER

6.1 Scheme Objectives

The reach of the river known as Rainworth Water which is considered under this Low Flow Alleviation Scheme runs from L Lake (SK585583) to Rufford Country Park (SK647650), a total length of some 12 km as shown on Figure 6.1. The Rainworth Water scheme is driven by the need to ensure the SSSI wetland habitat at L Lake (SK585583) remains watered. English Nature has designated L Lake as a Wetland Site of Special Scientific Interest. It is thought that L Lake itself is supported by a perched water table within the Sherwood Sandstones, but the woodland adjacent to the outfall stream could be affected by abstraction from groundwater for public water supply.

The existing flow in Rainworth Water comes from a number of sources:

- Overspill from L Lake which is limited to wet weather conditions;
- Discharge from Rainworth STW (highly variable, between 0.5 and 4 MI/day);
- Discharge from Bilsthorpe STW; and
- Flow from Gallowshole Dyke (at SK646649).

There are several problems concerning the site which are the result of fissuring and subsidence caused by coal mining. In the recent past there have been occasions on which no flow has reached Rufford Country Park as fissures have opened up and intercepted the entire flow of Rainworth Water. British Coal accepted responsibility for this in the past and the Coal Authority has undertaken work to put the problems right when they occur.

Similarly, subsidence caused the appearance of a lake on Rainworth Water at Inkersall Farm. The Coal Authority again accepted responsibility and as the landowners wished to keep the lake as a feature they arranged to landscape it into the surrounding land and restored an outflow along Rainworth Water. However, three years later the lake started flooding the surrounding ground due to further subsidence and this has led to a reduction in outflow.

During a site visit with Agency staff on 22 January 1998 it was noticed that there was less flow in Rainworth Water at the confluence with Gallowshole Dyke than there was at L Lake, -1-1-km upstream. This suggests a loss of water along the river either due to continuing mining-related problems or to excessive abstractions.

The Agency has put forward two schemes to be considered:

- Review Licence 70/3 and see if it would be practicable to reinstall a pump set at the existing borehole between L Lake and Rainworth;
- Install a new borehole upstream of L Lake on the northside tributary at SK579583.

Releases of either 1 or 2 MI/d would be triggered by flows in Rainworth Water upstream of the confluence with Gallowshole Dyke. The two options, each with two sub-options, are summarised in Table 6.1.

LOW FIOW Alleviation Uptions	Table 6.1	Low Flow Alleviation Options
------------------------------	-----------	------------------------------

Option	Description	Improvements
1a / 1b	Compensation release of 1 Ml/d (Option 1a) or 2 Ml/d (Option 1b) from a refurbished borehole	Rewater 1.7 km, significantly increased flows in 9 km.
2a / 2b	Compensation release of 1 Ml/d (Option 2a) or 2 Ml/d (Option 2b) from a new borehole upstream of L Lake	Rewater 2.6 km, significantly increased flows in 9 km.

A copy of the information provided by the Agency is provided in Appendix 6. Very little hydrological information is available. The limited information has been used to derive appropriate factors for the economic benefits of each option for those uses which are frequency and duration dependent. The river has been divided into two reaches for this purpose:

- Reach 1 From L Lake (or the augmentation point in the case of Option 2) to the outfall from Rainworth STW at SK 598592 (1.7 km with Option 1 or 2.6 km with Option 2)
- Reach 2 From the outfall from Rainworth STW to the confluence with the Gallowshole Dyke (9 km)

Target flows for each reach have been assessed to determine the extent to which the low flow alleviation schemes will improve the situation. Flow improvement factors have been derived from a consideration of both the **proportional flow** improvement from the existing situation at the nominal Q95% level, and the **proportional time** improvement that the target flow is achieved. With the very limited hydrological data available these estimates are only an approximation. Corresponding return periods for very low flows (i.e. about 50% of the target flows) have also been estimated for the before and after situations. The figures which have been derived are summarised in Table 6.2.

		Reach 1	Reach 2
Target	Flow (MI/d)	1	2.5
% of Ti	me above Target		
Before		approx 25%	approx 40%
After	Option 1a, 2a	95%	70%
	Option 1b, 2b	> 95%	95%
Flow Ir	nprovement Factor		
	Option 1a, 2a	100%	40%
	Option 1b, 2b	100%	80%
Return	Period (years)		
before	Option 1a 2a	1→5	1 -> 5
	Option 1b, 2b	1 -> 10	$1 \rightarrow 10$

Table 6.2 Summary of Hydrological Assessment for Rainworth Water

In addition to the interim remedial measures indicated above, Water Company groundwater licences in the Nottinghamshire aquifer will reduce by a total of 25 MI/d as result of existing licence conditions scheduled to take effect before the end of the AMP3 period. The Agency has also advised the Water Company that a further reduction totalling 40 MI/d will be required over future AMP planning periods to bring groundwater abstractions from this aquifer down to a sustainable level. These proposals result from detailed hydrogeological modelling of the Nottinghamshire aquifer by the Agency. The Water Company has accepted these findings and the proposed cutbacks have been included in the Company's draft water resources plan. These reductions will benefit a wider area of Nottinghamshire, including the priority site on Dover Beck and Oxton Dumble, as well as assisting this local site.

6.2 Scope of Study

Table 6.3 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

Impact Category Drinking Water Supply Industrial Abstraction		Comments		
		Not applicable		
		Not applicable		
Agriculture	Livestock	No		
	Irrigation	Intensively irrigated carrots, potatoes and sugar beet. Excellent soil for these types of crops.		
In stream recreation	Boating	No		
	Bathing	No		
	Angling	At L Lake		
Informal recreation	Walking, picnicking,	Major honeypot site at Rufford Country Park (Notts CC).		
	photography	Extensive public access to river.		
		Centre Parcs nearby.		
Amenity /Aesthetics	Property prices	Some properties adjacent to Rainworth Water.		
Conservation (Non-Use or Passive Use)	Ecology	Yes		
7	Heritage			
Other				

Table 6.3Summary of Impacts

Restoration of the flow will improve the continuity of the linear wildlife habitat of Rainworth Water, which at present is not complete due to the river periodically suffering extremely low flows.

The categories that have been included in the benefit assessment are:

- informal recreation;
- agriculture;
- angling;
- property; and
- non-use.

6.3 Capital and Operating Costs

Severn Trent Water Ltd has provided the Agency with estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to provide for the replacement of 1 or 2 MI/d of water currently abstracted at the Rainworth groundwater pumping station which, with Option 1, would be diverted to L Lake. In addition it is proposed that a pump should be installed in one of the existing boreholes to effect the flow augmentation. With Option 2 a new borehole would be implemented by the Water Company, typical costs for which have been provided by the Agency. In addition a further groundwater study will be undertaken by the Agency. Details of the costs are summarised in Table 6.4.

	Option 1a	Option 1b	Option 2a	Option 2b
Capital expenditure				0
Replacement water	690	1379	690	1379
PWS option	25	50		
New borehole			120	200
Groundwater study	10	10	10	10
Total	725	1,439	820	1589
Operating expenditure (per	annum)			
Replacement water	11	23	11	23
New borehole			9	18
Total	11	23	20	41

Table 6.4	Summar	of Cost Estimates	(£ 000 Q4 1997)
	Vannar	ALAAAL FORHIGIAA	(

6.4 Estimation of Benefits

6.4.1 Informal Recreation

There are a number of sites on Rainworth Water at which informal recreation is a relevant economic factor. These include:

- L Lake;
- The forest tracks and footpaths in Clipstone Forest;
- the picnic site at Robins Bridge; and
- Rufford Country Park.

Furthermore the Centre Parcs Holiday complex is situated in the area and has access to Clipstone Forest. However, as visitors to Centre Parcs are likely to be attracted whatever the state of flow in Rainworth Water, the costs of visiting the holiday village cannot be used as a representation of the economic value of maintaining the flow.

Although Rufford Country Park is just downstream of the confluence with the Gallowshole Dyke, the presence of enhanced low flows in Rainworth Water is considered to be a benefit to a least a proportion of the visitors to Rufford Country Park. Nottinghamshire County Council, the owners of the Park, estimate that there are 700,000 visitors per year.

In the absence of reliable primary sources the estimation of visitor numbers to the rest of Rainworth Water has been based on the indirect approach contained in the Manual. Realistic estimates of the likely number of visits have been derived from previous experience, utilising the GIS data to distribute the numbers between the river reaches.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming that 40% of the willingness-to-pay is attributable to the presence of water:

- Upper bound estimate: £1.48 per
 - £1.48 per visitor day; £0.60 per visitor day; and
- Central estimate:Lower bound estimate:
 - £0.20 per visitor day.

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 6.2 produces the annual incremental benefits which are presented in Table 6.5.

Table 5.5 Annual Informal Recreation Benefi

States .		1 4 4 5 4 4 M		111112 A			1	
	Option	Visitor	Numbers Reach (00	by River 0)	Factor	ed Benefit (£000 Q	4 1997)	Reach
			2	Rufford Water		2	Rufford Water	Total
Upper	1a	6	16	700	8	10_	10	28
Bound	1b 👘	6	16	700	8	19	21	48
	2a	7	16	700	11	10	10	31
	2b	7	16	700	11	19	21	51
Central	1a	4	12	700	3	3	4	10
Estimate	1b	4	12	700	3	6	8	17
	2a	6	12	700	3	3	4	11
	2b	6	12	700	3	6	8	18
Lower	1a	3	10	700	0.7	0.8	1.4	2.9
Bound	1b	3	10	700	0.7	1.6	2.8	5.0
	2a	5	10	700	0.9	0.8	1.4	3.1
	2b	5	10	700	0.9	1.6	2.8	5.3

6.4.2 Agriculture

Much of the land in this region is used for intensive agriculture, comprising intensively irrigated high value crops such as carrots, potatoes and sugar beet. The soil is excellent for these types of crops but the crops need to be irrigated as the soil has a low water holding capacity. Hence there are a large number of abstraction licences granted for agricultural purposes.

The licences have volumetric limits beyond which abstractions are not allowed. This causes problems for the agricultural community as the crops rely on a regular source of moisture to maintain their quality and therefore their price. Benefit would accrue to the farming community if they were able to abstract for more days during the drier parts of the year and therefore maintain their crops at optimum condition for longer. The Agency would also benefit as there would be a reduction in illegal abstractions which deplete the river to dangerously low levels.

There are a number of surface water abstraction licences in the 11 km reach of Rainworth Water for spray irrigation. These include:

- Boggs Farm;
- Inkersall Farm;
- Featherstone House Farm; and
- Inkersall Grange Farm (licence holder Robert Thomas Farms).

The impact of alleviating the low flows in Rainworth for each of these abstractions is addressed separately below.

- Boggs Farm has been affected by the low flows and has not been able to abstract from the surface water for irrigation to the optimum effect. In order to overcome this problem which stems from insufficient summer flows the owner intends to apply for permission to construct a winter storage lagoon. The licence allows for 30,000 m³/year to be abstracted and using the approach given in the low flow guidelines would entail a capital cost of £30,000. The options for alleviation of low flows could remove the need for this expenditure which could therefore be included in the economic appraisal as a resource cost saving. However, the abstraction is licenced for 0.8 Ml/d, and if unrestricted, would therefore remove a substantial proportion of the flow during low flow periods, particularly with Options 1a and 2a where the additional compensation release is only 1 Mil/d. It is considered that the reduction in other benefits from this loss of water downstream of Boggs Farm is likely to be greater than the potential resource cost saving. In addition, the provision of winter storage will provide a more secure agricultural supply. It has therefore been assumed that the construction of the winter storage lagoon will proceed.
- **Inkersall Farm** has an abstraction licence for spray irrigation but the owner has not used this for the past five years following the sale of land. It is unlikely that this will be used by the owner in the foreseeable future and consequently there will be no economic benefit to this particular user.
- Featherstone House Farm has a licence to abstract from Rainworth Water but has an alternative source which has been used for the past five years. The surface water abstraction has not been required and thus the alleviation of the low flows cannot be considered to generate any economic benefits to this farm.
- Robert Thomas Farms at Inkersall Grange Farm has a restricted licence to abstract from the surface water and stores this water in a 45,000 m³ reservoir for spray irrigation in the summer. The licence only allows abstractions when flow in Rainworth Water exceeds the equivalent of 4.87 Ml/d. The low flows have meant that the surface water has become an unreliable source for supplying the reservoir, although relatively few days of irrigation are lost as the cropping regime is based on the amount of water available in storage. The Agency is in the process of granting a groundwater abstraction licence for the farmer to develop an alternative source of supply providing up to 250,000 m³/year or 4.4 Ml/d.

It is therefore concluded that any potential agricultural benefits of the low flow alleviation scheme would be small, and would be more than offset by a reduction in other benefits downstream.

6.4.3 Angling

Angling is the only in-stream recreational activity on Rainworth Water and it is limited to L Lake which is run as a privately owned coarse fishery. Fishermen may either purchase day tickets at £5/day or season tickets at £60. Jack Singleton, the bailiff at the lake, estimated there to be around 140 season ticket holders and reported that day ticket sales were very variable, but would not give an estimate of the potential number of anglers visiting the site. The bailiff, who has been at the site for the past 28 years, was of the opinion however that the low river flows had had no impact on the quality of angling and the number of anglers to the site. On the basis of this anecdotal evidence no angling benefits at L Lake are taken as resulting from the alteviation of low flows in Rainworth Water.

There is no fishing in the rest of Rainworth Water as it is too small to support a viable fishery. This situation will not change with the low flow alleviation options currently under consideration.

6.4.4 Property

There are a number of properties affected by Rainworth Water, notable amongst which are:

- Lake Farm Road, Rainworth;
- Inkersall Farm;
- Mickledale Lane, Bilsthorpe; and
- A new high value housing development just south of Rufford Country Park.

All of these will be directly affected by low flows, particularly those on Lake Farm Road as Rainworth Water flows through their back gardens.

Newark and Sherwood District Council was contacted to provide Council Tax Bands for the properties identified as adjacent to the watercourses. These are summarised in Table 6.6.

Band	1997 Midpoint	No of properties			Economic Value
	(£ 000)	Reach 1	Reach 2	Total	(£ 000 Q4 1997)
A	40	5	45	50	2,020
В	46				
C	61				
D	79				
E	105		1	1	105
F	141				
G	242		2	2	485
н	323			ĺ	
Total		5	48	53	2,610

Table 6.6	Properties Adjacent to Rainworth Water by	Council Tax Band

Source: Newark and Sherwood District Council

By applying the formulae given in the Benefit Assessment Guidelines, using the assumed changes in return periods for the low flows indicated in Table 6.2, the benefit to property owners has been estimated in terms of once-off changes in stock.

Option	To	tal Incremental Benefit	S
	Upper Bound	Central Estimate	Lower Bound
1a / 2a	273	182	37
1b / 2b	391	261	52

Table 6.7 Amenity and Aesthetic Stock Benefits (£000 Q4 1997)

6.4.5 Non-Use

Non-use (conservation) benefit estimates for Rainworth Water have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit these particular rivers but do hold non-use values towards the alleviation of low flows in rivers; and
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are some 11,000 households within 3 km of Rainworth Water, distributed between the two river reaches as indicated below, based on population data obtained from the Agency GIS model and assuming 2.7 people/household:

Reach I	6,328	(4,288 with Options	s 1a and	1b)
Reach 2	5,093			

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefit of each option, applying the flow improvement factors from Table 6.2 for each river reach, are summarised in Table 6.8 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

Option :	Extent	Upper	Central	Lower
1a	Local	76	63	44
	Full	887	712	531
1b	Local	100	84	59
	Full	1,461	1,173	875
2a	Local	100	84	59
	Full	1,048	842	627
2b	Local	125	104	73
	Full	1,623	1,302	972

Table 6.8 Annual Non-Use Benefits (£000 Q4 1997)

6.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the two options are presented in Table 6.9. The results are shown:

- both including and excluding non-use, together with intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

For all combinations of assumptions Option 1 generates a slightly higher benefit cost ratio than Option 2. This result is a combination of two factors: the capital cost of providing a compensation release from a refurbished borehole with Option 1 is less than the estimated cost of developing a new borehole source; however the benefits are marginally greater with Option 2 because of the extra 0.9 km of river affected which includes the SSSI at L Lake.

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios in the range 6 to over 17 when the full non-use benefits are included. If only the local non-use benefits are included, the benefit cost ratio reduces to the range 0.8 to 1.6 with the central estimates. If no non-use benefits are included the benefit cost ratio reduces to below 0.4. For all cases where a proportion of the non-local non-use benefits are included, Option 2b has the highest net present value.

A summary of the assessment of tangibles (i.e. the quantifiable costs and benefits) for all options is presented in Table 6.10. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

A breakdown of the total present value of the benefits for Option 2b by use category (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate with no rolling forward is shown on Figure 6.2, together with a breakdown of the present value of the costs.

Table 6.9 (Sheet 1)

Rainworth Water : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

		7% Discount Rate, 30 year time period											
Option	Costs	-	Ben	efits	1		Total	NPV		5	Benefit C	ost Ratio	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
		incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	exci non- use	incl full non-use	incl local and 50% non-local non-use	incl local 'non-use	excl non- use
	timates n	- rolling fr											
1a	804	I 10.735	6.083	1.431	560	9.931	5 279	628	.243	13.4	7.6	1 78	0.70
1b	1,609	17,665	9,854	2,043	891	16,056	8,245	434	-717	11.0	6.1	1.27	0.55
2a	996	12,617	7,180	1,743	591	11,621	6,184	747	-405	12.7	7.2	1.75	0.59
2Ь	1,955	19,542	10,948	2,354	922	17,587	8,993	399	-1,033	10.0	5.6	1.20	0.47
Upper es	timates, v	vith rolling	forward										
1a	804	11,311	6,404	1,498	579	10,507	5,600	694	-225	14.1	8.0	1.86	0.72
16	1,609	18,616	10,377	2,138	923	17,007	8,768	529	-686	11.6	6.5	1.33	0.57
2a 2b	996 1,955	13,296 20,595	7,561 11,531	1,827 2,466	612 956	12,300 18,640	6,565 9,575	831 511	-384 -1,000	13.4 10.5	7.6 5.9	1.83 1.26	0.61 0.49
Central e	stimates,	no rolling	forward									1	
1a	804	8,439	4,718	997	271	7,635	3,914	193	-533	10.5	5.9	1.24	0.34
1b	1,609	13,879	7,630	1,381	422	12,270	6,022	-227	-1,187	8.6	4.7	0.86	0.26
2a 2b	995 1,955	9,939 15,375	5,590 8,500	1,240 1,625	280 431	8,944 13,420	4,594 6,545	244 -331	-715 -1,524	10.0 7.9	5.6 4.3	1.25 0.83	0.28 0.22
Central e	estimates,	with rollin	g forward	1		·	<u> </u>	<u> </u>					
1a	804	8,893	4,968	1,043	278	8,090	4,165	240	-526	11.1	6.2	1.30	0.35
1Ь	1,609	14,628	8,037	1,446	434	13,019	6,428	-163	-1,175	9.1	5.0	0.90	0.27
2a 2b	996 1,955	10,476 16,206	5,888 8,954	1,300 1,703	288 444	9,480 14,250	4,892 6,999	304 -253	-708 -1,512	10.5 8.3	5.9 4.6	1.31 0.87	0.29 0.23
Lower es	stimates, r	no rolling f	orward				<u> </u>						
1a	804	6,155	3,364	573	65	5,351	2,560	-231	-739	7.7	4.2	0.71	0.08
16	1,609	10,149	5,462	776	104	8,540	3,854	-833	-1,505	6.3	3.4	0.48	0.06
2a	996	7,264	4,002	739	68	6,268	3,006	-256	-928	7.3	4.0	0.74	0.07
26	1,955	11,255	6,098	942	106	9,299	4,143	-1,014	-1,849	5.8	3,1	0.48	0.05
Lower es	stimates, v	with rolling	forward										
1a	804	6,490	3,547	603	67	5,687	2,743	-201	-737	8.1	4,4	0.75	0.08
10	1,609	10,703	5,759	816	107	9,094	4,150	-793	-1,501	6.7	3.6	0.51	0.07
25 25	1,955	11,869	6,430	991	110	9,913	4,475	-218 -964	-926 -1,845	6.1	4.2 3.3	0.78	0.07

Table 6.9 (Sheet 2)

•

Rainworth Water : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

	<u> </u>				6%	Discount	Rate, 50 ye	ar time pe	riod				
Option	Costs		Ben	efits	4		Total	NPV			Benefit C	ost Ratio	
		incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	inci full non-use	incl local and 60% non-local non-use	inci local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non use
	*	a ralliaa fa											_
Upper es	umates, n I 847	0 roning ic	arward 7 701	1 783	659	12 951	6 944	937	.188	163	62	2 11	0.78
16	1 698	22 720	12 633	2 545	1.058	21 022	10 934	847	-640	13.4	7.4	1.50	0.70
2a	1 070	16 229	9 207	2 186	698	15 159	8 137	1 1 16	-372	15.2	86	2 04	0.65
25	2,107	25,144	14,046	2,947	1,098	23,038	11,939	841	-1,009	11.9	6.7	1.40	0.52
	timates u	ith colling	forward									-	
1a	847	14.854	8.379	1.905	692	14 007	7.532	1.058	-155	17.5	99	2 25	0.82
16	1.698	24 463	13 591	2 718	1 1 1 5	22 765	11 892	1 020	-583	14.4	80	1.60	0.66
2a	1.070	17.474	9,906	2,338	735	16.404	8.836	1.268	-335	16.3	9.3	2.19	0.69
2Ь	2,107	27,076	15,114	3,152	1,158	24,969	13,007	1,045	-949	12.9	7.2	1.50	0.55
Central e	stimates.		forward									Ì	1
1a	847	10 855	6 049	1 2 4 4	306	10.008	5,203	397	-541	12.8	7 1	1 47	0.36
1b	1.698	17 862	9,792	1.722	483	16 164	8.094	23	-1.216	10.5	5.8	1 01	0.00
2a	1.070	12,793	7.175	1.558	319	11,723	6,106	468	-751	12.0	6.7	1 46	0.30
2Б	2,107	19,794	10,915	2,036	495	17,687	8,809	-70	-1,612	9.4	5.2	0.97	0.23
Central e	stimates	with rolling	forward										
12	I 847	I 11 688	6 509	1 329	318	10.841	5 662	482	-529	13.8	77	1 57	0.38
1b	1.698	19 235	10,537	1 839	503	17 537	8 839	141	-1 195	11.3	62	1.08	0.30
2a	1 070	13 776	7 722	1,668	332	12 707	6 652	598	738	12.9	72	1.56	0.31
2b	2,107	21,318	11,748	2,178	517	19,211	9,641	71	-1,590	10.1	5.6	1.03	0.25
	timates n	o rolling fr	nward	ĺ					_	_			
1a	847	7 940	4.336	731	75	7.093	3.489	-116	-772	9.4	5.1	0.86	0.09
16	1.698	13.094	7.042	989	122	11.396	5.343	-709	-1.577	7.7	4.1	0.58	0.07
2a	1,070	9,372	5,159	946	79	8,302	4,089	-124	-991	8.8	4.8	0.88	0.07
2b	2,107	14,522	7,863	1,204	125	12,416	5,757	-903	-1,982	6,9	3.7	0.57	0.06
Loweres	timates w	vith colling	forward				-						
1a	847	8,556	4,671	786	79	7,709	3,824	-61	•768	10.1	5.5	0.93	0.09
16	1,698	14,110	7,586	1,063	128	12,412	5 888	-636	-1,571	8.3	4,5	0.63	0.08
2a	1,070	10,099	5,558	1,017	82	9 0 2 9	4,488	-52	-988	9.4	5.2	0.95	0.08
2b	2,107	15,649	8,472	1,294	131	13,542	6,365	-812	-1,975	7.4	4.0	0.61	0.06
	·					-	-						

Rainwor2.xis Tab6-9-2

Ontion	2. 1 M M	Mater Or			Demotit Ourst
Option	Costs	Costs	Benefit	Value	Ratio
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			*** \$\$ \$ \$	
6% discount ra	te, 50 year tim	e period			
Do Nothing	0	0	O	0	0
Option 1a	9	838	6,049	5,203	7.1
Option 1b	9	1,689	9,7 92	8,094	5.8
Option 2a	9	1,061	7,175	6,106	6.7
Option 2b	9	2,097	10,915	8,809	5.2
7% discount ra	l ite, 30 year tim	e period			
Do Nothing	0	0	0	0	0
Option 1a	9	794	4,718	3,914	5.9
Option 1b	9	1,599	7,630	6,022	4.7
Option 2a	9	986	5,590	4,594	5.6
Option 2b	9	1,946	8,500	6,545	4.3
			L	1	

Table 6.10 Assessment of Tangibles (£000 Q4 1997)

6.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 6.11. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

6.7 Risk Assessment

A risk assessment of the options carried has been undertaken and the results tabulated in a "Risk Register" (Table 6.12). The risks considered to be relevant in the appraisal are:

Risk 1	Operational failure of flow	alleviation

- Risk 2 Failure to provide anticipated benefits
- Risk 3 Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Note: The area of the circles is proportional to the present value of the benefits or costs at a 6% discount rate

٠

Rainworth Water Option 2b Present Value of Costs and Benefits Figure 6.2

Table 6.11 As	sessment of Intangible Benefits
---------------	---------------------------------

Intangible Benefit	Weighting Factor	Optio 1 MM refurbishe	on 1a d from ed borehole	Optio 2 MJ/ refurbishe	on 1b d from d borehole	Opti 1 MU/ new b	on 2a d from orehole	Opti 2 MV new b	on 2b d from so orehole	Comment
1.5	4 - 4 - 4	points	weighted points	points	weighted points	points	weighted points	points	weighted points	3.
1	3	1	3	2	6	3	9	4	12	Option 2a/2b has greater impact on L Lake
2	3	3	9	3	9	4	12	4	12	Option 2a/2b has greater impact on L Lake
3	3	3	9	4	12	3	9	4	12	STW effluent dilution downstream
Total weight	ed score		21		27		30		36	

Intangible Benefit 1: Intangible Benefit 2:

Facilitation of Agency meeting objectives

Intangible Benefit 3:

Improved public relations and maintenance of credibility of Agency Longer term benefits not quantified in economic analysis

Table 6.12 Risk Register

ldentified Risk	Option 1a 1 MVd from refurbished borehole		Option 1b 2 M/d from refurbished borehole		Option 2a 1 MI/d from new borehole		Option 2b 2 MVd from new borehole		Comment
	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	
Operational failure of flow alleviation	L	L	L	L	L	. L	L	L	
Failure to provide anticipated benefits	м	м	м	м	м	≞ M	м	м	Bed lining may be required to seal fissure s
Failure to supply a sustainable solution	L	м	M	М	L	M	м	М	In the long term, reductions in groundwater abstractions will provide a sustainable solution
Relative risks:	•н	high	M	medium	<u>د</u>	low	<u>,</u> eł		, <u>, , , , , , , , , , , , , , , , , , </u>

6.8 Selection of Preferred Option

From the assessment of tangibles presented in Table 6.10 it can be seen that Option 2b represents the most cost effective solution in terms of maximum net present value (NPV). This conclusion is supported by the assessment of intangibles in Table 6.11, particularly in terms of the greatest impact on the SSSI at L Lake.

Although the risk register presented in Table 6.12 suggests that Options 1b/2b may have slightly higher risk than Options 1a/2a of not providing a sustainable solution, this risk will be mitigated by the long term overall reduction in abstractions from the Nottinghamshire aquifer.

It is therefore concluded that Option 2b, a compensation release of 2 MI/d from a new borehole upstream of L Lake, should be selected as the preferred option.

Further investigations will be undertaken before implementation, including a study of the groundwater regime below the SSSI at L Lake being undertaken during 1998/99 to confirm whether the lake is situated on a perched water table or not. If these investigations confirm the requirement for extra water, the chosen option will be implemented together with monitoring along Rainworth Water. Measurement of flows along the watercourse will be required to monitor the performance of the scheme and identify reaches where water may be lost through the stream bed.

The proposed remedial measures will re-water 2.6 km of watercourse and significantly improve the flow in a further 9 km. In the longer term, with reduced groundwater abstractions, rising groundwater levels could restore some baseflows to the river, with a subsequent reduction in the requirements for compensation releases.

The re-instatement and increase of flows in Rainworth Water should improve the continuity of the linear wildlife habitat which is currently incomplete due to the negligible flows within the river for several months of the year.

The assessed economic benefit takes account of these ecological improvements in addition to the increase in the amenity and recreational value of the area surrounding the watercourses.

The increase in flows could also provide some improvement in water quality as a result of better dilution of the effluent from the Rainworth and Bilsthorpe sewage treatment works.

6.9 Tasks and Dependencies

Investigations:	Agency Midlands Region, Regional Office					
Design and implementation:	Agency Midlands Region, Regional Office Agency Midlands Region, Lower Trent Area					
Programme for implementation of preferred option:						
4000 0 k ³						

1998	Submission of Business Plan
1999	Groundwater Investigation
2000	Investigation and Design Planning and Consents
2001	Construction

6.10 Cost of Preferred Option

The estimated capital and operating costs of the preferred option are given in Table 6.13. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Year	Water Co	ompany		Agency	
				÷) a (
ending 31/03	Capex	Opex	Capex	$b_{1} \neq -4$	Opex
1999	0	0	4 ¹		0
2000	0	0	11		0
2001	0	0	0		0
2002	1,847	45	0		0
2003	0	46	0		0

Table 6.13 Estimated Costs of the Preferred Option (£ 000)

¹ comprises submission of business plan, the cost of which has not been included in the assessment of tangibles

7

BATTLEFIELD BROOK

7.1 Scheme Objectives

Low flows in the Battlefield Brook catchment in the 1980s as a result of over-abstraction of groundwater in the Bromsgrove area led to the installation by the National Rivers Authority in 1992 of a new borehole in Sanders Park, Bromsgrove, together with an associated gauging station for monitoring purposes. This borehole has been largely successful in ensuring that a reasonable baseflow is achieved between the borehole and the confluence with the Spadesbourne Brook.

This scheme did not address the low flow problems upstream of Sanders Park to Catshill, or the Catshill Brook itself. The next low flow alleviation scheme is to be undertaken for the Battlefield Brook, but at present this has not been developed to include the Catshill Brook.

The current proposals target the main stream of the Battlefield Brook for the further alleviation of low flows as summarised in Table 7.1. All options involve a reduction in the abstraction for public water supply at the existing public water supply boreholes and augmentation of the river system from groundwater. In the longer term it is intended to reduce the total groundwater abstractions to a sustainable level which should result in rising groundwater levels re-watering the brook and its tributaries, with a subsequent reduction in the requirements for compensation releases.

The overall river system and the proposed augmentation points are shown on Figure 7.1.

Option	Description	Improvements
1	Output from the Wildmoor Borehole to the Battlefield Brook. Compensation release of 1 MI/day.	Rewater 6.1 km, significantly increased flows 3.8 km
2	Output from the Washingstocks Borehole to the Battlefield Brook. Compensation release of 1 MI/day.	Rewater 3.7 km, significantly increased flows 3.8 km
3	Options 1 and 2 combined. Total compensation release of 2 MI/day.	Rewater 6.1 km, significantly increased flows 3.8 km; with greater increase in flows

Table 7.1 Low Flow Alleviation Options

In all cases the compensation flow would be triggered when the Agency gauging station at Sanders Park is at Q20% (3.6 MI/d) or below.

Flow duration/frequency curves were provided by the Agency to define the impact of the alleviation options and these are included in Appendix 7. The data relates to the gauging station at Sanders Park.

The available information has been used to derive appropriate factors for the economic benefits of each option for those uses which are frequency and duration dependent. The river has been divided into three reaches for this purpose:

Reach 1	Wildmoor borehole to Washingstocks borehole (2.4 km)
Reach 2	Washingstocks borehole to Sanders Park borehole (3.7 km)

Reach 3 Sanders Park borehole to the outfall from Bromsgrove STW on Sugar Brook (3.8 km)

Target flows for each reach have been assessed to determine the extent to which the low flow alleviation schemes will improve the situation. Flow improvement factors have been derived from a consideration of both the **proportional flow** improvement from the existing situation at the Q95% level, and the **proportional time** improvement that the target flow is achieved. Corresponding return periods for very low flows (i.e. about 50% of the target flows) have also been assessed for the before and after situations. The figures which have been derived are summarised in Table 7.2.

	Reach 1	Reach 2	Reach 3
Target Flow (MI/d)	1	1.5	2
% of Time above Target			
Before	25%	25%	25%
After Option 1	100%	90%	80%
Option 2	25%	90%	80%
Option 3 (1 + 2)	100%	100%	100%
Flow Improvement Factor			
Option 1	100%	80%	65%
Option 2	0%	80%	65%
Option 3 (1 + 2)	100%	100%	95%
Return Period (years)			
before → after			
Option 1	1 → 10	1 → 5	1 → 5
Option 2	1→1	1→5	$1 \rightarrow 5$
Option 3 (1 + 2)	1 → >10	1 → 10	1 → 10
, , ,			

Table 7.2 Summary of Hydrological Assessment for Battlefield Brook

In the longer term it is intended to reduce the total groundwater abstraction from the Bromsgrove aquifer to a sustainable level. Of the overall reduction, 2 MI/d has been attributed to the scheme to alleviate low flow problems on this local watercourse.

7.2 Scope of Study

Table 7.3 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

There are five surface water abstraction licences granted on the Battlefield Brook, of which only two are situated below the proposed augmentation points.

Restoration of the flow will improve the continuity of the river's linear wildlife habitat, which at present is not complete due to the river periodically suffering extremely low flows.

Table 7.3 Summary of Impacts

Impact Category Drinking Water Supply		Comments Increased flow available for PWS abstraction downstream.		
Agriculture	Livestock	Riparian use		
	Irrigation	Important agricultural area. Arable production of high value crops.		
In-stream Boating Recreation		Not applicable		
	Bathing	Not applicable		
	Angling	Not applicable		
Informal recreation	Walking, picnicking, photography	Limited. Urban park environment at Sanders Park		
Amenity /Aesthetics	Property prices	A number of properties overlooking the river.		
Conservation (Non-Use or Passive Use)	Ecology	Yes		
,	Heritage	Not applicable		
Other		None		

The categories that have been included in the benefit assessment are:

- informal recreation;
- agriculture
- property;
- drinking water supply resource cost savings; and
- non-use.

Although the additional flow will provide some additional dilution to the discharge from the existing STW at Bromsgrove, the proportional increase will be relatively small. It has therefore been agreed with the Agency that no additional economic benefits due to water quality improvements can be identified at this stage.

7.3 Capital and Operating Costs

Severn Trent Water Ltd has provided the Agency with estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to provide for the replacement of the water currently abstracted at the various boreholes which could be diverted to alleviate low flows in the Battlefield Brook. In addition to the costs of providing replacement water, some minor works will be required in the vicinity of the boreholes to effect the flow augmentation. Details of the costs are included in Appendix C and summarised in Table 7.4.

	Option 1	Option 2
Capital expenditure		
Replacement water	690	690
PWS option	10	10
Total	700	700
Operating expenditure (per	annum)	
Replacement water	11	11
PWS Option	6	6
Total	17	17

Table 7.4 Summary of Cost Estimates (£ 000 Q4 1997)

7.4 Estimation of Benefits

7.4.1 Informal Recreation

In the absence of reliable primary sources the estimation of visitor numbers to the sites has been based on the indirect approach outlined in the Agency Guidelines, related to the population within 0.8 km of the river, obtained from the Agency's GIS system. Taking account of the facilities at Sanders Park which qualifies as a 'honeypot' site and with other local amenity areas in the vicinity of the river, realistic estimates of the likely number of visits have been derived from previous experience, utilising the GIS data to distribute the numbers between the river reaches.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming 40% of the willingness-to-pay is attributable to the presence of water:

- Upper bound estimate:
- £1.48 per visitor day;
- Central estimate:
- £0.60 per visitor day; and £0.20 per visitor day.
- Lower bound estimate: £

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 7.2 produces the annual incremental benefits which are presented in Table 7.5.

7.4.2 Angling

Discussions with Agency staff revealed that there are no angling interests on the Battlefield Brook.

	Option	Visitor Numbers by River Reach (000)		Factored Benefit by River Reach (£000 Q4 1997)				
		1	2	3	-1	2	3	Total
Upper	1	9	12	23	14	15	22	50
Bound	2	9	12	23	0	15	22	36
	3	9	12	23	14	18	32	64
Central	1	7	9	17	4	5	7	16
Estimate	2	7	9	17	0	5	7	11
	3	7	9	17	4	6	10	20
Lower	1	6	8	14	1	1	2	4
Bound	2	6	8	14	0	1	2	3
	3	6	8	14	1	2	3	5

Table 7.5 Annual Informal Recreation Benefits

7.4.3 Agriculture

Of the five surface water abstraction licences granted on the Battlefield Brook, it is only the two located below the augmentation points which may accrue agricultural benefits. At the Malthouse, a short distance downstream of the flow augmentation point with Option 1 there is a spray irrigation licence (No. 18/54/7/57) for a maximum abstraction equivalent to about 0.2 Ml/d. Further downstream at Grove Farm, below the flow augmentation point with Option 2, there is a spray irrigation licence (No. 18/54/7/130) for a maximum abstraction equivalent to about 0.2 Ml/d.

It has not been possible within the tight timescale for the original analysis to obtain sufficient detail of potential future abstractions by these two licence holders in the event of implementation of a low flow alleviation scheme. However, any benefits to agriculture would be at the expense of benefits identified downstream since abstractions could effectively reduce flows to almost zero again with Options 1 or 2. It may be noted that non-use benefits downstream will be impacted most severely.

7.4.4 Property

Bromsgrove District Council was contacted to provide Council Tax Bands for the properties identified as adjacent to the watercourses. Virtually all the properties are in Catshill village, in Reach 1. Although Reach 3 passes through a relatively densely populated area to the south of Bromsgrove town centre, virtually no residential properties actually border the brook and it is considered that the commercial and industrial properties which do will not realise any property benefits. The property details on which the benefits are based are summarised in Table 7.6.

Band	1997 Midpoint		No of properties			Economic Value
	(£ 000)	Reach 1	Reach 2	Reach 3	Total	(£ 000 Q4 1997)
А	40	0			0	
В	46	5			5	232
С	61	12		1	12	727
D	79	8			8	630
Е	105	0			0	0
F	141	0			0	0
G	242	1			1	242
н	323	4	1		5	1615
Total	· · · · · · · · · · · · · · · · · · ·	30	1		31	3447

Table 7.6 Properties Adjacent to Battlefield Brook by Council Tax Band

Source: Bromsgrove District Council

By applying the formulae given in the Benefit Assessment Guidelines, using the assumed changes in return periods for the low flows indicated in Table 7.2, the benefit to property owners has been estimated in terms of once-off changes in stock.

Table 7.7 Amenity and Aesthetic Stock Benefits (£000 Q4 1997)

Option	Total Incremental Benefits				
	Upper Bound	Central Estimate	Lower Bound		
1	502	334	67		
2	34	23	5		
3	517	345	69		

7.4.5 Resource Cost Savings

With a quantity of water being added to the Battlefield Brook there will be a higher discharge to the Severn which could be available for abstraction for public water supply downstream in preference to pumping from the Shropshire Groundwater Scheme. An earlier assessment by the Agency for the River Worfe indicated that this benefit might be realised on average for some 75 days per year at an estimated value of £19 per Mi. This gives the following annual benefits in terms of resource cost savings:

7-6

Options 1 and 2	1 MI/d	£ 1425
Option 3	2 Ml/d	£ 2850

7.4.6 Non-Use

Non-use (conservation) benefit estimates for the Battlefield Brook have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit this particular river and its • tributaries but do hold non-use values towards the alleviation of low flows in rivers;
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are some 17,000 households within 3 km of the Battlefield Brook, distributed between the three river reaches as indicated below, based on population data obtained from the Agency GIS model and assuming 2.7 people/household:

Reach I	6,939
Reach 2	3,479
Reach 3	6,386

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use-valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefit of each option, applying the flow improvement factors from Table 7.2 for each river reach, are summarised in Table 7.8 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

Option	Extent	Upper	Central	Lower
1	Local	166	139	97
	Full	1,361	1,094	814
2	Local	83	69	49
_	Full	911	732	545
3	Local	198	165	115
, T	Full	1,679	1,350	1,004

7-7

Table 7.8 Annual Non-Use Benefits (£000 Q4 1997)

7.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the various options are presented in Table 7.9. The results are shown:

- both including and excluding non-use, together with two intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

Option 1 has a consistently higher benefit cost ratio than Option 2 which is a result of a greater length of watercourse being impacted. However, Option 3 has the highest net present value when any proportion of the non-local non-use benefits is included. It can therefore be concluded that the incremental benefits of providing the 1 MI/d from the borehole at Washingstocks with Option 2 will probably justify the extra costs in addition to Option 1.

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios in the range 7 to 25 when the full non-use benefits are included. If only the local non-use benefits are included, the benefit cost ratio reduces to the range 1.1 to 3.1 with the central estimates. If no non-use benefits are included the NPV becomes negative in all cases considered except Option 1 with the upper bound estimates.

A summary of the assessment of tangibles (i.e. the quantifiable costs and benefits) for all options is presented in Table 7.10. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

A breakdown of the total present value of the benefits by use category for Option 3 (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate, with no rolling forward, is shown on Figure 7.2, together with a breakdown of the present value of the costs.

Table 7.9 (Sheet 1)

Battlefield Brook : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

	7% Discount Rate, 30 year time period												
Option	Costs		Ben	efits			Total	NPV	-				
		incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use
Upper es	timates. n	o rollina fa	rward										
1	849	16.643	9.792	2.941	1.030	15,794	8.943	2.091	161	19.6	11.5	3.46	1.21
2 3	849 1,710	10,906 20,449	6,154 11,953	1,403 3,457	448 1,187	10,056 18,739	5,305 10,243	554 1,747	-401 -523	12.8 12.0	7.2 · 7.0	1.65 2.02	0.53 0.69
Unner es	timates w	ith rolling	forward								1	- 3	
	I 849	17 533	10.306	3.080	1.065	16 683	9.457	2.231	216	20.6	12.1	3 63	1 25
2	849	11.501	6.490	1.478	471	10.652	5.641	629	-378	13.5	7.6	1 74	0.55
3	1,710	21,546	12,585	3,623	1,229	19,836	10,875	1,913	-481	12.6	7.4	2.12	0.72
Central e	stimates,	no rolling 1	orward										
1	849	13,043	7,562	2,081	489	12,193	6,712	1,231	-360	15,4	8.9	2.45	0.58
2	849	8,549	4,748	947	152	7,700	3,899	98	-698	10.1	5.6	1.12	0.18
3	1,710	16,018	9,221	2,424	533	14,308	7,511	714	-1,177	9.4	5.4	1.42	0.31
Central e	stimates.	with rolling	forward										
1	849	13,742	7,961	2,180	501	12,893	7,112	1.331	-348	16.2	9.4	2.57	0.59
2	849	9,016	5,007	998	159	8,167	4,158	149	-690	10.6	5.9	1.18	0.19
3	1,710	16,880	9,711	2,542	547	15,170	8,001	832	-1,163	9.9	5,7	1.49	0.32
Lower es	timates. n	o rolling fo	rward										
1	849	9.459	5.348	1.237	123	8.610	4,499	388	-726	11 1	63	1.46	0 15
2	849	6,299	3,448	597	40	5,449	2.599	-252	-809	7.4	4.1	0.70	0.05
3	1,710	11,644	6,546	1,448	124	9,934	4,836	-262	-1,586	6.8	3.8	0.85	0.07
Lower es	timates, w	/ith rolling	forward								-		
1	849	9,974	5,638	1,302	127	9,125	4,789	453	-722	11,7	6.6	1.53	0.15
2	849	6,643	3,636	630	42	5,794	2,787	-220	-807	7.8	4.3	0.74	0.05
3	1,710	12,278	6,901	1,524	128	10,568	5,191	-186	-1,582	7.2	4.0	0.89	0.07

Table 7.9 (Sheet 2)

Battlefield Brook : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

	<u> </u>					4 Discount Rate, 60 year time period							
Option	Costs	s Benefits					Total NPV				Benefit Cost Ratio		
		inci full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	inci local non-use	excl non- use	incl fuli non-use	incl local and 50% non-local non-use	incl local non-use	excl nor use
	timates a	o rolling fo	nuntel										
1 1	912	21 374	12 526	3.678	1 211	20 462	11 614	2 766	299	23.4	13.7	4 03	133
2 3	912 1,839	14,075 26,285	7,939 15,313	1,804 4,340	570 1,409	13,163 24,446	7,027 13,473	891 2,501	-342 -430	15.4 14,3	8.7 8.3	1.98 2.36	0.63 0.77
Upper es	timates w	ith colling	forward				[
1	912	23,005	13,468	3.932	1,273	22.093	12,556	3.020	361	25.2	14.8	4.31	1.40
2	912	15,169	8,555	1,942	613	14,256	7,643	1,029	-300	16.6	9.4	2.13	0.67
3	1,839	28,297	16,471	4,644	1,485	26,458	14,631	2,805	-355	15.4	9.0	2.52	0.81
Central e	stimates.	no rolling :	forward										
1	912	16,764	9,686	2,607	552	15,852	8,773	1,695	-361	18.4	10.6	2.86	0.60
2	912	11,035	6,126	1,218	190	10,123	5,214	305	-722	12.1	6.7	1.33	0.21
3	1,839	20,604	11,826	3,048	605	18,764	9,987	1,209	-1,234	11.2	6.4	1.66	0.33
Central e	stimates.	with rolling	forward										
1	912	18,047	10,418	2,789	573	17,135	9,506	1,876	-339	19.8	11.4	3.06	0.63
2	912	11,892	6,602	1,311	203	10,980	5,689	39 9	-709	13.0	7.2	1.44	0.22
3	1,839	22,185	12.724	3,263	630	20,345	10,884	1,423	-1,210	12.1	6,9	1.77	0.34
Lower es	timates. r	o rolling fo	orward										
1	912	12,200	6,891	1,582	143	11,287	5,979	670	-769	13.4	7.6	1.73	0.16
2	912	8,133	4,451	770	50	7,221	3,539	-143	-862	8.9	4.9	0.84	0.06
3	1,839	15,020	8,437	1,853	143	13,181	6,597	14	-1,696	8.2	4.6	1.01	0.08
Loweres	timates. v	vith rolling	forward										
1	912	13,145	7.423	1.701	150	12.232	6.511	789	-762	14.4	8,1	1.86	0.16
2	912	8,765	4,797	829	54	7,853	3,885	-83	-858	9.6	5.3	0.91	0.06
3	1,839	16,184	9,089	1,993	150	14,345	7,249	153	-1,690	8.8	4.9	1.08	0.08

Issue 2.0 / November 1998

Battlefield Brook Option 3 Present Value of Benefits and Costs Figure 7.2

Option	Agency Costs	Water Co. Costs	Economic Benefit	Net Present Value	Benefit Cost Ratio
6% discour	nt rate, 50 year	time period			
Do Nothing	0	0	0	0	o
Option 1	0	912	9,686	8,7 7 3	10.6
Option 2	0	912	6,126	5,214	6.7
Option 3	0	1,839	11,826	9,987	6.4
7% discour	l it rate, 30 year	time period			
Do Nothing	l 0	0	0	0	o
Option 1	0	849	7,562	6,712	8.9
Option 2	0	849	4,748	3,899	5.6
Option 3	0	1,710	9.221	7.511	9.4

Table 7.10 Assessment of Tangibles (£000 Q4 1997)

7.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 7.11. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

7.7 Risk Assessment

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 7.12). The risks considered to be relevant in the appraisal are:

Risk 1	Operational failure of flow alleviation
Dick 2	Epilure to provide entirinated happfile

- Risk 2 Failure to provide anticipated benefits
- Risk 3 Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Table 7.11 Assessment of Intangible Benefits

Intangible Benefit	Weighting Factor	Option 1 1 MVd release from Wildmoor		Option 2 1 MVd release from Washingstocks		Option 3 2 Mi/d release Options 1 + 2		Comment
		points	weighted points	points	weighted points	points	weighted points	
1	3	3	9	2	6	4	12	
2	3	3	9	2	6	3	9	
3	3	3	9	3	9	4	12	STW effluent dilution downstream
Total weighte	ed score		27		21		33	

Intangible Benefit 1:

Intangible Benefit 2: Intangible Benefit 3:

Table 7.12

Facilitation of Agency meeting objectives

Improved public relations and maintenance of credibility of Agency Longer term benefits not quantified in economic analysis

Risk Register

Identified Risk	Option 1 1 Ml/d release from Wildmoor		Option 2 1 MI/d release from Washingstocks		Option 3 2 MI/d release Options 1 + 2		Comment
	Likeli- "hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	
Operational failure of flow alleviation	L	L	L	L	L	L	4
Failure to provide anticipated benefit s	М	м	м	м	м	м	Lining may be required to seal the bed
Failure to supply a sustainable solution	м	м	м	м	М	м	In the long term, reductions in groundwater abstractions will provide a sustainable solution
Relative risks:	н	high	м	medium	L	low	

÷

7.8 Selection of Preferred Option

From the assessment of tangibles presented in Table 7.10 it can be seen that Option 3 represents the most cost effective solution in terms of maximum net present value (NPV). This conclusion is supported by the assessment of intangibles in Table 7.11. The risk register presented in Table 7.12 does not suggest any adverse risk with this option.

It is therefore concluded that Option 3, comprising compensation releases of 1 MI/d from each of the existing boreholes at Wildmoor and Washingstocks, should be selected as the preferred option.

The proposed interim remedial measures will re-water 6 km of watercourse upstream of Sanders Park. In addition, some 3.8 km down to the sewage treatment works will benefit from significantly increased flows.

In the longer term, with reduced groundwater abstractions, rising groundwater levels should restore some baseflow to this watercourse and its tributaries, with a subsequent reduction in the requirements for compensation releases.

There will also be some increase in flows in the River Salwarpe which would provide some improvement in water quality as a result of better dilution of the effluent from the sewage treatment works, as well as making more water available for public water supply abstraction from the River Severn. Of these effects, only the benefit of resource cost savings due to the greater availability of water downstream has been included in the economic assessment.

The restoration of flow will improve the continuity of the brook's linear wildlife habitat, which at present is not complete due to the extremely low flows periodically experienced.

The assessed economic benefit takes account of these ecological improvements in addition to the increase in the amenity and recreational value of the area surrounding the watercourses.

7.9 Tasks and Dependencies

Investigations:	Agency Midlands Region, Upper Severn Area
-----------------	---

Design and implementation: Severn Trent Water Ltd.

Programme for implementation of the preferred option:

1	998	Submission of Business Plan
1	999	Investigation and Design Planning and Consents
2	2000	Construction of Wildmoor Borehole compensation release (Option 1) Investigation
2	2001	Construction (if required) of Washingstocks Borehole compensation release (Option 2)

7.10 Cost of Preferred Option

The estimated capital and operating costs of the preferred option are given in Table 7.13. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Year	Water C	Сотрапу	Ag	ency
ending 31/03	Capex	Opex	Capex	Opex
1999	0	0	4 ¹	0
2000	0	0	0	0
2001	787	18	0	0
2002	819	39	0	0
2003	0	41	0	0

 Table 7.13
 Estimated Costs of the Preferred Option (£ 000)

¹ comprises submission of business plan, the cost of which has not been included in the assessment of tangibles

8

BLAKEDOWN BROOK

8.1 Scheme Objectives

Over-abstraction of groundwater in the Kidderminster area has resulted in low flow problems on the Blakedown Brook which flows through two SSSIs. For some time the Agency has been involved in trying to alleviate these problems. The Blakedown Brook and its tributaries, which include a large number of pools retained by old dams and weirs, are shown in Figure 8.1. Schemes have already been commissioned on two of the tributaries:

- a borehole to supplement flows into and maintain levels in the Ladies, Forge and Swan Pools;
- a borehole to supplement flow into and maintain levels in the Coopers, Harborough and Pavilion Pools.

The two boreholes are operated by the Agency and are triggered by pool levels, but will not provide inflow to the main stream of the Blakedown Brook, which has the two SSSIs in the lower reaches at Podmore and Hurcott Pools. There is a requirement to provide an inflow to these pools to maintain the SSSIs, but at present it is not known how much of the new compensation releases will reach them. It has been decided that a trial flow will be implemented before the year 2000 to see what improvements can be achieved.

A large proportion of the flow in the upper reaches is derived from the existing Hagley wastewater treatment works (WTW) operated by Severn Trent Water Ltd. There has been a proposal to close this which will involve the effluent being transferred out of the catchment. After discussion with Severn Trent Water Ltd it has been agreed that:

- the Hagley effluent will be transferred to Roundhill WTW for treatment and then returned to the Blakedown Brook; and that
- the Blakedown WTW will be upgraded.

The pipeline from Roundhill WTW to the Blakedown Brook will have a capacity of 3.0 Ml/d, sufficient to return a flow equivalent to the Hagley effluent (1.5 Ml/d) as well as provide an additional capacity of 1.5 Ml/d which will be available to supplement the inflow to Blakedown Brook if desired.

The schemes considered for the alleviation of low flows in the Blakedown Brook are summarised in Table 8.1 and the augmentation points are shown on Figure 8.1. Option 1 is the scheme mentioned above, using the full capacity of the new pipeline from Roundhill WTW. Option 2 involves augmentation using a groundwater source, either by using an existing public water supply borehole at Churchill or a new borehole there. Option 3 is essentially an independent scheme for the re-watering of Windmill Pool, the one remaining major pool not yet improved, which is situated on a tributary of the Blakedown Brook upstream of Pavilion Pool. Options 4 and 5 are combinations of the first three options.

The Agency has advised that for the purpose of this assessment it should be assumed that Option 1 would be in operation all year round, and Options 2 and 3 for 80% of the time.

Although no flow duration/frequency curves were available for the Blakedown Brook, details of spot gauging were provided by the Agency to assist in defining the impact of the alleviation options and these are included in Appendix 8.
Table 8.1 Low Flow Alleviation Options

Option	Description	Improvements
1	Compensation release of 3 MI/day from the return effluent pipeline from Roundhill WTW	Replace WTW effluent over 4 km, significantly increased flows over 3.5 km, including SSSIs
2a	Compensation release of 2 MI/day from the existing South Staffordshire Water Ltd Churchill Pumping Station	Significantly increased flows over 5.5 km, including SSSIs
2b	Compensation release of 2 MI/day from a proposed new borehole at Churchill	Significantly increased flows over 5.5 km, including SSSIs
3	Compensation release of 1 MI/day from a proposed new borehole to the Windmill Poo!.	Maintain levels in Windmill Pool
4	A combination of Options 1+2	Replace WTW effluent over 4 km, significantly increased flows over 3.5 km, including SSSIs, with higher flows
5	A combination of Options 1+2+3	As Option 4, with levels maintained in Windmill Pool

The available information has been used to derive appropriate factors for the economic benefits of each option for those uses which are frequency and duration dependent. The river has been divided into three reaches for this purpose:

Reach 1	Above Option 2 augmentation point at Churchill (2 km)
Reach 2	Churchill to Blakedown WTW outfall (2 km)
Reach 3	Blakedown WTW outfall to Broadwaters, downstream of Podmore Pool
	(3.5 km)

Target flows for each reach have been assessed to determine the extent to which the low flow alleviation schemes will improve the situation. Flow improvement factors have been derived from a consideration of the **proportional flow** improvement from the existing situation. In the absence of flow duration data it was not possible to estimate the **proportional time** improvement that the target flow is achieved. Corresponding return periods for very low flows (i.e. about 50% of the target flows) have also been estimated for the before and after situations. The figures which have been derived are summarised in Table 8.2.

In the longer term it is proposed to reduce the total groundwater abstractions by around 10 MI/d to a level which is sustainable which will be confirmed by a hydrogeological model currently being developed. The two water companies involved have both made some allowance for these reductions in their draft water resources plans submitted to the Agency. With reduced abstractions, rising groundwater levels should restore baseflows to the brook and its tributaries, with a subsequent reduction in the requirements for compensation releases.

	Reach 1	Reach 2	Reach 3
Target Flow (MI/d)	3	5	5
Flow Improvement Factor			
Option 1	100%	60%	60%
Option 2a/2b	0%	40%	40%
Option 3	pool only		
Option 4 (1 + 2)	100%	100%	100%
Option 5 (1 + 2 + 3)	100%	100%	100%
Return Period (years)			
before → after			
Option 1	1 → 10	1→5	1 → 3
Option 2a/2b	$1 \rightarrow 1$	1 → 2	1 → 2
Option 3	pool only		
Option 4 (1 + 2)	1 → 10	1 → 10	1 → 5
Option 5 (1 + 2 + 3)	1 → 10	1 → 10	1→5

Table 8.2 Summary of Hydrological Assessment for Blakedown Brook

8.2 Scope of Study

Table 8.3 has been used as a checklist-to-focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

Table 8.3Summary of Impacts

Impact Category		Comments	
Drinking Water S	upply	Not applicable	
Industrial Abstrac	ction	Not applicable	
Agriculture	Livestock	Riparian owner	
	Irrigation	Not applicable	
In-stream Recreation	Boating	Not applicable	
	Bathing	Not applicable	
	Angling	Yes	
Informal recreation	Walking, picnicking, photography	Yes	
Amenity /Aesthetics	Property prices	A number of properties overlooking the river.	
Conservation (Non-Use or Passive Use)	Ecology	Yes	
,	Heritage	Not applicable	
Other		None	

Restoration of the flow will improve the continuity of the brook's linear wildlife habitat, which at present is not complete due to the brook periodically suffering extremely low flows.

The categories that have been included in the benefit assessment are:

- informal recreation
- angling;
- property; and
- non-use.

8.3 Capital and Operating Costs

Severn Trent Water Ltd and South Staffordshire Water Ltd have provided the Agency with estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to implement the return effluent pipeline from Roundhill WTW and to provide for the replacement of the water currently abstracted which could be diverted to alleviate low flows in the Blakedown Brook. In addition to the costs of providing replacement water, a new pipeline some 2.5 km long will be required with Option 2a to effect the flow augmentation. For Options 2b and 3, new boreholes would be installed near the watercourses by SSWC and the Agency respectively. Details of the costs are summarised in Table 8.4.

	Option 1	Option 2a	Option 2b	Option 3
Capital expenditure				
Effluent pipeline	1000²			
Replacement water		5001	500¹	690²
PWS option		200 ¹		
New SSWC borehole			200³	
New Agency borehole				120 ^{3,4}
Total	1000	700	700	810
Operating expenditure (pe	r annum)			
Effluent pipeline	30²			
Replacement water		insignificant ¹	insignificant ¹	11²
PWS Option		5 ¹		
New SSWC borehole			5 ³	
New Agency borehole				5 ^{3,4}
Total	30	5	5	16

Table 8.4 Summary of Cost Estimates (£ 000 Q4 1997)

Notes: ¹ Costs from SSWC Ltd ² Costs from STW Ltd ³Agency estimates ⁴ Agency costs to be recharged to STW Ltd under AMP3

As the costs of Option 2b are the same as those for Option 2a and both give rise to the same benefits, Option 2a/2b has been treated as a single option in the cost benefit analysis. With Option 2b there is more flexibility in the location of the release point which is taken into account in the selection of the preferred option in Section 8.8.

8.4 Estimation of Benefits

8.4.1 Informal Recreation

In the absence of reliable primary sources the estimation of visitor numbers to the sites has been based on the indirect approach outlined in the Agency Guidelines, related to the population within 0.8 km of the river, obtained from the Agency's GIS system. Taking account of visits to sites such as Churchill Forge Mill and other local amenity areas in the vicinity of the river, realistic estimates of the likely number of visits have been derived from previous experience, utilising the GIS data to distribute the numbers between the river reaches.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming 40% of the willingness-to-pay is attributable to the presence of water:

- Upper bound estimate: £1.48 per visitor day;
 - Central estimate: £0.6
 - £0.60 per visitor day; and
 - Lower bound estimate: £0.20 per visitor day.

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 8.2 produces the annual incremental benefits which are presented in Table 8.5.

	Option	Visitor	Numbers Reach (00	by River 0)	Factor	ed Benefi (£000 C	t by River 4 1997)	Reach
		·	2	3	ः ग	2	3	Total
Upper Bound	1 2a/2b	6	14 16	14 14	10	13 9	13 8	35 18
	3 4 5	6 7	14 14	14 14	4 10 10	21 21	21 21	4 52 52
Central Estimate	1 2a/2b 3 4	5 2 5	11 12 11	11 11 11	3 1 3	4 3 7	4 3 7	11 6 1 16
Lower Bound	5 1 2a/2b 3 4	5 4 0 4	11 9 10 9	11 9 9 9	3 1 0 1	7 1 1 2 2	7 1 1 2	16 3 1 0 4

Table 8.5 Annual Informal Recreation Benefits

8.4.2 Angling

Through discussions with the Agency it is understood that a number of the pools in the Blakedown Brook catchment support, or could support, angling as indicated in Table 8.6.

Table 8.6 Pools within the Blakedown Brook that support Angling

Pool Name	Contact	No. of Pegs	Comments
Brakemill Pool	Mal Storey Angling Mr Mal Storey	48	 coarse fishery day ticket only good supply of water at present does not foresee extra water a benefit to his fishery
Hurcott Pool	Hurcott Carp Fishery Mr Paul Wilcox	25-30	 stated that an increase in flow would not benefit the angling at Hurcott Pool
Ladies Pool			 on tributary not affected by current proposals
Podmore Pool			 possible improved coarse fishery
Swan Pool			 on tributary not affected by current proposals
Windmill Pool			possible new coarse fishery

It is understood that Mal Storey Angling Club leases Brakemill Pool from Lord Cobham. Following telephone conversations with Mr Mal Storey of Mal Storey Angling, it is understood that over the past 12 months Brakemill Pool has had an extremely good supply of water, and he recalls no specific time that the water level has significantly dropped. Mr Storey also stated that any further addition to the volume of water in Brakemill Pool could result in flooding downstream of the dam, at times of heavy rain, and that he does not believe that it would increase the benefits to his fishing club.

Due to time constraints comments from the land owner were not available at the time of reporting.

Through telephone conversations with Mr P Wilcox, Hurcott Carp Fishery, it is understood that Hurcott Pool does not suffer from significant falls in water levels during the summer months and an increase in flow into Hurcott Pool would not increase the benefits to angling on the pool. Mr Wilcox stated that the pool banks cannot hold any futher increase in fisherman numbers.

In the absence of further information it has been assumed that the re-watering of Windmill Pool will create a new coarse fishery similar to that at Brakemill Pool. Based on experience there and at Hurcott it would be reasonable to assume that the pool would sustain at least a moderate day fishery with 40 pegs, with some 60 visits per peg per annum. Similar figures could be expected at Podmore Pool with a substantial improvement in water levels.

The Low Flow Benefit Assessment Guidelines suggest anglers willingness-to-pay values for the introduction of a new coarse fishery as follows:

poor	£3.86 per person per trip	(
------	---------------------------	---

- moderate £4.07 per person per trip
 - £6.21 per person per trip

(lower bound) (central estimate) (upper bound)

GIBBF10/Env/Projects/ Midlands/Reports/FinalWR/Blaked 8-6

• good

Combining these with the total number of anglers allows the total benefits of creating a new fishery to be calculated. These are then applied as appropriate to each option giving the annual values summarised in Table 8.7, after deducting the estimated value of the existing poor fishery at Podmore Pool.

Option	Upper Bound	Central Estimate	Lower Bound
1	18	7	4
2a/2b	18	7	4
3	20	10	6
4	18	7	4
5	37	17	10

Table 8.7 Annual Angling Benefits for Blakedown Brook Flow Improvement (£000)

8.4.3 Agriculture

There are no abstractions from the surface water for agricultural purposes and therefore no benefit to be gained by this sector.

8.4.4 Property

Wyre Forest District Council was contacted to provide Council Tax Bands for the properties identified as adjacent to the watercourses. These are summarised in Table 8.8.

Table 8.8 Properties Adjacent to Blakedown Brook by Council Tax Band

Band	1997 Midpoint	No of properties				Economic Value
	(£ 000)	Reach 1.	Reach 2	Reach 3	Total	(£ 000 Q4 1997)
A	40					
В	46					
С	61		1		1	61
D	79		3	8	11	86 6
E	105		1	8	9	945
F	141		19	5	24	3,393
G	242	2	15	2	19	4,605
н	323		3		3	969
Total	<u> </u>	2	42	23	67	10,839

Source: Wyre Forest District Council

By applying the formulae given in the Benefit Assessment Guidelines, using the assumed changes in return periods for the low flows indicated in Table 8.2, the benefit to property owners has been estimated in terms of once-off changes in stock.

Option	Total Incremental Benefits				
	Upper Bound	Central Estimate	Lower Bound		
1	1,069	713	143		
2a/2b	467	311	62		
3	0	0	0		
4	1,505	1,003	201		
5	1,505	1,003	201		

Table 8.9 Amenity and Aesthetic Stock Benefits (£000 Q4 1997)

8.4.5 Non-Use

Non-use (conservation) benefit estimates for the Blakedown Brook have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit this particular river and its tributaries but do hold non-use values towards the alleviation of low flows in rivers;
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are almost 20,000 households within 3 km of the Blakedown Brook, distributed between the three river reaches as indicated below, based on population data obtained from the Agency GIS model and assuming 2.7 people/household:

Reach I	5,000
Reach 2	7,000
Reach 3	7,000

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds. The Windmill Pool has been treated as equivalent to a river length of 2 km for this purpose. The annual non-use (conservation) benefit of each option, applying the flow improvement factors from Table 8.2 for each river reach, are summarised in Table 8.10 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

Option	Extent	Upper	Central	Lower
1	Local	165	137	96
	Full	972	783	581
2a/2b	Local	83	69	48
	Full	418	337	250
3	Local	62	51	36
	Full	215	174	128
4	Local	234	195	137
	Full	1,377	1,109	822
5	Local	239	199	139
	Full	1,533	1,235	916

Table 8.10 Annual Non-Use Benefits (£000 Q4 1997)

8.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the various options are presented in Table 8.11. The results are shown:

- both including and excluding non-use, together with two intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

In addition, a variant on Option 5 is also shown which has the same benefits as Option 5, but allows for phasing of the capital costs over the implementation period and includes the additional costs of the replacement water which is expected to be required in order to provide a long term sustainable solution to the problem of over-abstraction. This variant also includes additional Agency costs for the installation of monitoring equipment. The total amount of replacement water (all values in MI/d) allowed for with Option 5 (long term) is made up as follows:

		STW Ltd	SSWC Ltd
Interim	Option 1	0	0
	Option 2b	0	2
	Option 3	1	0
Long Term		4	3
Total		5	5

Table 8.11 (Sheet 1)

Blakedown Brook : Summary of Costs and Benefits (E 000 Q4 1997 expressed as present values)

					riod	od								
Option	Costs	- 9-	Ben	efits			Total	NPV		Benefit Cost Ratio				
		incl full non-use	incl local and 60% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl'non- use	incl full non-use	incl local and 60% non-local non-use	incl local non-use	excl non use	
	timates n	e colling fo												
1	1,279	12,692	8,059	3,427	1,537	11,413	6,781	2,148	258	9.9	6,3	2,68	1.20	
2a/2b	712	5,613	3,688	1,764	813	4,901	2,977	1.052	102	7.9	5.2	2.48	1.14	
3	941	2,/40	1,861	981	2/3	1,799	920	2 810	-668	2.9	2.0	1.04	0.29	
5	2,931	19,940	12,512	5,084	2,344	17,009	9,581	2,010	-587	6.8	4.3	1.73	0.80	
5 (long term)	6,377	19,940	12,512	5.084	2,344	19,940	6,135	5,084	2,344	3.1	2.0	0.80	0.37	
Linner est	timatee w	ith colling	forward											
1	1,279	13,340	8,454	3,568	1,574	12,061	7,175	2,290	295	10.4	6.6	2.79	1.23	
2a/2b	712	5,900	3,870	1,840	838	5,188	3,158	1,128	126	8.3	5.4	2.59	1.18	
3	941	2,890	1,962	1,035	287	1,949	1,022	95	-653	3.1	2.1	1.10	0.31	
5	2.931	20,966	13.131	4,997	2,162	18.035	10,200	2.366	-524	9.5	4.5	1.81	0.82	
5 (long term)	6,377	20,966	20,966	20,966	2,407	14,590	14,590	14,590	-3,969	3.3	3.3	3.29	0.38	
Central e	stimates, I	no rolling (forward											
1	1,279	9,821	6,115	2,409	834	8,542	4,836	1,130	-445	7.7	4.8	1.88	0.65	
2a/2b	712	4,293	2,753	1,213	421	3,581	2,041	502	-290	6.0	3.9	1.70	0.59	
4	941 1.990	13 877	8 633	3 388	1 1 4 8	11 886	4/9 6.642	1.398	-842	2.3	1.5	0.75	0.13	
5	2,931	15,429	9,487	3,545	1,262	12,498	6,556	614	-1,669	5.3	3.2	1.21	0.43	
5 (long term)	6,377	15,429	9,487	3,545	1,262	15,429	3,110	3,545	1,262	2.4	1.5	0.56	0.20	
Central e	stimates,	with rolling	forward											
1	1,279	10,328	6,419	2,510	848	9,049	5,140	1,231	-431	8.1	5.0	1.96	0.66	
2a/2b	712	4,514	2,890	1,266	431	3,803	2,179	555	-281	6.3	4.1	1.78	0.61	
3	941 1990	14 593	9.062	3 530	133	1,299	7 071	-165	-808	2.4	1.6	0.80	0.14	
5	2,931	16,231	9,963	3,695	1,287	13,300	7,032	764	-1,644	5.5	3.4	1.26	0.44	
5 (long term)	6,377	16,231	9,963	3,695	1,287	9,854	3,586	-2,682	-5,089	2.5	1.6	0.58	0.20	
Lower es	timates, n	o rolling fo	orward											
1	1,279	6,864	4,085	1,306	203	5,585	2,806	27	-1,076	5.4	3.2	1.02	0.16	
2a/2b	712	2,980	1,825	670	116	2,268	1,113	-41	-596	4.2	2.6	0.94	0.16	
3	1 990	9 704	5 771	488	270	7 714	3 781	-453	-866	1.6	1.1	0.52	0.08	
5	2,931	10,853	6,396	1,939	341	7,922	3,465	-992	-2,590	3.7	2.2	0.66	0.12	
5 (long term)	6,377	10,853	6,396	1,939	341	4,476	19	-4,437	-6,035	1.7	1.0	0.30	0.05	
Lower es	timates, w	/ith rolling	forward											
1	1,279	7,234	4,302	1,371	208	5,955	3,024	92	-1,071	5.7	3.4	1.07	0.16	
2a/2b	712	3,140	1,922	704	120	2,429	1,211	-7	-592	4.4	2.7	0.99	0,17	
4	1,990	10.227	6.078	1,930	276	8,237	4,088	-60	-1,715	5.1	3.1	0.55	0.08	
5	2,931	11,438	6,737	2,037	351	8,507	3,806	-894	-2,580	3,9	2.3	0.69	0.12	
5 (long term)	6,377	11,438	6,737	2,037	351	5,062	361	-4,340	-6,026	1.8	1.1	0.32	0.06	
	L	L		L					L		L			

Issue 2.0 / November 1998

•

١

Table 8.11 (Sheet 2)

Blakedown Brook : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

					61/	Discount	Pata 50 va		riod						
0-1	Casta	r — –	D	Benefits Total NPV Benefit Cost Batio											
Option	Costs	<u> </u>	Ben	ents			lotal			Benefit Cost Ratio					
		incl full non-use	incl local and 60% non-local non-use	incl local non-use	excl non- use	inci full non-use	incl local and 50% non-local non-use	incl local non-use	exci non- use	incl fult non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use		
Upper est	timates, n	o rolling fo	rward												
1	1,388	16,136	10,154	4,171	1,730	14,748	8,766	2,784	342	11.6	7.3	3.01	1.25		
2a/2b	734	7,137	4,652	2,166	939	6,403	3,917	1,432	205	9.7	6.3	2.95	1.28		
3	1,001	3,538	2,403	1,267	352	2,537	1,402	266	-649	3.5	2.4	1.27	0.35		
5	3 124	25 393	15 800	6 207	2,309	20,649	12,104	3,710	454	81	51	2.75	0.85		
5 (long term)	6,855	25,393	15,800	6,207	2,669	18,538	8,945	-648	-4,186	3.7	2.3	0.91	0.39		
Upper est	L	/ith rolling	forward												
1	1,388	17,323	10,875	4,427	1,795	15,935	9,487	3,039	407	12.5	7.8	3.19	1.29		
2a/2b	734	7,663	4,984	2,305	982	6,928	4,249	1,570	247	10.4	6.8	3,14	1.34		
3	1,001	3,814	2,590	1,366	379	2,812	1,589	365	-622	3.8	2.6	1.36	0.38		
4	2,122	24,447	15,322	6,198	2,456	22,324	13,200	4,075	333	11.5	7.2	2.92	1.16		
5 (1005	5,124	27,272	16.932	6 593	2,//9	29,140	10,000	3,469	-344	0./ 4 0	5,4	2.11	0.89		
term)	0,833	21,212	10,532	0,393	2,115	20,417	10,077	-202	-4,078	4.0	2,3	0.96	0.41		
Central e	stimates,	no rolling i	orward												
1	1,388	12,513	7,727	2,941	907	11,125	6,339	1,554	-481	9.0	5.6	2.12	0.65		
2a/2b 3	1 001	27409	3,481	1,493	4/0	4,735	2,/4/	/56	-264	2.4	4./	2.03	0.64		
4	2,122	17.682	10.910	4.137	1.244	15,560	8.787	2.015	-879	8.3	5.1	1.95	0.18		
5	3,124	19,687	12,013	4,339	1,391	16,564	8,889	1,215	1,733	6.3	3.8	1.39	0.45		
5 (long term)	6,855	19,687	12,013	4,339	1,391	12,832	5,158	-2,516	-5,464	2.9	1.8	0.63	0.20		
Control o		L	forward												
1	1 388	13 441	8.283	3.124	931	12.053	6 895	1 736	-457	9.7	60	2.25	0.67		
2a/2b	734	5,875	3,732	1,589	486	5,141	2,997	854	-248	8.0	5,1	2.16	0,66		
3	1,001	2,956	1,977	998	175	1,954	975	-4	-826	3.0	2.0	1.00	0.18		
4	2,122	18,993	11,694	4,394	1,276	16,871	9,571	2,272	-847	8.9	5.5	2.07	0.60		
5	3,124	21,155	12,883	4,611	1,434	18,031	9,759	1,488	-1,690	6.8	4.1	1.48	0.46		
5 (long term)	6,855	21,155	12,883	4,611	1,434	14,300	6,028	-2,244	-5,421	3.1	1.9	0.67	0.21		
_ower est	timates, n	o rolling fo	orward			_									
1	1,388	8,831	5,241	1,652	228	7,443	3,853	264	-1,160	6.4	3.8	1.19	0.16		
2a/2b	734	3,833	2.342	851	135	3,099	1,608	116	-600	5.2	3.2	1.16	0.18		
3	1,001	1,993	1,312	2 3 3 6	96	992	5 292	-371	-905	2.0	1.3	0.63	0.10		
4	3 124	13,968	8 212	2,320	393	10 844	5,203	-667	-1,022	45	3.5 2.6	0.79	0.14		
5 ílona	6 855	13,968	8,212	2,456	393	7.113	1.357	4.399	-6 462	2.0	1.2	0.36	0.06		
term)	0,000		0,212					1,000	0,401	2.2		0.00	0.00		
Lower es	timates, v	vith rolling	forward												
1	1,388	9,509	5,640	1,771	236	8,121	4,252	383	-1,152	6.9	4.1	1.28	0.17		
2a/2b	734	4,128	2,520	913	141	3,393	1,786	178	-593	5.6	3.4	1.24	0.19		
3	1,001	2,148	1,414	6/9 2 404 -	104	1,14/	412	-322	-697	2.1	1.4	0.68	0.10		
5	3 124	15 042	8838	2,494	410	11 918	5,040	-489	-1,011	48	28	0.84	0.15		
5 (lona	6,855	15,042	8,838	2,635	410	8,187	1,983	-4,220	-6,445	2.2	1.3	0.38	0.06		
term)	_,			-,		-,		.,							
,						l									

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios generally in the range from 1.6 to around 13 when the full non-use benefits are included. If only 50% of the non-local non-use benefits are included, the benefit cost ratio reduces to the range 1.5 to 6.0 with the central estimates. If no non-use benefits are included the NPV becomes negative in many of the cases considered, the exceptions being Options 1, 2a/ 2b and 4 with the upper bound estimates.

A summary of the assessment of tangibles (i.e the quantifiable costs and benefits) for the options is presented in Table 8.12. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

Option	Agency Costs	Water Co. Costs	Economic Benefit	Net Present Value	Benefit Cost Ratio
6% discount rate,	50 year time p	eriod			
Do Nothing	0	0	0	0	0
Option 1	0	1,388	7,727	6,339	5.6
Option 2a	0	734	3,481	2,747	4.7
Option 2b	0	734	3,481	2,747	4.7
Option 3	187	814	1,834	833	1.8
Option 4	0	2,122	10,910	8,787	5.1
Option 5	187	2,936	12,013	8,889	3.8
Option 5 (long term)	201	6,654	12,013	5,158	1.8
7% discount rate,	30 year time p	eriod			
Do Nothing	0	0	l o	0	l o l
Option 1	0	1,279	6,115	4,836	4.8
Option 2a	0	712	2,753	2,041	3.9
Option 2b	0	712	2,753	2,041	3.9
Option 3	170	771	1,420	479	1.5
Option 4	0	1,990	8,633	6,642	4.3
Option 5	170	2,761	9,487	6,556	3.2
Option 5 (long term)	184	6,193	9,487	3,110	1.5

Table 8.12 Assessment of Tangibles (£000 Q4 1997)

A breakdown of the total present value of the benefits for Option 5 (long term) by use category (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate, with no rolling forward, is shown on Figure 8.2, together with a breakdown of the present value of the costs.

Blakedown Brook Option 5 (long term) Present Value of Benefits and Costs Figure 8.2

8.6 Assessment of Intangibles

The assessment of intangible benefits has been undertaken by a weighting and scoring system and is presented in Table 8.13. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis
- 4. Flexibility of location of release point to ensure short term objective of re-watering critical locations is more likely to be achieved

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

8.7 Risk Assessment

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 8.14). The risks considered to be relevant in the appraisal are:

Risk 1		Operational failure of flow alleviation
Risk 2		Failure to provide anticipated benefits
Risk 3.	-	Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Table 8.13 Assessment of Intangible Benefits

Intangible Benefit	Weighting Factor	Opt 3 Mi/d e lease at H	ion 1 filuent re- lagley STW	Opti 2 MVd r Churchill (оп 2а elease at existing b'h)	Opti 2 Mi/d rd Churchill	on 2b elease at (new_b'h)	Opt 1 MI/d ru Windn	ion 3 elease at nill Pool	Opt Option	ion 4 s 1 + 2b	Opt Options	íon 5 1 + 26 + 3	Opt (long Options + addition	ion 5 term) 1 + 2b + 3 phal costs	Comment
		points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	
1	3	2	6	2	6	2	6	3	9	2	6	4	12	5	15	Related to the extent of flow improvement
2	3	2	6	2	6	2	6	3	9	3	9	4	12	5	15	
3	3	1	3	2	6	2	6	1	3	2	6	3	9	5	15	Limited recovery of groundwater levets, except for Option 5 (long term)
4	2	}				4	8	4	8	4	8	4	8	4	8	Only Options 2b and 3 give flexibility
Total weighte	ed score		15	<u> </u>	18		26		29		29		41		53	

Intangible Benefit 1: Facilitation of Agency meeting objectives

Intangible Benefit 2: Improved public relations and maintenance of credibility of Agency

Intangible Benefit 3: Longer term benefits not quantified in economic analysis

Intangible Benefit 4: Flexibility of location of release point to ensure short term objective of re-watering critical locations is more likely to be achieved

Table 8.14 Risk Register

Identified Risk	Opti 3 MVd eff lease at Ha	on 1 Ruent re- agley STW	Optie 2 MVd re Churchill (e	on 2a elease at existing b'h)	Optic 2 Ml/d re Churchill	on 2b lease at (new b'h)	Opti 1 Mi/d re Windir	on 3 Ilease at Iill Pool	Opti Options	on 4 s 1 + 2b	Opti Options	ion 5 1 + 26 + 3	Opti (long Options 1 + additio	on 5 term) + 2b + 3 nal costs	Comment
	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	
Operational failure of flow alleviation	L	L	L	L	L	L	L	L	L	L	L	L	L	L	
Failure to provide anticipated benefits	м	М	м	м	м	м	м	м	м	м	м	м	L	L	Recovery of groundwater levels will be achieved sconer with Option 5 (long term)
Failure to supply a sustainable solution	L	L	м	м	м	м	м	м	м	м	м	м	L	L	
<u></u>	**				•		•						•		

8-14

Issue 2.07 November 1998

Relative risks: H high M medium L low

Intarisk Blake

8.8 Selection of Preferred Option

From the assessment of tangibles presented in Table 8.12 it can be seen that each of the individual options is justifiable in its own right and therefore the combination of the three in Option 5 represents the most cost effective solution in terms of maximum net present value (NPV). This conclusion is supported by the assessment of intangibles.

Although there is no distinction between Options 2a and 2b in economic terms, Table 8.13 confirms that Option 2b is to be preferred, since there is flexibility as to the location of the release point to ensure that the short term objective of re-watering critical locations at the SSSIs is more likely to be achieved (See English Nature document "AMP3 Scheme Proposed and Benefit SSSI").

However, without further allowance for the longer term reduction in groundwater abstractions, Options 2a/b and 3 may not be sustainable or compatible with the long term objective of a recovery of groundwater levels. This is reflected in the assessment of intangibles and the risk register in Tables 8.13 and 8.14. Only Option 5 (long term) is shown as having a low risk of failing to provide the anticipated benefits and a low risk of not supplying a sustainable solution. Reductions in abstractions have already been agreed with both water companies. The results from the West Midlands Groundwater Model, which is under development at present, will be used to address the long term sustainability of the present abstraction requirements.

It is therefore concluded that Option 5 (long term), incorporating Options 1, 2b and 3 and including a total reduction in PWS groundwater abstractions of 10 MI/d, should be selected as the preferred option.

The STW effluent discharge will maintain enhanced flows in the brook over a 4 km stretch, with significantly increased flows over a further 3.5 km which includes the SSSIs. This will be supplemented by the release from a new borehole which will be sited to ensure that the SSSIs will benefit from the increased flows. The compensation release to Windmill Pool will maintain levels in the pool. In the longer term with reduced abstractions, rising groundwater levels should restore baseflows to the brook and its tributaries, with a subsequent reduction in the requirements for compensation releases.

The important wet valley alder carr habitats of the SSSIs will be safeguarded by the addition of the compensation flows.

The assessed economic benefit takes account of these ecological improvements in addition to the increase in the amenity and recreational value of the area surrounding the watercourses.

8.9 Tasks and Dependencies

Investigations:	Agency Midlands Region	Upper Severn Area Regional Office
Design and implementation:	Severn Trent Water Ltd South Staffordshire Water C	ompany Ltd
	Agency Midlands Region	Upper Severn Area Regional Office

1998	Submission of Business Plan
1999	Construction of effluent pipeline from Roundhill WTW (Option 1) Investigation and Design Planning and Consents
2000	Construction of Agency borehole at Windmill Pool (Option 3)
2001	Construction of SSWC borehole near Churchill (Option 2b)

Cost of Preferred Option 8.10

The estimated capital and operating costs of the preferred option are given in Table 8.15. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Table 8.15	Estimated Costs of the Preferred	Option ((£ 000))
				<i>.</i>

Year	Water C	ompany	Age	ncy
ending 31/03	Сарех	Opex	Capex	Opex
1999	0	0	4 ¹	0
2000	1,082	32	16 ²	0
2001	776	44	135⁴	5⁴
2002	819	51	0	6⁴
2003	4,268 ³	120 ³	0	6⁴

¹ Comprises submission of business plan, the cost of which has not been included in the assessment of tangibles

² Comprises installation of monitoring equipment

³ Long term replacement water costs could be deferred subject to supply/demand balance

4 Agency costs for new borehole to be recharged to STW Ltd under AMP3 9

BOW BROOK

9.1 Scheme Objectives

During the late 1980s problems with low flow were identified on the upper reaches of the Bow Brook, mainly above Priest Bridge. The area is illustrated on Figure 9.1. The reduction in flow is due to two main reasons:

- closure of small sewage treatment works on the Bow Brook tributaries; and
- reduction in base flows as a result of over-abstraction of groundwater from the Bromsgrove aquifer for public consumption.

The schemes considered for the alleviation of low flows in Bow Brook are summarised in Table 9.1. They involve a reduction in the abstraction for public water supply at the existing Webheath groundwater pumping station and augmentation of the river system from groundwater. The augmentation point would be at the Webheath pumping station as agreed with Severn Trent Water Ltd and shown on Figure 9.1. The Agency considers that a 2 MI/d compensation release will make up the deficit in flow. In the longer term it is intended to reduce groundwater abstraction from the Bromsgrove aquifer to a sustainable level. However, it is likely that the use of compensation releases to maintain an acceptable flow regime on this watercourse will prove to be the best medium to long term solution.

Table 9.1	Low Flow	Alleviation	Options
-----------	----------	-------------	---------

Option	Description	Improvements
1	Compensation release of 2 MI/d to be in operation when the Agency gauging station at Besford Bridge is at Q20% (105 MI/d) or below	Rewater 2.6 km, significantly increased flows 32 km.
2	Compensation release of 2 MI/d to be in operation when the Agency gauging station at Besford Bridge is at Q50% (33.5 MI/d) or below	Rewater 2.6 km, significantly increased flows 32 km.

Flow duration/frequency curves were provided by the Agency to define the impact of the alleviation options and these are included in Appendix 9. Tabulated mean daily flows for 1990 to 1997 are also included in the Appendix. Most of the available data relates to the gauging station at Besford Bridge which is towards the lower end of the catchment, some 4 km upstream of the confluence with the River Avon south of Pershore. The Agency has also derived a duration/frequency graph for Old Yarr Bridge.

The available information has been used to derive appropriate factors for the economic benefits of each option for those uses which are frequency and duration dependent. The river has been divided into three reaches for this purpose:

- Reach 1 Webheath to Elcock's Brook, which is thought to be the lower limit of zero flows (2.6 km)
- Reach 2 Elcock's Brook to Priest Bridge (8 km)
- Reach 3 Priest Bridge to the confluence with the Avon near Defford (24 km)

Target flows for each reach have been assessed to determine the extent to which the low flow alleviation schemes will improve the situation. Flow improvement factors have been derived from a consideration of both the **proportional flow** improvement from the existing situation at the Q95% level, and the **proportional time** improvement that the target flow is achieved. Corresponding return periods for very low flows (i.e. about 50% of the target flows) have also been assessed for the before and after situations. The figures which have been derived are summarised in Table 9.2.

	Reach 1	Reach 2	Reach 3
Target Flow (MI/d)	2	4	7
% of Time above Target			
Before	25%	25%	55%
After Option 1 Option 2	98% 75%	90% 70%	92% 87%
Flow Improvement Factor		+	
Option 1 Option 2	80% 65%	70% 55 %	40% 35%
Return Period (years) before → after			
Option 1 Option 2	1 → 8 1 → 7	1 → 7 1 → 6	4 → 6 4 → 5

Table 9.2 Summary of Hydrological Assessment for Bow Brook

9.2 Scope of Study

Table 9.3 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

There are three surface water abstraction licences granted on Bow Brook, only one of which is used for agriculture. Of the remaining two, one is used to supply the reservoir at Norgrove Court and the other to form an amenity lake.

Restoration of the flow will improve the continuity of the brook's linear wildlife habitat, which at present is not complete due to the brook periodically suffering extremely low flows.

9-2

The categories that have been included in the benefit assessment are:

- informal recreation;
- angling;
- agriculture;
- property;
- · drinking water supply resource cost savings; and
- non-use.

Table 9.3 Summary of Impacts

Impact	Category	Comments
Drinking Water S	Supply	Increased flow available for PWS abstraction downstream.
Industrial Abstrac	ction	Not applicable
Agriculture	Livestock	Not applicable
-	Irrigation	Yes
In-stream Recreation	Boating	Not applicable
	Bathing	Not applicable
	Angling	Yes
Informal recreation	Walking, picnicking, photography	Yes, a dense network of footpaths with some direct access along the brook.
Amenity /Aesthetics	Property prices	A number of properties overlooking the brook.
Conservation (Non-Use or Passive Use)	Ecology	Yes
	Heritage	Not applicable
Other		None

Although the additional flow will provide some extra dilution to the discharge from the existing STW at Priest Bridge, the Agency water quality staff do not anticipate that consent conditions could be relaxed. No additional economic benefits due to water quality improvements can therefore be identified.

9.3 Capital and Operating Costs

Severn Trent Water Ltd has provided the Agency with estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to provide for the replacement of the 2 MI/d of water currently abstracted at the Webheath pumping station which would be diverted to Bow Brook. In addition some minor works will be required in the vicinity of the pumping station to effect the flow augmentation. Details of the costs are included in Appendix 9 and summarised in Table 9.4.

GIBBF10/Env/Projects/Midlands/Reports/FinalWR/Bowbr

	Option 1	Option 2
Capital expenditure		
Replacement water	1379	1379
PWS option	10	10
Monitoring equipment	15	15
Total	1404	1404
Operating expenditure (per an	num)	· · · · · · · · · · · · · · · · · · ·
Replacement water	23	14
PWS Option	12	8
Total	35	22

Table 9.4 Summary of Cost Estimates (£ 000 Q4 1997)

9.4 Estimation of Benefits

9.4.1 Informal Recreation

Attempts were made to obtain primary data on visitor numbers to this area by contacting the local Ramblers Association representative. Unfortunately no numbers were available. In the absence of reliable primary sources the estimation of visitor numbers to the sites has been based on the indirect approach outlined in the Agency Guidelines, related to the population within 0.8 km of the river, obtained from the Agency's GIS system. However, in the absence of any facilities to qualify as a 'honeypot' site and with no local parks in the vicinity of the river, realistic estimates of the likely number of visits have been derived from previous experience, utilising the GIS data to distribute the numbers between the river reaches.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming that 40% of the willingness-to-pay is attributable to the presence of water:

Upper bound estimate:

£1.48 per visitor day;

Central estimate:

£0.60 per visitor day; and

- Lower bound estimate:
- £0.20 per visitor day.

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 9.2 produces the annual incremental benefits which are presented in Table 9.5.

9-4

	Option	Visitor	Numbers t Reach (000	y River	Factor	ed Benefi (£000 Q	t by Rive 4 1997)	r Reach
		4 <u>1</u>	2	3		2	3	Total
Upper	1	23	19	28	27	20	16	64
Bound	2	23	19	28	22	16	14	52
Central	1	18	15	21	9	6	5	20
Estimate	2	18	15	21	7	5	4	16
Lower	1	14	12	17	2	2	1	5
Bound	2	14	12	17	2	1	1	4

Table 9.5 Annual Informal Recreation Benefits

9.4.2 Angling

Discussions with Agency staff revealed that there are few angling interests on the Bow Brook, although there are some brown trout in the upper reaches. The view was that the Brook would be unlikely to attract fishermen even if the low flows were alleviated. There are other fisheries, both coarse and salmonid, in the area which would act as substitute sites for the Brook.

The only existing fishery on the Brook is at Norgrove Court which abstracts from the Brook to fill a reservoir used as a trout fishery. Although the owners have been aware of low flows during the summer months this has not manifested itself as fish mortalities and has not limited the amount of angling undertaken. The syndicate which fishes the lake has a maximum desired membership of twenty and would not expect to increase this if the low flows were alleviated.

The Worcester and District Angling Club used to fish the lower reaches of the Brook, upstream of the confluence with the River Avon. The fishing here was eventually found not to be financially viable so the club gave up the rights to fish. According to the club contact this situation is unlikely to change with the alleviation of low flows in the Brook.

It is therefore assumed that there are no angling benefits to be gained on Bow Brook.

9.4.3 Agriculture

There is one surface water abstraction licence granted for agricultural use on Bow Brook, at Upper Wolverton Farm, Spetchley. Discussion with the farmer ascertained that the licence is only used in an emergency, and that reliance is placed on a storage reservoir filled from land drains to provide irrigation water. There is effectively no abstraction on this licence and therefore no benefits to be gained by improving the flows in the Brook.

9.4.4 Property

Hereford & Worcester County Council was contacted to provide Council Tax Bands for the properties identified as adjacent to the watercourses. These are summarised in Table 9.6.

Band	1997 Midpoint		No of pr	operties		Economic Value
	(£ 000)	Reach 1	Reach 2	Reach 3	Total	(£ 000 Q4 1997)
А	40	0	0	0	0	0
В	46	0	1	0	1	46
С	61	0	0	0	0	0
D	79	0	1	0	1	79
Е	105	1	0	0	1	105
F	141	0	0	5	5	707
G	242	0	6	6	12	2,908
н	323	1	0	1	2	646
Total	•	2	8	12	22	4,491

Table 9.6 Properties Adjacent to Bow Brook by Council Tax Band

Source: Hereford & Worcester County Council

By applying the formulae given in the Benefit Assessment Guidelines, using the assumed changes in return periods for the low flows indicated in Table 9.2, the benefit to property owners has been estimated in terms of once-off changes in stock.

Table 9.7 Amenity and Aesthetic Stock Benefits (£000 Q4 1997)

Option	То	tal Incremental Benefit	5
	Upper Bound	Central Estimate	Lower Bound
1	324	216	43
2	275	183	37

9.4.5 Resource Cost Savings

With a quantity of water being added to the Bow Brook there will be a higher discharge to the Avon and Severn which could be available for abstraction for public water supply downstream in preference to pumping from the Shropshire Groundwater Scheme. An earlier assessment by the Agency for the River Worfe indicated that this benefit might be realised on average for some 75 days per year at an estimated value of £19 per MI. With the 2 MI/d compensation flow with both options this gives an annual benefit in terms of resource cost savings of £ 2850.

9.4.6 Non-Use

Non-use (conservation) benefit estimates for Bow Brook have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit these particular rivers but do hold non-use values towards the alleviation of low flows in rivers; and
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are just over 20,000 households within 3 km of the low flow site, distributed between the three river reaches as indicated below, based on population data obtained from the Agency GIS model and assuming 2.7 people/household:

Reach I	7,106
Reach 2	5,258
Reach 3	7,728

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefit of each option, applying the flow improvement factors from Table 9.2 for each river reach, are summarised in Table 9.8 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

|--|

Option	Extent	Upper	Central	Lower
1	Local Full	149 2,769	125 2,220	8 7 1,659
2	Local	123	102	72
	Full	2,320	1,860	1,390

9.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the two options are presented in Table 9.9. The results are shown:

- both including and excluding non-use, together with two intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

For all combinations of assumptions Option 1 generates a higher net present value and a higher benefit cost ratio than Option 2. It can therefore be concluded that the incremental benefits of the greater degree of low flow alleviation achieved with the longer duration of pumping with Option 1 are sufficiently great as to justify the incremental operating costs.

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios in the range 10 to over 20 when the full non-use benefits are included. If only the local non-use benefits are included, the benefit cost ratio reduces to the range 1 to 1.4 with the central estimates. If no non-use benefits are included the NPV becomes negative in all cases considered.

A summary of the assessment of tangibles (i.e the quantifiable costs and benefits) for the two options is presented in Table 9.10. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

A breakdown of the total present value of the benefits by use category for Option 1 (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate, with no rolling forward, is shown on Figure 9.2, together with a breakdown of the present value of the costs.

Table 9.9 (Sheet 1)

-

•

•

•

•

•

•••••

Bow Brook : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

					7%	Discount	Rate, 30 ye	ar time pe	riod	*	*		
Option	Costs		Ben	efits Total NPV			Benefit Cost Ratio						
		incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	exci non- us e	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non use
Upper est	timates, n	o rollina fa	rward										
1 2	1,714 1,565	32,823 27,490	17,794 14,885	2,764 2,281	1,049 874	31,110 25,926	16,080 13,321	1,050 716	-665 -691	19.2 17.6	10.4 9.5	1.61 1.46	0.61 0 .5 6
Upper est	timates, w	ith rolling	forward										
1	1,714 1,565	34,607 28,984	18,754 15,689	2,901 2,394	1,092 910	32,893 27,419	17,040 14,124	1,188 829	-622 -655	20. 2 18.5	10.9 10.0	1.69 1.53	0.64 0.58
Central e	stimates,	no rolling f	forward								· · · ·		
1 2	1,714 1,565	25,927 21,721	13,904 11,637	1,880 1,553	451 381	24,214 20,156	12,190 10,072	166 -12	-1,263 -1,184	15.1 13.9	8.1 7.4	1.10 0.99	0.26 0.24
Central et	stimates	with rolling	1 forward										-
1 2	1,714 1,565	27,338 22,902	14,656 12,266	1,973 1,630	466 394	25,624 21,338	12,942 10,701	260 65	-1,248 -1,171	16.0 14.6	8.6 7.8	1.15 1.04	0.27 0.25
Lower es	timates. n	o rollina fa	orward										
1 2	1,714 1,565	19,168 16,061	10,150 8,499	1,132 936	132 115	17,454 14,497	8,436 6,934	-581 -629	-1,582 -1,449	11.2 10.3	5.9 5.4	0,66 0.60	0.08 0.07
Lower es	timates, v	vith rolling	forward										
1 2	1,714 1,565	20,216 16,939	10,704 8,962	1,193 985	137 120	18,502 15,375	8,990 7,398	-521 -579	-1,577 -1,445	- 11.8 - 10.8	6.2 5.7	0.70 0.63	0.08 0.08

Table 9.9 (Sheet 2)

Bow Brook : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

	6% Discount Rate, 50 year time period												
Option	Costs	~	Вел	efits			Tota	NPV		Benefit Cost Ratio			
		incl full non-use	incl local and 50% non-local non-use	inci local non-use	exci non- use	inci full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	exci non use
Unnet est	timates n	n tolling fo	rward										
1	1,843 1,651	42,312 35,436	22,902 19,158	3,492 2,880	1,277 1,063	40,469 33,786	21,059 17,508	1,649 1,229	-566 -587	23.0 21.5	12.4 11.6	1.89 1.74	0.69 0.64
Upper est	timates, w	ith rolling	forward	Ī									[
1 2	1,843 1,651	45,584 38,177	24,664 20,631	3,743 3,086	1,356 1,128	43,741 36,526	22,821 18,981	1,900 1,436	-487 -522	24.7 23.1	13,4 12.5	2.03 1.87	0,74 0,68
Central e	stimate s , i	no rolling f	orward										
1 2	1,843 1,651	33,432 28,007	17,904 14,985	2,376 1,962	531 448	31,589 26,357	16,061 13,334	533 311	-1,313 -1,202	18.1 17.0	9.7 9.1	1.29 1.19	0.29 0.27
Central e	stimates, v	with rolling	forward										<u> </u>
1 2	1,843 1,651	36,020 30,175	19,284 16,139	2,547 2,103	558 471	34,177 28,525	17,441 14,488	704 452	-1,285 -1,179	19.5 18.3	10.5 9.8	1.38 1.27	0.30 0.29
Lower es	timates, n	o rolling fa	rward										
1 2	1,843 1,651	24,744 20,733	13,098 10,967	1, 452 1,200	160 140	22,901 19,083	11,255 9,316	-391 -451	-1,683 -1,511	13.4 12.6	7.1 6.6	0.79 0.73	0.09 0.08
Lower es	timates, w	rith rolling	forward										
1 2	1,843 1,651	26,667 22,345	14,115 11,818	1,562 1,291	170 148	24,824 20,694	12,271 10,167	-281 -360	-1,673 -1,502	14.5 13.5	7.7 7.2	0.85 0.78	0.09 0.09

٠

•

- -

Note: The area of the circles is proportional to the present value of the benefits or costs at a 6% discount rate

Bow Brook Option 1 Present Value of Benefits and Costs Figure 9.2

Table 9.10Assessment of Tangibles (£000 Q4 1997)

Option	Agency	Water Co.	Economic	Net Present	Benefit
	Costs	Costs	Benefit	Value	Cost Ratio
6% discount ra	te, 50 year time	period			
Do Nothing	0	0	0	0	0
Option 1	14	1,829	17,904	16,061	9.7
Option 2	14	1,636	14,985	13,334	9.1
7% discount ra	te, 30 year time	period			
Do Nothing	0	0	0	0	0
Option 1	14	1,700	13,904	12,190	8.1
Option 2	14	1,551	11,637	10,072	7.4

9.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 9.11. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- Longer term benefits not quantified in economic analysis.

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

9.7 Risk Assessment

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 9.12). The risks considered to be relevant in the appraisal are:

- Risk 1 Operational failure of flow alleviation
- Risk 2 Failure to provide anticipated benefits
- Risk 3 Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Table 9.11 Assessment of Intangible Benefits

Intangible Benefit	e Weighting Option 1 Option 2 Factor 2 M//d release 2 M//d release above Q20% above Q50%		tion 2 I release Q50%	Comment		
ā		points	weighted points	points	weighted points	
1	3	4	12	3	9	
2	3	4	12	3	9	
3	3	4	12	3	9	Improved dilution of urban runoff from southern part of Redditch
Total weighte	ed score		36		27	

Intangible Benefit 1: Intangible Benefit 2: Intangible Benefit 3: Facilitation of Agency meeting objectives

Improved public relations and maintenance of credibility of Agency Longer term benefits not quantified in economic analysis

Table 9.12

Risk Register

ldentified Risk	Option 1 2 Mi/d release above Q20%		Option 2 2 Ml/d release above Q50%		Comment	
	Likelihood	Effect	Likelihood	Effect	а. 10 а. 10	
Operational failure of flow alleviation	L	L	L	L		
Failure to provide anticipated benefits	L	М	Ľ	М		
Failure to supply a sustainable solution	м	М	L	м	In the long term, total reductions in groundwater abstractions will provide a sustainable solution	

Relative risks:

H high M medium

L low

9.8 Selection of Preferred Option

From the summary of costs and benefits presented in Table 9.10 it can be seen that Option 1 represents the most cost effective solution both in terms of maximum net present value (NPV) and maximum benefit cost ratio. This conclusion is supported by the assessment of intangibles in Table 9.11.

Although the risk register presented in Table 9.12 suggests that Option 1 may have slightly higher risk than Option 2 of not providing a sustainable solution, this risk will be mitigated by the planned long term overall reduction in abstractions from the Bromsgrove aquifer.

It is therefore concluded that Option 1, comprising a compensation releases of 2 MI/d from the existing borehole at Webheath, should be selected as the preferred option.

The compensation releases will be triggered by low flows at the gauging station at Besford Bridge and, in the early years, are expected to be operational for about 80% of the time. To ensure the best usage of the compensation water being provided from Webheath borehole, studies will be undertaken to assess the benefits of the additional water releases. These studies, including flow measurements at a new gauging site near Feckenham, will enable the control rules for release of water to be refined, thereby ensuring optimum use of the available water.

Almost 3 km of the brook will be re-watered, including the trout fishery at Norgrove Court lake, whilst 32 km will benefit from a significant increase during low flow periods.

It is expected that there will be a reduction in fish deaths due to a lack of dissolved oxygen caused by the algal blooms which are exacerbated by the low flows. The increased flows will dilute the effects of eutrophication caused by runoff from the agricultural land uses in the surrounding area.

Restoration of the flow will improve the continuity of the brook's linear wildlife habitat.

The assessed economic benefit takes account of these ecological improvements in addition to the increase in the amenity and recreational value of the area surrounding the watercourse.

It is also considered that there will be some water quality improvement due to dilution of urban run-off from the southern part of Redditch.

9.9 Tasks and Dependencies

Investigations:	Agency Midlands Region, Lower Severn Area
Design and implementation:	Agency Midlands Region, Lower Severn Area Severn Trent Water Ltd.

Programme for implementation of preferred option:1998Submission of Business Plan
Installation of monitoring devices

- 1999 Investigation and Design Planning and Consents
- 2000 Construction

9.10 Cost of Preferred Option

The estimated capital and operating costs of the preferred option are given in Table 9.13. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Table 9.13	Estimated Costs of the Preferred Option (£ 000)
------------	---

Year	Water Co	ompany	Agency			
ending 31/03	Capex	Орех	Capex	Opex		
1999	0	0	4 ¹	0		
2000	0	0	16²	0		
2001	1,562	38	0	0		
2002	0	39	0	0		
2003	0	40	0	0		

¹ comprises submission of business plan, the cost of which has not been included in the assessment of tangibles ² comprises installation of monitoring equipment 10

HEWELL GRANGE LAKE

10.1 Scheme Objectives

Discussions with the Agency have highlighted the fact that Hewell Grange Lake, which was artificially landscaped by Repton, is of considerable wildlife importance and as such has been designated as a SSSI. The lake has suffered low flows for over 150 years according to a recent report (Arthur Amos Associates, A Report on Hewell Grange Lake, 1995, p24). In recent years a contributory factor has been over-abstraction from the Bromsgrove aquifer for public water supply. A recent informal agreement with British Waterways Board will provide for some additional winter inflow to the lake from the Worcester and Birmingham Canal.

The location of the lake, which is about 800 m in length and up to 250 m wide, is shown in Figure 10.1. It is situated within the overall grounds of HM Prison at Brockhill and the nearby HM Young Offenders Institution. The policy of the prison governor is to encourage use of the gardens and the lake area by the general public.

There is a single scheme for alleviating the low lake levels involving the augmentation of the lake from groundwater. The augmentation point would be from a borehole upstream of the lake as shown on Figure 10.1. There is the opportunity to keep the lake at various levels depending on the quantity of augmentation flow, these are summarised in Table 10.1.

Option	Description	Improvements
1	Compensation release to keep the lake at <100 mm below the full surface level.	Raised lake level.
2	Compensation release to keep the lake at <200 mm below the full surface level.	Raised lake level.
3	Compensation release to keep the lake at <300 mm below the full surface level.	Raised lake level.
4	Compensation release to keep the lake at <400 mm below the full surface level.	Raised lake level.

Table 10.1Low Flow Alleviation Options

The Agency has provided figures for the years 1993 to 1997 inclusive which show the number of days on which compensation flow would be required and at what rate it will be required to maintain the lake at the given level below the normal surface level. Rates of leakage have been assumed based on field data.

On average the lake currently achieves Option 1: 28% of the time, Option 2: 41%, Option 3: 59% and Option 4: 81%. See Table 10.2. Option 1 incurs the highest cost as a greater quantity of compensation flow is required to keep the lake at near to bankfull conditions.

In the longer term it is intended to reduce the total abstraction from the Bromsgrove aquifer to a sustainable level. Of the overall reduction, 1 MI/d has been attributed to the scheme to alleviate low flow problems at Hewell Grange Lake. This should result in rising groundwater levels re-watering the lake and its tributary streams, with a subsequent reduction in the requirements for compensation releases.

Fable 10.2	Summary of Compensation Flow Requirements
------------	---

Required Level Below Surface	Average no. days/year Required	Average % Time Required	Average % Time Not Required	Compen- sation Requirement Mi/day	Average Annual Requirement Mi/year
< 100 mm	263	72	28	0.62	163
< 200 mm	214	59	41	0.52	111
< 300 mm	151	41	59	0.47	71
< 400 mm	71	19	81	0.45	32

Source: EA Pers. Comm. 26.02.98. Average figures derived from EA data 1993 - 1997.

10.2 Scope of Study

Table 10.3 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

Table 10.3	Summary of Impacts
------------	--------------------

Impact Ca	ategory	Comments
Drinking Water Su	oply	Not applicable
Industrial Abstracti	on	Not applicable
Agriculture	Livestock	Not applicable
	Irrigation	Not applicable
In-stream Recreation	Boating	Not applicable
	Bathing	Not applicable
	Angling	Yes
Informal recreation	Walking, picnicking, photography	Yes, footpaths along the takeside
Amenity /Aesthetics	Property prices	Not applicable
Conservation (Non-Use or Passive Use)	Ecology	Yes - designated SSSI
	Heritage	Yes
Other		None

Of particular ecological value are the large reedbeds which form part of the north-east shore. These support one of the largest Reed Warbler (*Acrocephalus scirpaceus*) colonies in Worcestershire as well as a number of breeding wildfowl colonies. There are also good populations of amphibians and reptiles including a high density of grass snakes (*Natrix natrix*).

The drying out of the reedbeds is allowing terrestrial vegetation to become established which has led to the main block of reeds losing their population of breeding Reed Warblers. There will be conservation benefits associated with restoring the high water levels as it is expected that they will reverse the losses currently being experienced by the wildlife.

There are no abstractions from the lake itself and therefore no benefits to be gained by industry or agriculture. There are however abstractions within the local area which may be causing the lake levels to fall. However as these are groundwater abstractions they have not been included in the assessment.

The categories included in the benefit assessment are:

- informal recreation;
- angling; and
- non-use.

In order to distinguish between the four options it has been assumed that the scheme with the highest compensation flow will achieve the full level of benefits as determined from the Guidelines. For lesser flows (and hence lower lake levels) the benefits have been reduced pro rata, i.e. 75% for Option 2, 50% for Option 3 and 25% for Option 4.

10.3 Capital and Operating Costs

Severn Trent Water Ltd has provided the Agency with estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to provide for the replacement of the water currently abstracted at the groundwater pumping station which would be diverted to Hewell Grange Lake. In addition some minor works will be required in the vicinity of the pumping station to effect the flow augmentation. Details of the costs are summarised in Table 10.4.

	Option 1	Option 2	Option 3	Option 4
Capital expenditure				
Replacement water	427	359	324	310
PWS option	10	10	10	10
Total	437	369	334	320
Operating expenditure (per annun				
Replacement water	6	4	3	1
PWS Option	10	7	4	2
Total	16	11	7	3

Table 10.4 Summary of Cost Estimates (£ VUV Q4 199	Table 10.4	Summary of Co	st Estimates	(£ 000 Q4 199)
--	------------	---------------	--------------	----------------

10.4 Estimation of Benefits

10.4.1 Informal Recreation

Although the prison govemor, Mr Bamber, encourages the use of the lake area for informal recreation, there is little data available concerning the number of visitors to the site. There is an annual Heritage Open Day which is reported to attract up to 5000 visitors. The presence of the SSSI and the associated wildlife will attract visitors who may otherwise not have visited the area. It is also used by local people for dog walking. However there are substitute sites in the area, the lake is not the only place to walk and suffers from having few facilities for parking or for the provision of other amenities. Its position within the grounds of a prison may also serve as a deterrent to some potential visitors. For the purposes of the assessment an estimate of 10 000 visitors per annum has been used.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming 40% of the willingness-to-pay is attributable to the presence of water:

- Upper bound estimate:
- £1.48 per visitor day; £0.60 per visitor day; and
 - Central estimate: £0.60 pe Lower bound estimate: £0.20 pe
 - ate: £0.20 per visitor day.

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 10.3 produces the annual incremental benefits which are presented in Table 10.5.

Table 10.5 Annual Informal Recreation Benefits

Option	Number of visits	Total Informal Recreation Benefits £
1	12 957	19 177
2	12,957	14.383
3	12,957	9,588
4	12,957	4,794
1	10,000	6,000
2	10,000	4,500
3	10,000	3,000
4	10,000	1,500
1	8.028	1.606
2	8,028	1,204
3	8,028	803
4	8,028	401
	Cption 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	OptionNumber of visits112,957212,957312,957412,957412,957110,000210,000310,000410,00018,02828,02838,02848,028

10.4.2 Angling

Hewell Grange Lake is a mixed coarse fishery of poor to moderate quality. Recently fishermen have complained about the declining standards of fishing in the lake. It is thought (Arthur Amos, 1995) that the reductions in lake levels may represent significant habitat loss, particularly to young fish. If the lake levels could be guaranteed then the fishery could be improved above its current level by artificial stocking. Currently the governor is unwilling to put too many resources into restocking as there have been fish mortalities in the past due to the low flows. Discussions with Agency staff suggest that in order to raise it to a good quality fishery, stocking rates in the order of 1500 to 2000 lb/acre would be required.

It is currently fished by the HGB Angling Club which is run from the prison. Membership is open to all at the discretion of the prison authorities. There are currently 230 members plus a further 63 individuals with permission to fish the lake. A figure of 300 anglers has been assumed.

There are tentative plans to open the lake as a day fishery to a wider angling community. This would require a number of problems to be overcome, such as the lack of car parking facilities, before it went ahead. As this would involve costs outside those associated with the alleviation of the low flows and would take time to implement it has been assumed for the purposes of the benefit assessment that the lake will remain a club fishery open to members only.

The Low Flow Benefit Assessment Guidelines suggest anglers willingness-to-pay values and participation rates for the introduction of a new coarse fishery as follows:

- poor
 £3.86 per person per trip
 4.21 trips per angler per annum
- moderate £4.07 per person per trip
- 13.5 trips per angler per annum 21.28 trips per angler per annum
- good £6.21 per person per trip

Combining these with the total number of anglers allows the incremental benefits of a change in the quality of fishery to be calculated. These are then factored by the percentage of benefit applicable to each option giving the annual values summarised in Table 10.6.

Table 10.6:	Annual Angling Benefits for Improving Flows to Hewell Grange Lake.

Option	Upper Bound £	Central Estimate £	Lower Bound £
1	34,769	11,608	5,804
2	26,077	8,706	4,353
3	17,385	5,804	2,902
4	8,692	2,902	1,451

10.4.3 Agriculture

There are no agricultural abstractions from the lake at Hewell Grange. Therefore there is no benefit to be gained in this sector.

10.4.4 Property

The only property on the site is the prison and its associated buildings. These will not achieve any stock benefits due to the alleviation of low flows in the lake.

10.4.5 Non-Use

Non-use (conservation) benefit estimates for Hewell Grange have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit these particular rivers but do hold non-use values towards the alleviation of low flows in rivers;
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines, assuming that the lake is equivalent to a 2 km length of river.

Local resident non-use valuation

It has been assumed that there are just over 6,300 households within 3 km of the low flow site, based on population data obtained from the Agency GIS model for a point in the centre of the lake, and assuming 2.7 people/household.

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area. Assuming 45% of the population to be general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefits of each option are summarised in Table 10.6 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

Option	Extent	Upper	Central	Lower
1	Local	76	63	4 4
	Full	382	308	228
2	Local	57	48	33
	Full	287	231	171
3	Local	38	32	22
	Full	191	154	114
4	Local	19	16	11
	Full	96	77	57

Table 10.6 Annual Non-Use Benefits (£000 Q4 1997)

10.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the two options are presented in Table 10.7. The results are shown:

- both including and excluding non-use, together with two intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

In addition, a variant on Option 1 is also shown which has the same benefit as Option 1, but includes the additional costs of providing a total of 1 Ml/d of replacement water in the long term. As indicated in Section 10.1, 1 Ml/d is the proportion of the reduction in abstractions from the Bromsgrove aquifer which has been attributed to this local problem. The overall reduction is expected to be required in order to provide a long term sustainable solution to the problem of over-abstraction.

For all combinations of assumptions Option 1 generates a higher net present value and a higher benefit cost ratio than any of Options 2, 3 or 4. On the basis of the linear proportioning of the benefits it can therefore be concluded that the incremental benefits of the greater degree of low flow alleviation achieved with the higher rate of pumping with Option 1 are sufficiently great as to justify the incremental capital and operating costs.

. ...

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios in the range 2 to 11 when the full non-use benefits are included. If only 50% of the non-local non-use benefits are included, the benefit cost ratio reduces to the range 1.8 to 5 with the central estimates. If non-use benefits are not included at all, the benefit cost ratio reduces well below 1.5 in all cases.

A summary of the assessment of tangibles (i.e the quantifiable costs and benefits) for all the options is presented in Table 10.8. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

A breakdown of the total present value of the benefits for Option 1 (long term) by use category (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate, with no rolling forward, is shown on Figure 10.2, together with a breakdown of the present value of the costs.

Table 10.7 (Sheet 1)

Hewell Grange Lake : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

					7%	Discount	Rate, 30 ye	ar time pe	riod	-			
Option	Costs		Ben	efits	÷		Total	NPV	- 4		Benefit Cost Ratio		
	L	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	inci full non-use	incl local and 50% non-local non-use	incl local non-use	excl non use
Upper est	timates, n	o rollina fa	rward										
1 2 3 4 1 (long term)	592 471 392 333 807	5,006 3,755 2,503 1,252 5,006	3,249 2,437 1,624 812 3,249	1,491 1,118 746 373 1,491	619 464 310 155 619	4,414 3,284 2,111 918 4,200	2,657 1,965 1,232 479 2,442	699 647 353 39 685	27 -7 -83 -179 -188	8.5 8.0 6.4 3.8 6.2	5.5 5.2 4.1 2.4 4.0	2.52 2,37 1.90 1.12 1.85	1.05 0.99 0.79 0.46 0.77
	timates u	ith colline	forward										-
1 2 3 4 1 (long term)	592 471 392 333 807	5,280 3,960 2,640 1,320 5,280	3,427 2,570 1,713 857 3,427	1,573 1,180 786 393 1,573	653 490 326 163 653	4,688 3,489 2,248 987 4,474	2,835 2,099 1,321 523 2,620	981 709 394 60 766	61 19 -66 -170 -154	8.9 8.4 6.7 4.0 6.5	5.8 5.5 4.4 2.6 4.2	2.66 2.50 2.00 1.18 1.95	1.10 1.04 0.83 0.49 0.81
Central e	rtimater	no collina (- Iopword										
1 2 3 4 1 (long term)	592 471 392 333 807	3,741 2,806 1,870 935 3,741	2,335 1,751 1,167 584 2,335	929 697 464 232 929	202 152 101 51 202	3,149 2,335 1,478 602 2,934	1,743 1,280 775 250 1,528	337 226 72 -101 122	-390 -320 -291 -283 -605	6.3 6.0 4.8 2.8 4.6	3.9 3.7 3.0 1.8 2.9	1.57 1.48 1.18 0,70 1,15	0.34 0.32 0.26 0.15 0.25
Central e	stimates	with colling	n forward]						
1 2 3 4 1 (long term)	592 471 392 333 807	3,946 2,959 1,973 986 3,946	2,463 1,847 1,231 616 2,463	980 735 490 245 980	213 160 107 53 213	3,354 2,488 1,580 653 3,139	1,871 1,376 839 282 1,656	388 264 97 -89 173	-379 -311 -286 -280 -594	6.7 6.3 5.0 3.0 4.9	4.2 3.9 3.1 1.8 3.1	1.65 1.56 1.25 0.73 1.21	0.36 0.34 0.27 0.16 0.26
Lower est	timates. n	o rollina fa	ward										
1 2 3 4 1 (long term)	592 471 392 333 807	2,703 2,027 1,351 676 2,703	1,648 1,236 824 412 1,648	594 445 297 148 594	85 64 43 21 85	2,111 1,556 959 342 1,898	1,056 765 432 79 842	2 -26 -96 -185 -213	-507 -407 -350 -312 -722	4.6 4.3 3.4 2.0 3.4	2.8 2.6 2.1 1.2 2.0	1.00 0.95 0.76 0.45 0.74	0.14 0.14 0.11 0.06 0.11
Lower es	timates, w	vith rolling	forward										
1 2 3 4 1 (long term)	592 471 392 333 807	2,851 2,138 1,425 713 2,851	1,739 1,304 869 435 1,739	626 470 313 157 626	90 67 45 22 90	2,259 1,667 1,033 379 2,044	1,147 833 477 101 932	34 -1 -79 -177 -180	-502 -404 -348 -311 -717	4.8 4.5 3.6 2.1 3.5	2.9 2.8 2.2 1.3 2.2	1.06 1.00 0.80 0.47 0.78	0.15 0.14 0.11 0.07 0.11

D

Table 10.7 (Sheet 2)

)

Hewell Grange Lake : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

					6%	Discount	Rate, 50 ye	ar time pe	riod				
Option	Costs		Ben	efits			Total	NPV			Benefit C	ost Ratio	
		incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use	incl full non-use	incl local and 50% non-local non-use	incl local non-use	excl non- use
Upper est	imater n	o collinn fo	ovard										
1	649	6,465	4,195	1,926	799	5,816	3,546	1,276	150	10.0	6.5	2.97	1.23
2	511	4,849	3,147	1,444	600	4,338	2,636	933	88	9.5	6.2	2.83	1.17
3	419	3,233	2,098	963	400	2,814	1,679	544	-19	7.7	5.0	2.30	0.95
4 1 (long term)	346 870	1,516 6,465	1,049 4,195	481 1,926	200 799	1,270 5,595	703 3,325	135 1,056	-146 -71	4.7 7.4	3.0 4.8	1.39 2.21	0.58 0.92
Upper est	imates, w	ith rolling	forward										
1	649	6,968	4,522	2,076	862	6,319	3,873	1,426	212	10.7	7.0	3.20	1.33
2	511	5,226	3,392	1,557	646	4,715	2,880	1,046	135	10.2	6.6	3.05	1.26
	419	3,484	2,261	1,038	431	3,065	1,842	619 173	12	8,3	5.4	2.48	1.03
4 1 (long term)	870	6,968	4,522	2,076	862	6,098	3,652	1,206	-9	8.0	5.2	2.39	0.82
Central es	stimates, i	no rolling f	orward										
1 1	649	4,831	3,015	1,200	261	4,182	2,366	550	-388	7,4	4.6	1.85	0.40
2	511	3,623	2,262	900	196	3,112	1,750	389	-315	7.1	4.4	1.76	0.38
	419	2,416	1,508	300	130	1,997	407	181	-280	3.8	3.0	1.43	0.31
1 (long term)	870	4,831	3,015	1,200	261	3,961	2,145	329	-609	5.6	3.5	1.38	0.30
Central es	timatec	with colling	forward										
	649	5.207	3,250	1,293	281	4,558	2,601	644	-368	8.0	5.0	1,99	0.43
2	511	3,905	2,438	970	211	3,394	1,926	459	-300	7. 6	4.8	1.90	0.41
3	419	2,604	1,625	646	141	2,185	1,206	228	-278	6.2	3.9	1.54	0.34
4	346	1,302	813	323	70	955	466	-23	-276	3.8	2,3	0.93	0.20
1 (long term)	870	5,207	3,250	1,293	281	4,337	2,380	423	-289	6.0	3.7	1.49	0.32
Lower est	imates, n	o rolling fo	orward						G				
1 1	649	3,491	2,129	767	110	2,841	1,479	118	-540	5.4	3.3	1.18	0.17
2	511	2,618	1.597	575	82	2,107	1,085	64	-429	5.1	3,1	1.13	0.16
	419	1,745	1,064	383	55	1,326	645 186	-35	-364	4.2	2.5	0.92	0.13
4	346	3,01	2120	767	110	2 620	1 259	-103	-319	<u>∠.</u> ⊃ ∡∩	1.5 2.4	0.55	0.08
term)	870	5,491	2,123	181	110	2,620	1,233	-105	-700	4.0	2.4	0.00	0.13
Lower est	imates, w	ith rolling	forward										
1	649	3,762	2,294	827	118	3,113	1,645	177	-531	5.8	3.5	1.27	0.18
2	511	2,822	1,721	620	89	2,311	1,210	109	-422	5,5	3,4	1.21	0.17
	419	1,881	1,147 574	413	59	1,462 504	728	-6	-360	4.5	2.7	0.99	0.14
4 1 (long term)	346 870	3,762	574 2,294	827	30 118	2,892	1,424	-140 -44	-752	4.3	2.6	0.95	0.14

.

Option	Agency Costs	Water Co. Costs	Economic Benefit	Net Present Value	Benefit Cost Ratio
6% discount rate,	50 year time	period			
Do Nothing	0	0	o	0	0
Option 1	0	649	3,015	2,366	4.6
Option 1 (long	0	870	3,015	2,145	4.4
term)				ł	
Option 2	0	511	2,262	1,750	3.6
Option 3	0	419	1,508	1,089	2.2
Option 4	0	346	754	407	3.5
7% discount rate,					
Do Nothing	0	0	o	0	0
Option 1	0	592	2,335	1,743	3.9
Option 1 (long	0	807	2,335	1,528	3.7
term)	Į	ļ			
Option 2	0	471	1,751	1,280	3.0
Option 3	0	392	1,167	775	1.8
Option 4		333	584	250	2.9

Table 10.8 Assessment of Tangibles (£000 Q4 1997)

10.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 10.9. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

10.7 Risk Assessment

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 10.10). The risks considered to be relevant in the appraisal are:

Risk 1	Operational failure of flow alleviation
Risk 2	Failure to provide anticipated benefits
Risk 3	Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

present value of the benefits or costs at a 6% discount rate

Figure 10.2

Table 10.9	Assessmen
------------	-----------

t of Intangible Benefits

Intangible Benefit	Weighting Factor	Opti 0.62 < 10	ion 1 M/d I0mm	Opt 0.52 < 20	ion 2 MVd Ютт	Opt 0,47 < 30	ion 3 MVd Kimm	Opt 0.45 < 40	ion 4 ≩MVd ©mm	Opt (long 1	ion 1 term) Mi/d	Comment
		points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	e de la composición d La composición de la c
1	3	4	12	3	9	2	6	1	3	5	15	
2	3	4	12	3	9	2	6	1	3	5	15	
3	3											Not applicable
Total weighte	ed score		24		18		12		6	-	30	

Intangible Benefit 1: Facilitation of Agency meeting objectives

Improved public relations and maintenance of credibility of Agency Intangible Benefit 2:

Intangible Benefit 3: Longer term benefits not quantified in economic analysis

Table 10.10 Risk Register

ldentified Risk	Option 1 0.62 Mi/d < 100mm		Option 2 0.52 Ml/d < 200mm		Option 3 0.47 Ml/d < 300mm	Option 4 0.45 Ml/d < 400mm		Option 1 (iong term) 1 M/d		Comment	
	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	Likelihood	Effect	
Operational failure of flow alleviation	L	L	L	L	L	L	L	L	L	Ļ	
Failure to provide anticipated benefits	L	L	L	L	L	L	L	L	L	L	
Failure to supply a sustainable solution	м	М	м	М	м	М	м	м	L	L	In the long term, total reductions in groundwater abstractions will provide a sustainable solution

Relative risks: Н high medium Μ low L

10.8 Selection of Preferred Option

From the assessment of tangibles presented in Table 10.8 it can be seen that Option 1 represents the most cost effective solution in terms of maximum net present value (NPV). This conclusion is supported by the assessment of intangibles. This option is also supported by English Nature (see the document "AMP3 Scheme Proposed and Benefit SSSI").

However, without further allowance for the longer term reduction in groundwater abstractions, Option1 may not be sustainable or compatible with the long term objective of a recovery of groundwater levels. This is reflected in the assessment of intangibles and the risk register in Tables 10.9 and 10.10. Only Option 1 (long term) is shown as having a low risk of failing to provide the anticipated benefits and a low risk of not supplying a sustainable solution.

It is therefore concluded that Option 1 (long term), including a total reduction in PWS groundwater abstractions of 1 MI/d, should be selected as the preferred option.

In the short term it is expected that a compensation release of 0.62 Ml/d will maintain the lake level within 100 mm below the full capacity level. Trials will be undertaken to confirm lake water requirements as well as proving the optimum retention level for the lake to ensure that the SSSI is maintained in its peak condition. The encroachment of terrestrial vegetation into the reedbeds will be slowed and eventually reversed before the situation becomes too dire. The higher lake level is also expected to reverse the decline in the reed warbler colony and in the visiting population of breeding waterfowl. The improvement in habitat will attract greater numbers of visitors to the area, especially those with a specialist interest such as ornithologists.

The status of the fishery in the lake could also be improved due to improvement in habitat for juvenile fish and by making the lake capable of supporting greater numbers of fish. This would allow some artificial re-stocking of the lake allowing it to be raised to a good quality fishery.

In the longer term there may be some reduction in the requirements for compensation releases if there is a rise in groundwater levels resulting from reduced abstraction.

The assessed economic benefit takes account of these ecological improvements in addition to the increase in the amenity and recreational value of the area surrounding the lake.

10.9 Tasks and Dependencies

Investigations:	Agency Midlands Region, Lower Severn Area Agency Midlands Region, Regional Office
Design and implementation:	Agency Midlands Region, Regional Office Severn Trent Water Ltd.

Programme for implementation of the preferred option:

1998	Submission of Business Plan
1999	Investigation and Design Planning and Consents
2000	Construction Investigation

10.10 Cost of Preferred Option

The estimated capital and operating costs of the preferred option are given in Table 10.11. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Year	Water C	ompany	Agency		
ending 31/03	Capex	Opex	Capex	Opex	
1999	0	0	4 ¹	0	
2000	0	0	0	0	
2001	492	17	0	0	
2002	0	18	0	0	
2003	320 ³	18	0	0	

Table 10.11 Estimated Costs of the Preferred Option (£ 000)

¹ Comprises submission of business plan, the cost of which has not been included in the assessment of tangibles ³ long term replacement water costs could be deferred subject to supply/demand balance 11

1 RIVER SHERBOURNE

11.1 Scheme Objectives

The River Sherbourne and its tributaries the Pickford Brook and the Guphill Brook have been affected by over-abstraction of groundwater in the area west of Coventry for public water supply. This has resulted in the upper reaches of the river having periods of low or zero flow. Spot gaugings and local information suggest that the river and tributaries are dry for considerable periods each year.

The schemes considered for the alleviation of low flows in the River Sherbourne are summarised in Table 11.1 and the augmentation points are shown in Figure 11.1. The current proposals do not address the Guphill Brook, which is to the south of the area shown in the figure. Most options involve a reduction in the abstraction for public water supply at the existing public water supply boreholes and augmentation of the river system from groundwater, although in one case the augmentation would be with treated water from an existing main pipeline. The compensation release envisaged by the Agency is available from a number of boreholes or combinations thereof. In the longer term it is intended to reduce the total groundwater abstractions to a sustainable level which should result in rising groundwater levels re-watering the river and its tributaries, with a subsequent reduction in the requirements for compensation releases.

Option	Description	Improvements
1	Compensation release of 1 MI/day from an existing water company borehole (Meriden) to a tributary of the Pickford Brook	Rewater 4.8 km, significantly increased flows 7.6 km.
2	Compensation release of 1 MI/day from an existing water company borehole (Brownshill Green) to a tributary of the River Sherbourne	Rewater 2.8 km, significantly increased flows 7.6 km.
За	Compensation release of 1 Ml/day from an existing water company pipeline (chlorinated water) to the River Sherbourne.	Rewater 3.2 km, significantly increased flows 7.6 km.
ЗЬ	Compensation release of 1 MI/day from a proposed new borehole to the River Sherbourne	Rewater 5.2 km, significantly increased flows 7.6 km.
4	A combination of Options 1+2	Rewater 7.6 km, significantly increased flows 7.6 km.
5	A combination of Options 1+2+3a	Rewater 10 km, significantly increased flows 7.6 km.
6	A combination of Options 1+2+3b	Rewater 12 km, significantly increased flows 7.6 km.

For the initial studies it has been agreed that the compensation flows would be triggered when the flow at Kingsbury Road is at Q50% (2 Ml/d) or below.

Details of spot gauging and derived flow duration/frequency curves were provided by the Agency to define the impact of the alleviation options and these are included in Appendix 11.

The flow duration data relates to 1994-96 data for the point just downstream of the confluence of the Pickford Brook with the River Sherbourne at Kingsbury Road and for the point just upstream of the confluence with the River Sowe at the A45 road bridge at Baginton.

The available information has been used to derive appropriate factors for the economic benefits of each option for those uses which are frequency and duration dependent. In addition to the tributary reaches rewatered, the River Sherbourne has been divided into two reaches for this purpose:

Reach 1	Above Kingsbury Road (length varies with each option)
Reach 2	Kingsbury Road through the centre of Coventry to the confluence with
	the River Sowe (7.6 km)

Target flows for each reach have been assessed to determine the extent to which the low flow alleviation schemes will improve the situation. Flow improvement factors have been derived from a consideration of both the **proportional flow** improvement from the existing situation at the Q95% level, and the **proportional time** improvement that the target flow is achieved. Corresponding return periods for very low flows (i.e. about 50% of the target flows) have also been assessed for the before and after situations. The figures which have been derived are summarised in Table 11.2.

		Reach 1	Reach 2
Target	Flow (MI/d)	1	5
% of Ti	me above Target		
Before		25%	50%
After	Option 1	95%	83%
	Option 2	95%	83%
	Option 3a	95%	83%
	Option 3b	95%	83%
	Option 4 (1 + 2)	95%	89%
	Option 5 (1 + 2 + 3a)	95%	95%
	Option 6 (1 + 2 + 3b)	95%	95%
Flow In	nprovement Factor		
	Option 1	100%	35%
	Option 2	100%	35%
	Option 3a	100%	35%
	Option 3b	100%	35%
	Option 4 (1 + 2)	100%	50%
	Option 5 (1 + 2 + 3a)	100%	65%
	Option 6 (1 + 2 + 3b)	100%	65%
Return	Period (years)		
before	→ after		
	Option 1	1 → 5	$2 \rightarrow 4$
	Option 2	1 → 5	$2 \rightarrow 4$
	Option 3a	1 → 5	$2 \rightarrow 4$
	Option 3b	1 → 5	$2 \rightarrow 4$
	Option 4 (1 + 2)	1→5	$2 \rightarrow 5$
	Option 5 (1 + 2 + 3a)	$1 \rightarrow 5$	2 → 6
	Option 6 $(1 + 2 + 3b)$	$1 \rightarrow 5$	$2 \rightarrow 6$

Table 11.2 Summary of Hydrological Assessment for the River Sherbourne

The Agency has proposed cutbacks in Water Company groundwater licences in the Coventry/Meriden groundwater units to reduce deployable output by a total of 10.8 Ml/d during the AMP3 period. This figure has been calculated following an assessment by the Agency of the available resources and long term sustainable abstraction for these aquifers. This information has been presented to the Water Company and the proposed reduction has been included in the Company's draft water resources plan.

11.2 Scope of Study

Table 11.3 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

Impact Category		Comments					
Drinking Water Su	pply	Increased flow available for PWS abstraction downstream.					
Industrial Abstracti	on	Not applicable					
Agriculture	Livestock	Not applicable					
	Irrigation	Not Applicable					
In-stream Recreation	Boating	Not applicable					
	Bathing	Not applicable					
	Angling	Not applicable					
Informal recreation	Walking, picnicking, photography	Yes, a network of footpaths with some direct access to the river. The Coundon Wedge is a very popular recreational area.					
Amenity /Aesthetics	Property prices	A number of properties overlooking the river.					
Conservation (Non-Use or Passive Use)	Ecology	Yes					
	Heritage	Not applicable					
Other		None					

Restoration of the flow will improve the continuity of the brook's linear wildlife habitat, which at present is not complete due to the brook periodically suffering extremely low flows.

The categories that have been included in the benefit assessment are:

- informal recreation;
- property;
- · drinking water supply resource cost savings; and
- non-use.

11.3 Capital and Operating Costs

Severn Trent Water Ltd has provided the Agency with estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to provide for the replacement of the water currently abstracted at the various boreholes which could be diverted to alleviate low flows in the River Sherbourne. In addition to the costs of providing replacement water, some minor works will be required in the vicinity of the augmentation points to effect the flow augmentation. For Option 3b a new borehole would be installed by the Agency. Details of the costs are summarised in Table 11.4.

	Option 1	Option 2	Option 3a	Option 3b
Capital expenditure				
Replacement water	690	690	690	690
PWS option	10	10	10	
Agency borehole				120²
Total	700	700	700	810
Operating expenditure (pe	er annum)			
Replacement water	7	7	7	7
PWS Option	4	4	4 (See Note 1)*	
Agency borehole				4 ²
Total	11	11	11	11

Table 11.4	Summan	of Cost	Estimates	(£ 000	04 1997
	Gamman		- commarco		44 1007

Notes: 1. Additional treatment costs may be required with this option Agency costs to be recharged to STW Ltd under AMP3

2.

11.4 Estimation of Benefits

11.4.1 Informal Recreation

In the absence of reliable primary sources the estimation of visitor numbers to the sites has been based on the indirect approach outlined in the Agency Guidelines, related to the population within 0.8 km of the river, obtained from the Agency's GIS system. Taking account of the popular area of Coundon Wedge and other local amenity areas in the vicinity of the river. realistic estimates of the likely number of visits have been derived from previous experience. utilising the GIS data to distribute the numbers between the river reaches.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming 40% of the willingness-to-pay is attributable to the presence of water:

Upper bound estimate:

Central estimate:

- £1.48 per visitor day;
- £0.60 per visitor day; and
- Lower bound estimate: £0.20 per

£0.20 per visitor day.

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 11.2 produces the annual incremental benefits which are presented in Table 11.5.

	Option	Visitor Numbers by River Reach (000)			Factored Benefit by River Reach (£000 Q4 1997)				
-		Coundon Wedge	188 1 - 2	2	Coundon Wedge	1	2	Total	
Upper	1		15	33		22	17	39	
Bound	2	12	15	33	18	22	17	58	
	3a	12	12	33	18	18	17	53	
	3b	12	14	33	18	21	17	57	
	4	12	23	33	18	34	24	76	
	5	25	28	33	37	42	31	110	
	6	25	26	33	37	38	31	107	
Central	1		12	25		7	5	12	
Estimate	2	10	12	25	6	7	5	18	
	3a	10	9	25	6	6	5	17	
	3b	10	11	25	6	7	5	18	
	4	10	17	25	6	10	8	24	
	5	20	22	25	12	13	10	35	
	6	20	20	25	12	12	10	3 4	
Lower	1		9	20		2	1	3	
Bound	2	8	9	20	2	2	1	5	
	3a	8	8	20	2	2	1	4	
	3b	8	9	20	2	2	1	5	
	4	8	14	20	2	3	2	6	
	5	15	17	20	3	3	3	9	
_	6	15	16	20	3	3	3	9	

 Table 11.5
 Annual Informal Recreation Benefits

11.4.2 Angling

Discussions with Agency staff revealed that there are no angling interests on the River Sherbourne.

11.4.3 Agriculture

There are no abstractions from the surface water for agricultural purposes and therefore no benefit to be gained by this sector.

11.4.4 Property

Nuneaton District Council was contacted to provide Council Tax Bands for the properties identified as adjacent to the watercourses. These are summarised in Table 11.6. The only properties considered to accrue any benefits are those on the rewatered section with Options 3a and 3b. There are no riverside properties associated with Options 1, 2 and 4. Reach 2 will receive some increased flow but this will not be significant enough to justify an increase in property value.

Band	1997 Midpoint (£ 000)	No of properties (Options 3a and 3b only)	Economic Value (£ 000 Q4 1997)
 A	40	0	0
В	46	0	0
С	61	3	182
D	79	7	551
Е	105	12	1,260
F	141	1	141
G	242	2	485
Н	323	0	0
Total	- <u> </u>		2,619

Table 11.6 Properties Adjacent to River Sherbourne by Council Tax Band

Source: Nuneaton District Council

By applying the formulae given in the Benefit Assessment Guidelines, using the assumed changes in return periods for the low flows indicated in Table 11.2, the benefit to property owners has been estimated in terms of once-off changes in stock.

Table 11.7	Amenity and Aesthetic Stock Benefits (£000 Q4 1997)
------------	---

Option	Total Incremental Benefits								
	Upper Bound	Central Estimate	Lower Bound						
1 2									
3a 3b	274 274	183 183	37 37						
5	274 274	183 183	37 37						

11.4.5 Resource Cost Savings

With a quantity of water being added to the River Sherbourne there will be a higher discharge to the Avon and Severn which could be available for abstraction for public water supply downstream in preference to pumping from the Shropshire Groundwater Scheme. An earlier assessment by the Agency for the River Worfe indicated that this benefit might be realised on average for some 75 days per year at an estimated value of £19 per MI. This gives the following annual benefits in terms of resource cost savings:

Options 1, 2, 3a and 3b	1 Ml/d	£ 1425
Option 4	2 MI/d	£ 2850
Option 5	3 Ml/d	£ 4275

11.4.6 Non-Use

Non-use (conservation) benefit estimates for the River Sherbourne have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit this particular river and its tributaries but do hold non-use values towards the alleviation of low flows in rivers;
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are around 80,000 households within 3 km of the River Sherbourne, distributed between the two river reaches as indicated below, based on population data obtained from the Agency GIS model and assuming 2.7 people/household:

Reach I	21,000 - 28,000, depending on option
Reach 2	56,000

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefit of each option, applying the flow improvement factors from Table 11.2 for each river reach, are summarised in Table 11.8 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

-

Option	Extent	Upper	Central	Lower	
1	Local	510	425	298	
	Full	1,619	1,312	963	
2	Local	Local 497 414		290	
	Full	Full 1.308 1.063		777	
3a	Local	490	408	286	
	Full	1,361	1,105	809	
3Ь	Local	501	418	292	
	Full	1,670	1353	994	
4	Local	663	553	387	
	Full	2,354	1,906	1,402	
5	Local	773	644	451	
	Full	2,988	2,417	1,780	
6	Local	767 640		448	
	Full	3,280 2,650		1,955	

Table 11.8 Annual Non-Use Benefits (£000 Q4 1997)

11.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the two options are presented in Table 11.9. The results are shown for a variety of combinations of the economic factors:

- both including and excluding non-use, together with two intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

In addition, a variant on Option 6 is also shown which has the same benefits as Option 6, but allows for phasing of the capital costs over the implementation period and includes the additional costs of the replacement water which is expected to be required in order to provide a long term sustainable solution to the problem of over-abstraction. This variant also includes additional Agency costs for the installation of monitoring equipment. The costs for a total of 10.15 MI/d of replacement water have been allowed for with Option 6 (long term).

All the individual options (1, 2, 3a and 3b) show a positive net present value except when nonuse benefits are excluded completely. For each combination of economic factors, the benefit cost ratios of the four options are similar. This indicates that each option is justifiable in its own right. When any proportion of the non-local non-use benefits is included, Option 3b is seen to be preferable to Option 3a, with the slightly higher costs being justified by the higher benefits due to the greater length of watercourse being impacted. It therefore follows that the combination of the three options (1, 2 and 3b), designated as Option 6, has the highest NPV, except when non-local non-use benefits are excluded. Table 11.9 (Sheet 1)

River Sherbourne : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

	7% Discount Rate, 30 year time period												
Option	Costs Benefits						Total	NPV		Benefit Cost Ratio			
		inci fuli non-use	incl local and 50% non-local non-use	inci local non-use	excl non- use	incl full aon-use	inci local and 50% non-local non-use	inci local non-use	excl non- use	inci fuli non-use	inci local and 50% non-local non-use	incl local non-use	excl non- Use
Upper est	timates, n	o rolling fo	rward										
1	780	19,044	12,683	6,322	466	18,263	11,902	5,541	-315	24.4	16.3	8.10	0.60
2	780	15,092	11,034	6 401	870	14,912	10,234	5,390	80	20.1	14.1	8.17	0.87
36 36	883	20 068	13 364	6,660	907	19,185	12 481	5.776	23	22.7	15.1	7 54	1.03
4	1,560	27,922	18,219	8,516	907	26,362	16,659	6,956	-652	17.9	11.7	5.46	0.58
5	2,340	35,842	23,130	10,418	1,551	33,502	20,790	8,077	-789	15.3	9.9	4.45	0.66
6	2,443	39,154	24,737	10,321	1,515	36,711	22,294	7,878	-929	16.0	10.1	4.22	0.62
6 (long Ierm)	7,525	39,154	24,737	10,321	1,515	31,629	17,212	2,796	-6,010	5.2	3.3	1.37	0.20
Upper est	limates, w	ith rolling	forward										
1	780	20,087	13,377	6,668	491	19,306	12,597	5,887	-289	25.7	17.1	8.54	0.63
Z	780	16,552	11,639	6,726	715	15,771	10,858	5,945	-65	21.2	14.9	8.62	0.92
3a	780	17,383	12,109	6,834	905	16,602	11,328	6.054	125	22.3	15.5	8.76	1.16
36	883	21,155	14,084	7,012	944	20,272	13,201	6,129	61	24.0	15.9	/.94	1.07
4	1,360	29,451	19,210	0,982	90/ 1.624	21,091	020,11	8636	-003	16.9	12.5	2.70	0.01
6	2,340	41 286	24,365	10,970	1 586	38 843	22,045	8 4 3 1	-858	16.1	10.4	4 45	0.65
6 (lana	7.525	41.286	26,080	10.874	1,586	33,761	18,555	3,349	-5,939	5.5	3.5	1.45	0.21
term)													
Central e	stimates, I	o rolling f	orward					6					
1	780	15,215	10,126	5,037	157	14,434	9,345	4,256	-623	19.5	13.0	6.45	0.20
2	780	12,427	8,701	4,974	226	11,647	7,920	4,194	-555	15.9	11.1	6.37	0.29
3a	780	13,056	9,055	5,055	371	12,275	8,275	4,275	-410	16.7	_11.6	6.48	0.47
JD	883	15,903	10,540	5,1/0	362	20,614	9,007	4,293	-301	14.2	0.9	1 2.00	0.43
5	2 340	28.337	18 167	7 998	609	25,997	15 827	5 657	1732	12.1	78	3.42	0.20
6	2,443	31,003	19,469	7,936	597	28.559	17.026	5,493	1.846	12.7	8.0	3.25	0.24
6 (long	7,525	31,003	19,469	7,936	597	23,478	11,944	411	-6,928	4.1	2.6	1. 05	0.08
term)	<u> </u>												
Central e	stimates, v	with rolling	forward										
1	780	16,048	10,680	5,313	166	15,267	9,900	4,532	-615	20.6	13.7	6.81	0.21
2	780	13,108	9,1/7	5,247	238	12,327	8,397	4,400	-542	10.8	11.8	6.72	0.31
3a 35	780	15,763	9,543	5,324	365	12,902	8,703 10,226	4,543	-396	19.0	12.2	0.02 6.17	0.49
4	1 550	23 388	15 201	7 013	326	21.828	13.641	5,453	-1.234	15.0	9.7	4.50	0.21
5	2.340	29,881	19,154	8,428	634	27,541	16.814	6,087	-1.706	12.8	8.2	3.60	0.27
6	2,443	32,692	20,527	8,362	622	30,249	18,084	5,919	-1,821	13.4	8.4	3.42	0.25
6 (long lerm)	7,525	32,692	20,527	8,362	622	25,167	13,002	837	-6,903	4.3	2.7	1.11	0.08
Lower es	timates, л	o rolling fo	rward	2 470		10.000	£ 505	2.500	706			4.45	0.07
	780	11,103	6 100	3,470	54	8 204	5,000	2,009	-720	14.2	9.3	4.40	0.07
30	780	0,905	6 379	3,395	09	8.598	5,410	2,015	-681	12.0	82	4.33	0.05
3b	883	11 503	7.481	3,458	102	10.620	6,598	2,575	-781	13.0	8.5	3,92	0.12
4	1,560	16,187	10,365	4,543	105	14,627	8,805	2,984	-1,455	10.4	6.6	2.91	0.07
5	2,340	20,613	12,985	5,358	186	18,272	10,645	3,017	-2,155	8.8	5.5	2.29	0.08
6	2,443	22,620	13,970	5,320	183	20,177	11,526	2,876	-2,261	9.3	5.7	2.18	0.07
6 (long	7,525	22,620	13,970	5,320	183	15,095	6,445	-2,205	-7,342	3.0	1.9	0.71	0.02
term)													
Loweres	timates, w	ith rolling	forward			40.004	6 00 5	2 070	700	45.0		4.60	0.07
1	780		7,685	3,660	57	10,931	6,905	2,8/9	-723	15.0	9.8	4.69	0.07
2	780	9,4//	6,529	3,561	103	0,090	5,749	2 781	-703	12.1	0.4 8.6	4.59	0.10
36 36	883	12,132	7,889	3,502	105	11,248	7,006	2,763	-777	13.7	8,9	4,13	0.12
4	1,560	17.074	10,933	4,792	111	15,514	9,373	3,232	-1,449	10.9	7.0	3.07	0.07
5	2,340	21,740	13,695	5,650	194	19,399	11,354	3,309	-2,145	9.3	5.9	2.41	0.08
6	2,443	23,857	14,733	5,609	191	21,414	12,290	3,166	-2,252	9.8	6.0	2.30	0.08
6 (long	7,525	23,857	14,733	5,609	191	16,332	7,208	-1,916	-7,334	3.2	2.0	0.75	0.03
term)				1									

Table 11.9 (Sheet 2)

River Sherbourne : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

Option Cortis Benefitis Total NPV Detection of the second of the		6% Discount Rate, 50 year time period												
Incl fuel Incl fuel <t< td=""><td>Option</td><td colspan="3">Costs Benefits</td><td></td><td colspan="4">Total NPV</td><td colspan="4">Benefit Cost Ratio</td></t<>	Option	Costs Benefits				Total NPV				Benefit Cost Ratio				
Image: Non-size in and 50%, non-size in and 50%, non-size in and 50%, non-size in anon-size in ano			incl full	incl local	incl local	excl non-	Incl full	incl local	inci local	excl non-	inci full	incl local	incl local	excl non-
Importants Importants <thimportants< th=""> Importants Importa</thimportants<>			non-use	and 50%	non-use	use	non-use	and 50%	non-use	use	non-use	and 50%	non-use	use
L 100-1428 10				non-local				non-local				non-local		
Upper estimates, no rolling forward 602 23,70 15,55 7,34 -222 29.9 9.9 9.2 0.72 2 233 20,266 14,270 8,135 1105 24,694 14,275 8,317 10,20 10,66 25,87 7,441 52,8 17,3 10,20 10,66 25,87 7,441 52,8 17,9 10,66 0,71 11,65 24,694 12,82 12,99 19,9 9,21 11,9 14,54 6,680 11,9 14,54 14,54 11,65 0,73 14,54 14,54 14,54 14,54 14,54 14,54 14,54 14,54 15,56 0,73 14,54				non-use	<u> </u>			non-use	5			non-use		
Open estimates, with Parties No. Parties Parties <t< td=""><td>Linner ort</td><td>imator n</td><td></td><td>nuard</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>!</td></t<>	Linner ort	imator n		nuard										!
2 233 232 2226 14,250 27,411 152 246 173 1705 100 3b 927 25,851 17,193 8,535 1,105 24,924 18,266 7,784 234 178 27,94 234 178 27,94 234 178 27,94 234 178 27,94 234 178 27,94 234 178 27,94 234 178 27,94 234 178 27,94 234 178 27,94 234 178 27,94 234 178 27,94 234 178 27,94 234 178 172 174 174 174 174 174 174 174 174 174 174 174 175 175 172 274 174 174 175 175 175 175 175 175 176 177 1707 1707 175 272 271 175 177 1707 175 2	1	823	24 594	16 379	A 164	602	23 770	15 555	7340	-222	29.9	19.0	0 02	0.73
3a 3b 3c 23a 105 24a 12a 14a 6.66 0.71 5 2.699 4.232 29a 11,93a 4,132 21,882 3,511 -474 21,9 14,53 6.66 0.71 6 2.573 50.500 31,881 13,263 1,891 4,334 22,724 51.8 6.22 9 1.83 0.725 1 232 22,667 15.397 8,78 944 21.0024 14.536 6.52 121 1.03 1.07 1.33 2.22 1.4 1.06 0.79 1.34 3.23 1.08 1.22 1.4 1.06 0.79 1.35 3.23 1.08 1.22 1.4 1.06 0.79 0.30 1.23 <td>2</td> <td>823</td> <td>20 266</td> <td>14 250</td> <td>8,235</td> <td>876</td> <td>19.442</td> <td>13 427</td> <td>7.411</td> <td>57</td> <td>24.6</td> <td>17.3</td> <td>10.00</td> <td>1.06</td>	2	823	20 266	14 250	8,235	876	19.442	13 427	7.411	57	24.6	17.3	10.00	1.06
3b 927 25.851 17.93 8,555 1,105 24.924 16.266 7608 178 27.9 14.5 9.21 118 2.469 46.221 29.866 13.389 13.88 13.283 10.913 21.9 14.5 66.60 77 6 (mor) 8.175 50.000 31.861 13.283 1.891 47.327 23.38 10.918 -531 16.7 12.1 5.42 0.76 5.16 7.33 62.2 3.9 1.63 0.23 upper estimates, with reling forward 1 42.354 22.367 1.754 8.759 6.48 25.684 15.680 7.775 2.22 2.14 10.66 0.79 3 82.22 22.667 15.907 8.947 1.122 2.20 2.17 1.02 2.20 2.16 1.027 3.23 2.20 1.027 2.33 2.06 1.27 2.00 1.127 2.20 2.11 1.33 2.20 1.127 2.20 <t< td=""><td>3a</td><td>823</td><td>21,233</td><td>14,775</td><td>8,317</td><td>1,058</td><td>20,409</td><td>13,952</td><td>7,494</td><td>234</td><td>25,8</td><td>17,9</td><td>10,10</td><td>1.28</td></t<>	3a	823	21,233	14,775	8,317	1,058	20,409	13,952	7,494	234	25,8	17,9	10,10	1.28
4 1,646 36,059 23,528 10,907 1,172 34,413 21,882 9,551 -474 21.9 14.3 6.68 0.71 6 2,573 50,600 31,881 132,823 1,891 47,927 29,308 10,890 -682 15.6 12.2 5.1 0.72 5.1 0.72 5.1 0.72 5.1 0.72 5.1 0.72 5.1 0.72 5.1 0.72 5.1 0.72 5.1 0.72 5.1 0.72 1.7 0.72 1.7 0.75 1.7 2.2 2.1 1.06 0.79 1.15 0.22 2.1 1.06 0.79 1.15 0.22 2.1 1.06 0.79 1.15 0.22 2.1 1.06 0.79 1.15 0.22 2.1 1.06 0.79 1.15 0.22 2.1 1.06 0.79 1.15 0.22 2.1 1.06 0.79 1.15 0.22 2.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3ь	927	25,851	17,193	8,535	1,105	24,924	16,266	7,608	178	27.9	18.5	9.21	1.19
	4	1,646	36,059	23,528	10,997	1,172	34,413	21,882	9,351	-474	21.9	14.3	6.68	0.71
6 2,573 55,500 31,881 13,283 1,891 47,927 29,306 10,800 -6,825 6,2 3,9 1,63 0,23 Upper estimates, with rolling forward 7.54 8,799 648 25,884 16,800 7,876 -1.75 32,2 21,4 10,690 0.79 2 23,22 22,684 15,339 8,776 9,44 21,800 7,876 -1.75 32,2 21,4 10,690 0.79 3 8,232 22,881 10,887 11,32 23,941 11,32 23,941 10,307 138 23,641 10,307 139 23,641 10,307 139 23,641 10,307 139 23,041 11,307 55,079	5	2,469	46,223	29,806	13,389	1,938	43,754	27,336	10,919	-531	18.7	12 .1	5.42	0.78
b (mg) 8,145 50,500 31,841 13,263 1,891 42,354 23,736 5,118 -8,255 6.2 3.9 1,63 0,23 Upper estimates, with rolling forward 1 623 22,667 17,559 8,759 9,86 9,86 9,86 9,87 112 22,040 14,056 8,254 121 225, 161, 10,69 0,79 3 n 623 22,667 13,597 8,947 1122 21,040 14,056 8,254 247 300 220, 9,300 127 4 1,646 38,866 23,599 11,537 1,259 1,220 23,714 10,297 33 22,66 15,4 10,00 20,0 9,00 127 5 2,469 49,803 32,108 14,413 2,071 47,333 29,638 11,944 -338 20,21 13,0 5,84 0,84 6 2,573 54,412 34,354 14,278 2,020 46,287 25,200 6,132 -6,125 6,7 4,2 1,75 0,225 1 1 223 19,648 13,077 6,505 2,90 46,287 25,200 6,132 -6,125 6,7 4,2 1,75 0,225 1 1 223 19,648 13,077 6,505 2,00 46,287 25,200 6,132 -6,125 6,7 4,2 1,75 0,225 1 1 223 19,648 13,077 6,505 2,00 11,8,80 13,772 11,705 5,53 21,1 13,3 5,55 0,79 6 (mg) 8,145 54,412 34,364 14,278 2,020 46,287 25,200 6,132 -6,125 6,7 4,2 1,75 0,225 1 1 223 19,648 13,077 6,505 20 11,8,80 13,727 12,641 5,714 -477 22,1 14,6 7,76 0,03 3 a 203 19,047 13,286 6,641 450 115,67 132,64 5,414 -477 22,17 14,6 17,76 0,03 3 a 203 19,047 13,286 6,641 450 115,67 132,64 5,414 -477 22,1 14,6 9,5 4,17 0,30 3 a 203 19,047 13,286 6,641 450 115,67 132,64 7,513 -1,474 174 11,3 5,72 0,29 5 2,469 35,52 23,418 10,285 7,39 2,890 10,205 7,83 31,849 16,954 2,060 -7,447 49 3,1 1,25 0,99 1 2 423 17,284 10,285 7,43 34,083 20,946 7,615 -1,727 14,6 9,5 4,317 0,26 6 (mg) 8,145 39,954 25,099 10,205 7,28 31,849 16,954 2,060 -7,417 4,9 3,1 1,25 0,99 1 2 423 17,284 10,245 6,374 477 12,19 20,354 13,271 6,167 405 25,7 17,1 45 10,27 3 a 423 7,128 16,497 7,73 4,995 12,014 10,977 7,73 34,950 16,857 7,52 -1,484 155 9,5 4,57 0,56 5 2,469 35,852 23,418 10,245 7,73 31,849 16,954 2,060 -7,417 4,9 3,1 1,25 0,99 1 2 423 17,284 12,211 6,627 434 116,475 11,284 6,101 3,001 7,7 10,2 4,46 0,32 5 2,459 33,834 22,29 11,073 7,89 4,356 14,70 13,516 6,587 3,555 7,55 7,17 1,45 8,17 0,36 5 2,459 33,834 22,29 11,073 7,89 4,318 19,13,20 7,740 3,335 7,754 11,74 19 3,1 1,2 5,58 7 0,06 6 (mm) 8,145 30,665 10,24 7,75 7,34,935 7,75 7,353 3,33 1,35	6	2,573	50,500	31,881	13,263	1,891	47,927	29,308	10,690	-682	19.6	12,4	5.15	0.73
Line Line <thline< th=""> Line Line <thl< td=""><td>6 (iong</td><td>8,145</td><td>50,500</td><td>31,881</td><td>13,263</td><td>1,891</td><td>42,354</td><td>23,736</td><td>5,118</td><td>-6,255</td><td>6,2</td><td>3.9</td><td>1.63</td><td>0.23</td></thl<></thline<>	6 (iong	8,145	50,500	31,881	13,263	1,891	42,354	23,736	5,118	-6,255	6,2	3.9	1.63	0.23
Upper estimates, with rolling forward 6 25 64 25 64 25 64 25 64 25 64 25 64 25 64 25 64 25 64 25 11 32 32 22 14 16 817 84 15 86 817 84 15 86 817 120 23 22 21 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 93 10 </td <td></td> <td></td> <td></td> <td><u> </u></td> <td>L</td> <td></td> <td></td> <td></td> <td><u>_</u></td> <td></td> <td></td> <td></td> <td></td> <td></td>				<u> </u>	L				<u>_</u>					
Dept Description Description <thdescription< th=""> <thde< td=""><td>Linner est</td><td>imates w</td><td>ith rolling</td><td>forward</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thde<></thdescription<>	Linner est	imates w	ith rolling	forward										
2 B33 D33 D33 <thd33< th=""> <thd33< th=""> <thd33< th=""></thd33<></thd33<></thd33<>	1	823	26 508	17 654	8 799	648	25 684	16 830	7 976	-175	32.2	214	10.69	0.79
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	823	21.843	15,359	8,876	944	21.020	14,536	8.052	121	26.5	18.7	10,78	1.15
3b 927 27.846 11.44 26.918 17.566 8.254 24.7 30.0 20.0 9.90 1.27 5 2.469 49.803 32.108 14.413 2.071 47.333 29.638 11.944 -398 20.2 13.0 5.84 0.84 6 2.573 54.412 34.345 14.276 2.020 46.267 26.200 6.132 -6.125 6.7 4.2 1.75 0.25 7 2 823 16.049 11.236 6.424 292 15.255 10.61 -552 13.5 7.80 0.35 3 a 823 16.647 11.566 6.454 435 15.937 10.827 5.861 -521 13.6 7.80 0.35 3 b 927 20.494 13.566 6.641 43.083 20.947 7.817 17.46 7.80 0.35 3 b 27 20.494 1.856 7.421 4.92.44 7.77 7.80	3a	823	22,867	15,907	8,947	1,122	22,044	15,084	8,124	299	27.8	19.3	10,87	1.36
4 1,646 38,866 25,399 11,853 1263 37,220 23,714 10,207 -383 23.6 15.4 7.20 0.77 6 2,573 54,412 34,345 14,278 2,020 51,893 31,772 11,706 -553 21.1 13.3 5.54 0.84 6 60r9 8,145 54,412 34,345 14,278 2,020 61,89 31,772 11,706 -555 21.1 13.3 5.55 0.79 0.25 2 823 16,649 11,256 6,424 292 15,225 10,413 5,661 -521 23.9 15.9 7.90 0.25 3 32.3 16,817 11,856 6,641 450 19,567 12,641 -7,417 14.1 7.88 0.33 3 927 20,494 13,266 6,641 450 19,567 12,641 5,714 -17,27 17,4 11.851 6,041 12,641 5,714 -17,17 1.5 5,2 2,620 1,220 1,464 3,93 9,910	ЗЬ	927	27,846	18,514	9,182	1,174	26,918	17,586	8,254	247	30,0	20.0	9.90	1.27
5 2.489 49,803 32,006 14,413 2.071 47,333 29,638 11,944 3.98 20.2 13.0 5.44 0.84 1.125 0.84 1.125 0.84 1.125 0.84 1.125 0.35 1.8.82 1.2.253 5.681 -621 2.39 1.5.9 7.90 0.25 3.34 0.32 1.15.9 7.80 0.35 3.34 0.24 1.4.1 7.86 0.35 1.8.82 1.2.253 5.681 -6.21 1.4.1 7.86 0.35 1.8.82 1.2.53 5.681 -6.21 1.4.1 7.86 0.35 3.994 1.1.25 0.24 1.8.95 1.8.65 1.8.95 1.8.55 9.8 3.97<	4	1,646	38,866	25,359	11,853	1,263	37,220	23,714	10,207	-383	23.6	15,4	7.20	0.77
b 2 2/3/3 94,412 34,345 14,278 2/020 31,7/2 11,093 23 21.1 13,3 555 0.79 Central estimates, no rolling forward 1 823 15,649 11,236 6,624 222 15,225 10,413 5,501 -532 19,5 13,6 7,800 0.25 2 823 16,649 11,366 6,454 425 15,963 10,827 5,561 -388 0.24 14,1 7,80 0.35 3.b 927 20,494 13,568 6,641 450 16,967 12,641 5,714 -4,77 22,1 14,6 7,16 0,427 5 2,459 38,552 23,418 10,225 728 37,441 5,714 -4,77 22,1 14,6 7,16 0,25 6 1,8773 39,994 25,099 10,205 728 37,441 12,771 14,89 3,1 125 0,26 6 14,278	5	2,459	49,803	32,108	14,413	2,071	47,333	29,638	11,944	-398	20.2	13.0	5.84	0.84
0 (Long) 6,145 94,12 34,345 14,278 2120 46,27 26,203 6,122 -6,123 6,7 4.2 1,75 0.25 Central estimates, no rolling forward 1 823 15,646 13,077 6,505 203 18,825 12,253 5,681 -621 23.9 15,9 7.90 0.25 3 a 823 15,817 11,551 6,424 229 15,264 5,714 -477 22.1 14,6 7.80 0.35 3 b 927 20,494 13,566 6,641 40.93 20,949 7,114 -477 22.1 14,46 9.5 4,17 0.30 6 2,573 39,994 25,099 10,205 728 37,421 22,524 7,552 -1,444 16,55 9.8 3.97 0.28 6 (long) 8,145 12,117 14,094 7,011 219 20,354 13,271 6,161 -559 21.0 14,7 8,41 0.38 55	6 6 (la ta	2,573	54,412	34,345	14,278	2,020	51,839	31,772	11,705	-553	21.1	13.3	5.55	0.79
Central estimates, no rolling forward 6,505 203 18,825 12,253 5,681 -621 23.9 15.9 7.90 0.25 2 823 16,049 11,226 6,425 422 15,225 10,413 5,601 -388 20.44 14.1 7,86 0.35 3b 927 20,494 13,566 6,641 450 19,567 12,641 5,714 -477 14.1 7,86 0.653 6 2,73 39,994 25,099 10,205 728 37,421 22,526 7,521 -1,445 15.5 9.8 3,37 0.28 6 1 823 17,278 14,4094 7,011 219 20,354 13,271 6,187 -605 25.7 17.1 8.51 0.27 1 823 17,278 14,094 7,011 219 20,354 13,271 6,187 -605 25.7 17.1 8.51 0.27 2 16,274 14,17	term)	8,145	54,412	34,340	14,278	2,020	40,207	20,200	0,132	-6,125	0 ./	4.2	1.75	0.25
Central estimates, nor tolling forward 6,505 203 18,805 12,253 5,881 -621 23.9 15,9 7,90 0.25 3 233 16,649 11,236 6,424 292 15,293 10,813 5,661 -532 19,5 13,56 7,80 0.25 3 233 16,647 13,566 6,641 450 19,593 10,827 5,661 -536 20,4 14,1 7,86 0.43 4 1,646 28,636 18,611 8,887 399 26,990 16,966 6,941 -1,247 17,44 9,35 4,17 0.30 6 2,573 39,994 25,099 10,205 728 37,421 22,526 7,832 -1,845 9.8 3.97 0.28 6 1 8,145 12,989 10,205 728 31,421 12,546 -2,660 -7,417 4.9 3.1 1.255 0.09 1 1,823 14,176 1,447 <td></td> <td></td> <td></td> <td><u> </u></td> <td>╞────</td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td>				<u> </u>	╞────				<u> </u>					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Central es	stimates, r	no rolling f	orward										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	823	19,648	13,077	6,505	203	18,825	12,253	5,681	-621	23,9	15.9	7.90	0.25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	823	16,049	11,236	6,424	292	15,225	10,413	5,601	-532	19,5	13.6	7,80	0.35
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3a	823	16,817	11,651	6,485	435	15,993	10,827	5,661	-388	20.4	14.1	7.88	0.53
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3b	927	20,494	13,568	6,641	450	19,567	12,641	5,714	-477	22.1	14.6	7.16	0.49
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1,646	28,030	18,611	10 285	399	26,990	16,966	0,941 7 01E	-1,247	1/.4	11.3	5.22	0.24
6 (long) 8,145 39,994 25,099 10,205 728 31,849 16,954 2,060 -7,417 4.9 3.1 125 0.09 Central estimates, with rolling forward 1 823 21,111 6,924 314 16,455 11,226 6,101 -509 21.0 14.7 8.51 0.27 2 823 17,298 12,111 6,924 314 16,475 11,228 6,101 -509 21.0 14.7 8.41 0.38 3 a 823 18,114 12,546 6,977 457 17,290 11,7120 6,154 -366 22.0 15.2 8.47 0.56 4 1,646 30,865 20,060 9,255 430 29,219 18,414 7,609 -1,216 18,861 10.2 4.48 0.32 5.62 0,26 5 2,469 39,385 25,229 11,073 773 34,950 18,896 2,842 -7,373 5.3 3.3 1,35 0.09 1 corm 823 12,03 8,229 4,341	8	2,405	30,552	23,418	10,205	728	37 421	20,949	7,613	-1,727	14.0	9,5	4.17	0.30
Lerming Line Line <thline< th=""> <thline< th=""> <thline< th=""> <th< td=""><td>6 (long</td><td>8 145</td><td>39,994</td><td>25,099</td><td>10 205</td><td>728</td><td>31 849</td><td>16 954</td><td>2 050</td><td>-7 417</td><td>49</td><td>3.0</td><td>1 25</td><td>0.20</td></th<></thline<></thline<></thline<>	6 (long	8 145	39,994	25,099	10 205	728	31 849	16 954	2 050	-7 417	49	3.0	1 25	0.20
Central estimates, with rolling forward 7,011 219 20,354 13,271 6,187 -605 25,7 17,1 8,51 0.27 2 823 17,296 12,111 6,924 314 16,475 11,288 6,101 -509 21.0 14.7 8,41 0.38 3a 823 18,114 12,546 6,977 457 17,290 11,722 6,154 -366 22.0 15.2 8,47 0.55 5 2,469 39,355 25,229 11,073 789 36,916 22,760 8,604 -1,681 15.6 7,71 0.51 6 (100g 8,145 43,095 27,041 10,987 773 34,950 18,896 2,842 -7,373 5.3 3.3 1.35 0.99 1 823 14,339 9,410 4,481 70 13,516 8,587 3,656 -754 17,4 11,4 5,44 0.08 2 823 112,103	term)	0,110		1 20,000			• • • • • •	, 0,0= (-,			0.1		0.05
Central estimates, with rolling forward 7,011 219 20,354 13,271 6,187 -605 25.7 17.1 8.51 0.27 2 823 17,298 12,111 6,924 314 16,475 11,288 6,101 -509 21.0 14.7 8.41 0.38 3b 927 22,078 14,612 7,164 473 21,150 13,685 6,219 -454 23.8 15.8 7.71 0.51 4 1,646 30,865 20,060 9,255 430 29,219 18,414 7,609 -1,216 18.8 12.2 5.62 0.26 5 2,469 39,385 25,229 11,073 789 36,916 2,2468 8,414 -1,800 16.0 10.2 4.48 0.32 6 (long 8,145 43,095 27,041 10,987 773 34,950 18,896 2,842 -7,373 5.3 3.3 1.35 0.99 1 823 11,603 7,994 4,385 92 10,780 7,171 3,561 -754				<u> </u>	<u> </u>				ſ					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Central e	stimates, v	with rolling	g forward										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	823	21,178	14,094	7,011	219	20,354	13,271	6,187	-605	25.7	17.1	8.51	0.27
3a 823 18,114 12,246 6,977 457 17,290 17,290 17,220 6,154 -366 22,0 15,2 8,47 0.56 3b 927 22,078 14,612 7,146 437 21,150 13,685 6,219 -454 23.8 15.2 8,47 0.56 5 2,469 39,385 25,229 11,073 779 36,916 22,760 8,604 -1,681 16.0 10.2 4,48 0.32 6 (long 8,145 43,095 27,041 10,987 773 34,950 18,896 2,842 -7,373 5,3 3.3 1.35 0.09 term) 232 14,339 9,410 4,481 70 13,516 8,587 3,656 -754 17,4 11,4 9,7 5.33 0.11 3a 823 12,103 8,229 4,354 119 11,280 7,405 3,531 -704 14,1 9,7 5.33 0.11 3b 927 14,847 9,652 4,457 123	2	823	17,298	12,111	6,924	314	16,475	11,288	6,101	-509	21.0	14.7	8.41	0.38
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3a 25	823	18,114	12,546	0,9//	45/	17,290	11,722	6,154	-366	22.0	15.2	8.47	0.56
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	1 646	30,865	20.060	9 255	475	29,719	18 414	7 609	-1 216	23.0 18.6	12.0	5.62	0.31
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	2,469	39,385	25,229	11.073	789	36.916	22 760	8.604	-1.681	16.0	10.2	4.48	0.20
6 (long term) B,145 43,095 27,041 10,987 773 34,950 18,896 2,842 -7,373 5.3 3.3 1.35 0.09 Lower estimates, no rolling forward 1 823 14,339 9,410 4,481 70 13,516 8,587 3,658 -754 17,4 11,4 5,44 0.08 2 823 12,103 8,229 4,355 92 10,780 7,713 3,551 -754 17,4 11,4 9,7 5,33 0,11 3a 823 12,103 8,229 4,355 119 11,280 7,405 3,551 -754 14,1 9,7 5,33 0,11 3b 927 14,847 9,652 4,457 123 13,920 8,725 3,530 -804 16.0 10.4 4.81 0.13 4 1,646 20,905 13,385 5,688 136 19,259 41,421 14,292 4,441 -2,238 10.8 6.8 2.60 0.99 11,643 7,918 3.6 2.2 0.84 0.09 <td>6</td> <td>2,573</td> <td>43,095</td> <td>27,041</td> <td>10,987</td> <td>773</td> <td>40,522</td> <td>24,468</td> <td>8,414</td> <td>-1,800</td> <td>16.7</td> <td>10.5</td> <td>4.27</td> <td>0.30</td>	6	2,573	43,095	27,041	10,987	773	40,522	24,468	8,414	-1,800	16.7	10.5	4.27	0.30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 (long	8,145	43,095	27,041	10,987	773	34,950	18,896	2.842	-7,373	5.3	3.3	1.35	0.09
Lower estimates, no rolling forward 1 823 14,339 9,410 4,481 70 13,516 8,587 3,658 -754 17,4 11,4 5,44 0,08 2 823 11,503 7,994 4,385 92 10,780 7,171 3,561 -731 14,1 9,7 5,33 0,11 3a 823 12,103 8,229 4,354 119 11,280 7,405 3,531 -704 14,7 10,0 5,29 0,14 3b 927 14,847 9,652 4,457 123 13,920 8,725 3,530 -804 16,0 10,4 4,81 0,13 4 1,646 20,905 13,385 5,868 136 19,259 11,740 4,222 -1,510 12,7 8,1 3,57 0,08 5 2,469 26,611 16,761 6,911 231 24,142 14,292 4,441 -2,238 10,8 6,8 2,80 0,09 6 (long 8,145 29,203 18,032 6,861 227 26,630 15,459 4,288 -2,346 11,3 7.0 2,67 0,09 6 (long 8,145 29,203 18,032 6,861 227 21,058 9,887 -1,284 -7,918 3,8 2.2 0,84 0,03 Lower estimates, with rolling forward 1 823 15,455 10,142 4,830 75 14,632 9,319 4,006 -748 18,8 12,3 5,87 0,09 2 823 12,505 8,616 4,726 99 11,683 7,793 3,903 -724 15,2 10,5 5,74 0,12 3a 823 13,043 8,867 4,691 126 12,220 8,043 3,867 -697 15,8 10,8 5,70 0,15 3b 927 16,000 10,401 4,802 131 15,073 9,474 3,875 -797 17,3 11,2 5,18 0,44 4 1,646 22,532 14,428 6,324 147 20,886 12,782 4,678 -1,499 13,7 8,8 3,84 0,09 5 2,469 28,680 18,063 7,446 247 26,211 15,594 4,977 -2,223 11,6 7,3 3,022 0,10 6 (long 8,145 3),473 19,433 7,393 242 23,328 11,288 -753 -7,903 3,9 2,4 0,91 0,03	term)													
Lower estimates, no rolling forward 1 823 14,339 9,410 4,481 70 13,516 8,587 3,658 -754 17.4 11.4 5,44 0,08 2 823 11,503 7,994 4,385 92 10,780 7,171 3,561 -731 14.1 9,7 5,33 0,11 3a 823 12,103 8,229 4,354 119 11,280 7,405 3,531 -704 14.7 10.0 5,29 0,14 3b 927 14,847 9,652 4,457 123 13,920 8,725 3,530 -804 16.0 10.4 4,81 0,13 4 1,646 20,905 13,385 5,868 136 19,259 11,740 4,222 -1,510 12.7 8,1 3,57 0,08 5 2,469 26,611 16,761 6,911 231 24,142 14,292 4,441 -2,238 10.8 6,8 2,80 0,09 6 (long 8,145 29,203 18,032 6,861 227 26,503 15,459 4,288 -2,346 11.3 7,0 2,67 0,09 6 (long 8,145 29,203 18,032 6,861 227 21,058 9,887 -1,284 -7,918 3,6 2.2 0,84 0,03 1 823 15,455 10,142 4,830 75 14,632 9,319 4,006 -748 18,8 12.3 5,87 0,09 2 823 12,506 8,616 4,726 99 11,683 7,793 3,903 -724 15,2 10,5 5,74 0,12 3a 823 13,043 8,867 4,691 126 12,220 8,043 3,867 697 15,8 10.8 5,70 0,15 3b 927 16,000 10,401 4,802 131 15,073 9,474 3,875 -797 17,3 11,2 5,18 0,14 4 1,646 22,532 14,428 6,324 147 20,88 4,376 -797 17,3 11,2 5,18 0,14 4 1,646 22,532 14,428 6,324 147 20,88 4,278 4,577 -7,77 17,3 11,2 5,18 0,14 4 1,646 22,537 31,473 19,433 7,393 242 28,901 16,860 4,820 -2,331 12,2 7,6 2,87 0,09 6 (long 8,145 31,473 19,433 7,393 242 23,328 11,288 -753 -7,903 3,9 2,4 0,91 0,03														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lower es	timates, n	o rolling fo	orward	1 404	-	13.516	0.505	3.050				_ _	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		823	14,339	9,410	4,481		13,516	8,58/	3,658	-/54	17,4	11.4	5.44	0.08
3b 927 14,847 9,652 4,457 123 13,920 8,725 3,530 -804 16.0 10.0 481 0.13 4 1,646 20,905 13,385 5,858 136 19,259 11,740 4,222 -1,510 12.7 8.1 3,57 0.08 5 2,469 26,611 16,761 6,911 231 24,142 14,292 4,441 -2,238 10.8 6.8 2.80 0.09 6 2,573 29,203 18,032 6,861 227 26,630 15,459 4,288 -2,346 11.3 7.0 2.67 0.09 6 (long 8,145 29,203 18,032 6,861 227 21,058 9,887 -1,284 -7,918 3.6 2.2 0.84 0.03 1 823 15,455 10,142 4,830 75 14,632 9,319 4,006 -748 18.8 12.3 5.87 0.09 2 <tb< td=""><td></td><td>823</td><td>12 103</td><td>8 229</td><td>4,300</td><td>110</td><td>11 280</td><td>7 405</td><td>3,001</td><td>-731</td><td>14.1</td><td>9.7 10 0</td><td>5.33</td><td>0.11</td></tb<>		823	12 103	8 229	4,300	110	11 280	7 405	3,001	-731	14.1	9.7 10 0	5.33	0.11
4 1.646 20,905 13,386 5.868 136 19,259 11,740 4,222 -1,510 12.7 8.1 3.57 0.08 5 2,469 26,611 16,761 6,911 231 24,142 14,292 4,441 -2,238 10.8 6.8 2.80 0.09 6 2,573 29,203 18,032 6,861 227 26,630 15,459 4,288 -2,346 11.3 7.0 2.67 0.09 6 (long 8,145 29,203 18,032 6,861 227 21,058 9,887 -1,284 -7,918 3.6 2.2 0.84 0.03 1 823 15,455 10,142 4,830 75 14,632 9,319 4,006 -748 18.8 12.3 5.87 0.09 2 823 13,043 8,867 4,691 126 12,220 8,043 3,867 -697 15.8 10.8 5.70 0.15 3b 927 16,000 10,401 4,802 131 15,073 9,474 3,875	36	927	14.847	9.652	4.457	123	13.920	8.725	3.530	-804	16.0	10.4	4.81	0.13
5 2,469 26,611 16,761 6,911 231 24,142 14,292 4,441 -2,238 10.8 6.8 2.80 0.09 6 2,573 29,203 18,032 6,861 227 26,630 15,459 4,288 -2,346 11.3 7.0 2.67 0.09 6 (long 8,145 29,203 18,032 6,861 227 21,058 9,867 -1,284 -7,918 3.6 2.2 0.84 0.03 1 823 15,455 10,142 4,830 75 14,632 9,319 4,006 -748 18.8 12.3 5.87 0.09 2 823 12,506 8,616 4,726 99 11,683 7,793 3,903 -724 15.2 10.5 5.74 0.12 3a 823 13,043 8,867 4,691 126 12,220 8,043 3,867 -697 15.8 10.8 5.70 0.15 3b 927 16,000 10,401 4,802 131 15,073 9,474 3,875 <t< td=""><td>4</td><td>1,646</td><td>20,905</td><td>13,386</td><td>5,868</td><td>136</td><td>19,259</td><td>11,740</td><td>4,222</td><td>-1,510</td><td>12.7</td><td>8.1</td><td>3.57</td><td>0.08</td></t<>	4	1,646	20,905	13,386	5,868	136	19,259	11,740	4,222	-1,510	12.7	8.1	3.57	0.08
6 2,573 29,203 18,032 6,861 227 26,630 15,459 4,288 -2,346 11.3 7.0 2.67 0.09 6 (long term) 8,145 29,203 18,032 6,861 227 21,058 9,887 -1,284 -7,918 3.6 2.2 0.84 0.03 Lower estimates, with rolling forward 7 14,632 9,319 4,006 -7,48 18.8 12.3 5.87 0.09 2 823 15,455 10,142 4,830 75 14,632 9,319 4,006 -748 18.8 12.3 5.87 0.09 2 823 12,506 8,616 4,726 99 11,683 7,793 3,903 -724 15.2 10.5 5.74 0.12 3a 823 13,043 8,867 4,691 126 12,220 8,043 3,867 -697 15.8 10.8 5.70 0.15 3b 927 16,000 10,401 4,802 131 15,073 9,474 3,875 -797 17.3 11.2<	5	2,469	26,611	16,761	6,911	231	24,142	14,292	4,441	-2,238	10.8	6.8	2.80	0.09
6 (long term) 8,145 29,203 18,032 6,861 227 21,058 9,887 -1,284 -7,918 3.6 2.2 0.84 0.03 Lower estimates, with rolling forward 1 823 15,455 10,142 4,830 75 14,632 9,319 4,006 -7,48 18.8 12.3 5.87 0.09 2 823 12,506 8,616 4,726 99 11,683 7,793 3,903 -724 15.2 10.5 5.74 0.12 3a 823 13,043 8,867 4,691 126 12,220 8,043 3,867 -697 15.8 10.8 5.70 0.15 3b 927 16,000 10,401 4,802 131 15,073 9,474 3,875 -797 17.3 11.2 5.18 0.14 4 1,646 22,532 14,428 6,324 147 20,886 12,782 4,678 -1,499 13.7 8.8 3.84 0.09 0.14 5 2,469 28,680 18,063 7,446 247	6	2,573	29,203	18,032	6,861	227	26,630	15,459	4,288	-2,346	11.3	7.0	2.67	0.09
term) Lower estimates, with rolling forward number of the state o	6 (long	8,145	29,203	18,032	6,861	227	21,058	9,887	-1,284	-7,918	3.6	2.2	0.84	0.03
Lower estimates, with rolling forward rolling forward <throling forward<="" th=""> <throlling forward<="" th=""></throlling></throling>	term)	<u> </u>		L	<u> </u>				ļ	ļ			_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L OWAT AT	timatee w	ith folling	forward	1				1	1				i i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	823	15 455	10.142	4.830	75	14 632	9.319	4 006	-74A	18 A	12.3	5.87	0.09
3a 823 13,043 8,867 4,691 126 12,220 8,043 3,867 -697 15.8 10.8 5.70 0.15 3b 927 16,000 10,401 4,802 131 15,073 9,474 3,875 -797 17.3 11.2 5.18 0.14 4 1,646 22,532 14,428 6,324 147 20,886 12,782 4,678 -1,499 13.7 8.8 3.84 0.09 5 2,469 28,680 18,063 7,446 247 26,211 15,594 4,977 -2,223 11.6 7.3 3.02 0.10 6 2,573 31,473 19,433 7,393 242 28,901 16,860 4,820 -2,331 12.2 7,6 2.87 0.09 6 0.91 0.03 6.44 0.91 0.03 0.91 0.03	2	823	12,506	8,616	4,726	99	11,683	7,793	3,903	-724	15.2	10.5	5,74	0,12
3b 927 16,000 10,401 4,802 131 15,073 9,474 3,875 -797 17.3 11.2 5,18 0.14 4 1,646 22,532 14,428 6,324 147 20,886 12,782 4,678 -1,499 13.7 8.8 3.84 0.09 5 2,469 28,680 18,063 7,446 247 26,211 15,594 4,977 -2,223 11.6 7.3 3.02 0.10 6 2,573 31,473 19,433 7,393 242 28,901 16,860 4,820 -2,331 12.2 7.6 2.87 0.09 6 (long 8,145 31,473 19,433 7,393 242 23,328 11,288 -753 -7,903 3.9 2.4 0.91 0.03	3a	823	13,043	8,867	4,691	126	12,220	8,043	3,867	-697	15.8	10.8	5.70	0.15
4 1,646 22,532 14,428 6,324 147 20,886 12,782 4,678 -1,499 13.7 8.8 3.84 0.09 5 2,469 28,680 18,063 7,446 247 26,211 15,594 4,977 -2,223 11.6 7.3 3.02 0.10 6 2,573 31,473 19,433 7,393 242 28,901 16,860 4,820 -2,331 12.2 7.6 2.87 0.09 6 (long 8,145 31,473 19,433 7,393 242 23,328 11,288 -753 -7,903 3.9 2.4 0.91 0.03 ierm)	ЗЬ	927	16,000	10,401	4,802	131	15,073	9,474	3,875	-797	17.3	11.2	5,18	0.14
5 2,469 28,680 18,063 7,446 247 26,211 15,594 4,977 -2,223 11.6 7.3 3.02 0.10 6 2,573 31,473 19,433 7,393 242 28,901 16,860 4,820 -2,331 12.2 7.6 2.87 0.09 6 (long 8,145 31,473 19,433 7,393 242 23,328 11,288 -753 -7,903 3.9 2.4 0.91 0.03 term)	4	1,646	22,532	14,428	6,324	147	20,886	12,782	4,678	-1,499	13.7	8.8	3,84	0.09
b 2,5/3 31,4/3 19,433 /,393 242 28,901 16,860 4,820 -2,331 12.2 7.6 2.87 0.09 6 (long 8,145 31,473 19,433 7,393 242 23,328 11,288 -753 -7,903 3.9 2.4 0.91 0.03 term)	5	2,469	28,680	18,063	7,446	247	26,211	15,594	4,977	-2,223	11.6	7.3	3.02	0.10
e (iony 6, 145 3), 473 19,433 7, 393 242 23,326 11,266 -753 -7,903 3,9 2,4 0.91 0.03	6	2,573	31,4/3	19,433	7,393	242	28,901	10,860	4,820	-2,331	12.2	7.5	2.87	0.09
	term)	6,143	31,473	19,433	1,393	292	23,328	11,200	-133	-1,903	3.9	2.4	0.91	0.03

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios generally in the range 3 to over 30 when the full non-use benefits are included. If only the local non-use benefits are included, the benefit cost ratio reduces to the range 1 to 9 with the central estimates. If non-use benefits are not included at all, the NPV becomes negative in most cases considered, the exceptions being some of the options with the upper bound estimates.

A summary of the assessment of tangibles (i.e. the quantifiable costs and benefits) for all the options is presented in Table 11.10. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

Option Agency Wa Costs (Water Co. Costs	Economic Benefit	Net Present Value	Benefit Cost Ratio
6% discount rate,	50 year time p	eriod			
Do Nothing	0	0	0	0	0
Option 1	0	823	13,077	12,253	15.9
Option 2	0	823	11,236	10,413	13.6
Option 3a	0	823	11,651	10,827	14.1
Option 3b	172	755	13,568	12,641	14.6
Option 4	0	1,646	18,611	16,966	11.3
Option 5	0	2,469	23,418	20,949	9.5
Option 6	172	2,400	25,099	22,526	9.8
Option 6 (long	187	7,959	25,099	<u>_</u> 16,954	3.1
term)					
7% discount rate,	30 year time p	eriod			
Do Nothing	0	0	0	0	0
Option 1	0	780	10,126	9,345	13.0
Option 2	0	780	8,701	7,920	11.1
Option 3a	0	780	9,055	8,275	11.6
Option 3b	158	725	10,540	9,657	11.9
Option 4	0	1,560	14,411	12,851	9.2
Option 5	0	2,340	18,167	15,827	7.8
Option 6	158	2,285	19,469	17,026	8.0
Option 6 (long	172	7,353	19,469	11,944	2.6
term)			·		

Table 11.10Assessment of Tangibles (£000 Q4 1997)

A breakdown of the total present value of the benefits for Option 6 (long term) by use category (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate, with no rolling forward, is shown on Figure 11.2, together with a breakdown of the present value of the costs.

11.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 11.11. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

11.7 Risk Assessment

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 11.12). The risks considered to be relevant in the appraisal are:

Risk 1	Operational failure of flow alleviation
Risk 2	Failure to provide anticipated benefits

Risk 3 Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Note: The area of the circles is proportional to the present value of the benefits or costs at 6% discount rate River Sherbourne Option 6 (long term) Present Value of Benefits and Costs Figure 11.2

Table 11.11Assessment of Intangible Benefits

Intangible Benefit	Weighting Factor	Opt 1 Mi/d from A	ion 1 release Meriden	. Opt 1 Mi/d from Bro	ion 2 release wrishill Gn	Opti 1 MVd from p	on 3a release pipetine	Opti 1 MVd from nev	on 3b release v borehole	Opti 2 MVd Option	i on 4 releas e is 1 + 2	Opt 3 MVd Options	ion 5 release 1 + 2 + 3a	Opt 3 MVd Options	ion 6 release 1 + 2 + 36	Opt (long Options 1 additio	ion 6 (term) + 2 + 3b + nal costs	Comment
		points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	
1	3	2	6	2	6	1	3	2	6	2,5	7.5	3	9	4	12	5	15	Option 3a releases chlorinated water
2	3	2	6	2	6	1	3	2	6	2.5	7.5	2.5	7.5	3.5	10.5	5	15	
3	3	1	3	1	3	1	3	1	3	1	3	1	3	1	3	5	15	Limited recovery of groundwater levels, except for Option 6 (long term)
Total weighte	ed score		15		15		9		15		18		19.5		25.5		45	

Intangible Benefit 1:

Facilitation of Agency meeting objectives

Intangible Benefit 2: Improved public relations and maintenance of credibility of Agency

Intangible Benefit 3: Longer term benefits not quantified in economic analysis

Table 11.12 Risk Register

Identified Risk	Opti 1 MVd from N	ion 1 release Aeriden	Opti 1 Mi/d from Brow	ion 2 release wnshill Gn	Optie 1 MI/d from p	o n 3a release ripeline	Option 1 MVd from new	on 3b release v borehole	Opt 2 MVd Option	ion 4 release ns 1 + 2	Opt 3 MI/d Options	ion 5 release 1 + 2 + 3a	Opti 3 MI/d Options	ion 6 refease 1 + 2 + 3b	Opt (Iong Options 1 addition	ion 6 term) + 2 + 35 + nal costs	Comment
	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Like li - hood	Effect) · · · · · · · · · · · · · · · · · · ·
Operational failure of flow alleviation	L	L	L	ι	L	L	L	L	L	L	L	Ļ	L	L	Ľ	L	
Failure to provide anticipated benefits	м	м	м	м	м	м	м	м	м	м	м	м	м	м	L	L	Recovery of groundwater levels will be achieved sooner with Option 6 (long term)
Failure to supply a sustainable solution	м	м	м	м	м	м	м	м	м	м	м	м	м	м	L	L	

Relative risks: H high M medium L

low

11.8 Selection of Preferred Option

From the assessment of tangibles presented in Table 11.10 it can be seen that each of the individual options is justifiable in its own right, with Option 3b being preferable to 3a. Therefore the combination of the three options (1, 2 and 3b), designated as Option 6, represents the most cost effective solution in terms of maximum net present value (NPV). This conclusion is supported by the assessment of intangibles, particularly confirming that Option 3b is preferable to 3a, with a greater length of watercourse being impacted and avoiding the need for chlorinated water to be used for compensation releases.

However, without further allowance for the longer term reduction in groundwater abstractions, Options 1, 2 and 3b may not be sustainable or compatible with the long term objective of a recovery of groundwater levels. This is reflected in the assessment of intangibles and the risk register in Tables 11.11 and 11.12. Only Option 6 (long term) is shown as having a low risk of failing to provide the anticipated benefits and a low risk of not supplying a sustainable solution. As indicated in Section 11.1, the Agency has proposed cutbacks in Water Company groundwater licences in the Coventry/Meriden groundwater units to reduce deployable output by a total of 10.8 MI/d. This information has been presented to the Water Company and the proposed reduction has been included in the Company's draft water resources plan.

It is therefore concluded that Option 6 (long term), incorporating Options 1, 2 and 3b with a total compensation release from groundwater sources of 3 MI/d and including a total reduction in PWS groundwater abstractions of over 10 MI/d, should be selected as the preferred option.

The interim remedial measures will re-water 12 km of the main stream and its tributaries as well as significantly increasing the flow over a further 8 km.

In the longer term, with reduced groundwater abstractions, rising groundwater levels should restore baseflows to the river and its tributaries, with a subsequent reduction in the requirements for compensation releases.

The restoration of flow should improve the continuity of the river's linear wildlife habitat, which at present is incomplete due to the extremely low flows periodically experienced.

The higher flows in the River Sherbourne would provide a greater discharge to the Avon and the Severn which could be available for abstraction to the public water supply downstream.

The assessed economic benefit takes account of the ecological improvements and the greater water availability, in addition to the increase in the amenity and recreational value of the area surrounding the watercourses.

11.9 Tasks and Dependencies

Investigations:	Agency Midlands Region	Upper Severn Area Regional Office
Design and implementation:	Severn Trent Water Ltd Agency Midlands Region	Upper Severn Area Regional Office

Programme for implementation of the preferred option:

1998	Submission of Business Plar
1999	Investigation and Design Planning and Consents
2000	Construction Part 1
2001	Construction Part 2

11.10 Cost of Preferred Option

The estimated capital and operating costs of the preferred option are given in Table 11.13. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Table 11.13 E	Estimated Costs	of the Preferr	ed Option ((000 £
---------------	------------------------	----------------	-------------	--------

Year	Water	r Company	Agency		
ending 31/03	Capex	Opex	Capex	Opex	
1999	0	0	4 ¹	0	
2000	- 0	0	16²	0	
2001	1,562	19	135⁴	44	
2002	819	32	0	44	
2003	5,998 ³	160 ³	0	54	

¹ Comprises submission of business plan, the cost of which has not been included in the assessment of tangibles

² Comprises the installation of monitoring equipment

³ Long term replacement water costs could be deferred subject to supply/demand balance

⁴ Agency costs for new borehole to be recharged to STW Ltd under AMP3

12 RIVER WORFE

12.1 Scheme Objectives

Historically, within the upper reaches of the River Worfe, which lie to the north west of Wolverhampton, there were springs, pools and water mills throughout the Ruckley, Neachley, Albrighton and Wesley Brooks. The area is illustrated on Figure 12.1. There are known to have been at least forty watermills working at one time within the catchment in the early part of the 19th century. Following groundwater development of the upper catchment (the Cosford Groundwater Unit) there have been reports of wells and pools drying up. Since the commissioning of boreholes at Neachley (1968) and Lizard Mill (1977), abstractions in the Cosford Groundwater Unit have exceeded the long term average recharge rate which has resulted in a further depletion of flows.

In 1990 the River Worfe was included as one of the original top 20 low flow alleviation sites listed before AMP2. Following the provision of an alternative water supply to one user for spray irrigation, the section between the confluences with the Albrighton and Wesley Brooks has been reclassified from intermittent to low flow.

The current proposals target the Ruckley and Cramp Pool Brooks for the further alleviation of low flows in the River Worfe as summarised in Table 12.1. All options involve a reduction in the abstraction for public water supply at the existing public water supply boreholes and augmentation of the river system from groundwater. In the longer term it is intended to reduce the total groundwater abstractions to a sustainable level which should result in rising groundwater levels re-watering the river and its tributaries, with a subsequent reduction in the requirements for compensation releases.

Table 12.1 L	ow Flow A	Illeviation Options
--------------	-----------	---------------------

Option	Description	Improvements
1	Pipeline from Sheriffhales Borehole to the Ruckley Brook. Compensation release of 5 Ml/day.	Rewater 11 km, significantly increased flows for 21 km.
2	Output from Lizard Mill Borehole to the Ruckley Brook. Compensation release of 2 MI/day.	Rewater 8 km, significantly increased flows for 21 km.
3	Output from Hell Bank Borehole to the Neachley Brook. Compensation release of 1 MI/day.	Rewater 1.5 km of tributary and 0.5 km of main stream, with some increase in flows downstream.
4	Output from Cramp Pool Borehole to the Cramp Pool Brook. Compensation release of 1 MI/day.	Rewater 2 km of tributary and 2 km of main stream, with some increase in flows downstream.
5	Options 1, 2 and 3 combined. Total compensation release of 8 MI/day.	Rewater 11 km of main stream and 1.5 km of tributary, with greater increase in flows for 21 km.
6	Options 1, 2 and 4 combined. Total compensation release of 8 MI/day.	Rewater 11 km of main stream and 2 km of tributary, with greater increase in flows for 21 km

In all cases the compensation flow would be triggered when the Agency gauging station at Cosford is at Q20% (21.6MI/d) or below.

Flow duration/frequency curves were provided by the Agency to define the impact of the alleviation options and these are included in Appendix 12. The data relate to the gauging stations at Cosford, just upstream of the confluence of the Albrighton Brook, and at Burcote, towards the lower end of the catchment, some 3 km upstream of the confluence with the Severn, just north of Bridgnorth.

The available information has been used to derive appropriate factors for the economic benefits of each option for those uses which are frequency and duration dependent. In addition to the tributary reaches which are rewatered, the River Worfe has been divided into three reaches for this purpose:

Reach 1	Above Albrighton Brook (length varies with each option)
Reach 2	Albrighton Brook to Wesley Brook (3.9 km)
Reach 3	Wesley Brook to the confluence with the Severn (21.2 km)

It has been noted that low flow conditions are less severe below the Wesley Brook as this tributary currently receives discharges from the Shifnal STW (dry weather flow 3 Ml/d) and releases by Wrekin District Council from Priorslee Pools (approximately 1 Ml/d).

Target flows for each reach have been assessed to determine the extent to which the low flow alleviation schemes will improve the situation. Flow improvement factors have been derived from a consideration of both the **proportional flow** improvement from the existing situation at the Q95% level, and the **proportional time** improvement that the target flow is achieved. Corresponding return periods for very low flows (i.e. about 50% of the target flows) have also been assessed for the before and after situations. The figures which have been derived are summarised in Table 12.2. For the tributaries which are re-watered with some of the options, the flow improvement factor is taken as 100%.

Table 12.2 Summary of Hydrological Assessment for River Worfe

	1. Ann (1941)	Reach 1	Reach 2	Reach 3
Target Flow (MI/d)		5	9	20
% of Ti	me above Target			
Before		25%	55%	65%
After	Option 1 Option 2 Option 3 Option 4 Option 5 (1 + 2 + 3) Option 6 (1 + 2 + 4)	100% 85% 60% 100% 100%	80% 70% 60% 60% 100% 100%	75% 70% 67% 80% 80%
Flow Ir	nprovement Factor			
	Option 1 Option 2 Option 3 Option 4 Option 5 $(1 + 2 + 3)$ Option 6 $(1 + 2 + 4)$	100% 60% 35% 35% 100% 100%	45% 20% 5% 5% 65% 65%	20% 10% 5% 5% 35% 35%
Return before	Period (years) → after Option 1 Option 2	$1 \rightarrow 10$	$2 \rightarrow 5$	5 → 7
	Option 2 Option 3 Option 4 Option 5 $(1 + 2 + 3)$ Option 6 $(1 + 2 + 4)$	$1 \rightarrow 2$ $1 \rightarrow 2$ $1 \rightarrow 2$ $1 \rightarrow > 10$ $1 \rightarrow > 10$	$2 \rightarrow 3$ $2 \rightarrow 3$ $2 \rightarrow 7$ $2 \rightarrow 7$	$5 \rightarrow 5$ $5 \rightarrow 5$ $5 \rightarrow 8$ $5 \rightarrow 8$ $5 \rightarrow 8$

Severn Trent Water Limited have included proposals in their draft water resources plan, which was recently submitted to the Agency, for a reduction of 17 MI/d in deployable output from groundwater sources located in the Cosford unit over the AMP3 period.

12.2 Scope of Study

/Aesthetics

Conservation

(Non-Use or Passive Use)

Other

Table 12.3 has been used as a checklist to focus on those impacts which are likely to be significant and need to be included in the economic appraisal.

Late and the Comments Impact Category ... Stall - Star 1 1.1 m . . Drinking Water Supply Increased flow available for PWS abstraction downstream. Industrial Abstraction Not applicable Agriculture Livestock Not applicable Irrigation Yes In-stream Boating Not applicable Recreation Bathing Not applicable Angling Yes Yes, a network of footpaths with some direct access to Informal Walking, the river. recreation picnicking. photography Amenity Property A number of properties overlooking the river.

Yes

None

Table 12.3Summary of Impacts

There are 23 surface water abstraction licences granted on the River Worfe, of which only six are situated above the Wesley Brook. It is these six which were considered most likely to provide benefits, although abstractors downstream with restricted licences may also benefit from the fact that there will be a increase in the number of days when flow at Burcote gauging station exceeds the prescribed flow.

Not applicable

Restoration of the flow will improve the continuity of the river's linear wildlife habitat, which at present is not complete due to the river periodically suffering extremely low flows.

The categories that have been included in the benefit assessment are:

informal recreation;

prices

Ecology

Heritage

- angling
- agriculture
- property;
- · drinking water supply resource cost savings; and
- non-use.

12.3 Capital and Operating Costs

Severn Trent Water Ltd has provided the Agency with estimates of the capital expenditure (capex) and operating expenditure (opex) necessary to provide for the replacement of the water currently abstracted at the various boreholes which could be diverted to alleviate low flows in the River Worfe. In addition to the costs of providing replacement water, some minor works will be required in the vicinity of the boreholes to effect the flow augmentation. For Option 1 a pipeline some 2 km in length will be required from the Sheriffhales Borehole. Details of the costs are summarised in Table 12.4.

	Option 1	Option 2	Option 3	Option 4
Capital expenditure				
Replacement water	3448	1379	690	690
PWS option	300	10	10	10
Total	3,748	1,389	700	700
Operating expenditure	(per annum)			
Replacement water	54	22	11	11
PWS Option	32	13	7	7
Total	86	35	18	18

Table 12.4 Summary of Cost Estimates (£ 000 Q4 1997)

12.4 Estimation of Benefits

12.4.1 Informal Recreation

Attempts were made to ascertain primary data on visitor numbers to this area by contacting the local Ramblers Association representative and other sources. Unfortunately no numbers were available, other than an estimate of about 5000 per annum to the Woodland Walk at Cosford, which actually lies on the Albrighton Brook rather than the river reaches affected by the proposed alleviation schemes. In the absence of reliable primary sources the estimation of visitor numbers to the sites has been based on the indirect approach outlined in the Agency's GIS system. However, in the absence of any facilities to qualify as a 'honeypot' site and with no local parks in the vicinity of the river, realistic estimates of the likely number of visits have been the river from previous experience, utilising the GIS data to distribute the numbers between the river reaches.

As the informal recreational activities are unpriced there is no economic rent or profit earned by the activity. The total value of the recreational activity is measured in consumer surplus or the difference between what the consumer pays for the activity (zero) and what they would be willing to pay. The Guidelines recommend the following per visit estimates of the consumer surplus, assuming 40% of the willingness-to-pay is attributable to the presence of water:
- Upper bound estimate:
- £1.48 per visitor day;
- Central estimate:
- £0.60 per visitor day; and
- Lower bound estimate: £0.2

£0.20 per visitor day.

Combining participation rates and willingness-to-pay with the flow improvement factors from Table 12.2 produces the annual incremental benefits which are presented in Table 12.5.

Table 12.5	Annual Inf	ormal Recreation	Benefits

	Option	Visito	r Numt Reach	pers by (000)	River	Fact	ored Be (£0	nefit b 00 Q4	y River 1997)	Reach
		Tribu -tary	(\$ 155) #2(35)	2	3	Tribu -tary	ি 1 জিলা	2	3	Total
Upper Bound	1 2 3 4	- 0.5	8.5 5.4 0.8 2.2	1.8 1.8 1.8 1.8	15 15 15 15	- 0.8 0.4	12.6 4.8 0.4 1 1	1.2 0.5 0.1 0 1	4.4 2.2 1.1 1 1	18.3 7.6 2.5 2.8
Control	56	0.5 0.3	8.5 8.5	1.8 1.8	15 15 11 c	0.8 0.8	12.7 12.7	1.8 1.8	7.8	23.0 22.6
Estimate	1 2 3 4 5	- 0.4 0.2 0.4	6.6 4.2 0.6 1.7 6.6	1.4 1.4 1.4 1.4 1.4 1.4	11.6 11.6 11.6 11.6 11.6 11.6	- 0.3 0.1 0.3 0.1	4.0 1.5 0.1 0.4 4.0	0.4 0,2 0.1 0.1 0.5	1.4 0.7 0.3 2.4 2.4	5.7 2.4 0.8 0.9 7.2 7.0
Lower Bound	1 2 3 4 5 6	0.2 - - 0.3 0.2 0.3 0.2	5.3 3.4 0.5 1.4 5.3 5.3	1.4 1.1 1.1 1.1 1.1 1.1 1.1	9.3 9.3 9.3 9.3 9.3 9.3 9.3	- - 0.1 0.1 0.1 0	1.1 0.4 0 0.1 1.1 1.1	0.1 0.1 0 0 0.1 0.1	0.4 0.2 0.1 0.1 0.7 0.7	1.5 0.6 0.2 0.2 1.9 1.9

12.4.2 Angling

Discussions with Agency staff revealed that there are few angling interests on the River Worfe, although there are brown trout in the river. The only significant angling club with waters on the Worfe is the Salopian Flyfishers Ltd, who fish waters in the Worfield area, at the lower end of the catchment, which are considered to be very good quality fishing, due at least in part to the annual stocking during the months of April, May and June with a total of some 1000 fish. Although they have suffered from low flows during the summer months, on one occasion leaving the river as a string of pools until it rained again, it has not in their opinion affected the fishing or led to any fish mortalities. Regardless of the level of flow in the river they would not be looking to increase their membership beyond its current levels. Any other fishing on the lower reaches of the river is on an informal basis and could not be quantified.

There is no organised angling on the upper reaches of the Worfe or its tributaries, although there used to be a fishery in Burlington Pool, just downstream of the proposed augmentation point with Option 1. This pool was fished by the Weston Under Lizard Angling Club, but was given up when the low flows eventually led to the drying up of the pool. Re-watering would have the potential to open it up as a coarse fishery. However discussions with the Fisheries department at the Agency suggest that so much siltation has occurred that for it to achieve the

12-6

status of even a moderate fishery extensive dredging would be required. Therefore there are unlikely to be any significant net benefits to be gained.

Agency staff stated that the Upper Worfe between Cosford and the confluence with the River Severn, 12.5 km, is a designated brown trout fishery. A report on the application of the Instream Flow Incremental Methodology / Physical Habitat Simulation (IFIM/PHABSIM) concludes that both spawning and juvenile brown trout would benefit from an increase in flows. This benefit would be significant for the juvenile fish between the key period of April to September (Application of IFIM/PHABSIM for the Upper Worfe, WS Atkins, 1996).

The report goes on to say that there is possibly no self-supporting brown trout population in the Worfe and that increased flows could lead to better survival rates in the brown trout population, both wild and introduced stocks.

The effect of this on angling is difficult to ascertain. Juvenile brown trout do not reach maturity for 2 to 3 years so there will be a period of time between the improvement of flows and the time when the wild brown trout stocks become self-sufficient and therefore a viable fishery. However it seems clear that there will be some improvement in the angling potential of the river over time, at least downstream of Cosford. This, combined with the increased survival rate amongst the artificial stocks, will mean that benefits will accrue to angling.

Agency staff have suggested a figure of 4 anglers per mile as a realistic estimate of the number of trout fishermen likely to be attracted to such a fishery (Further hydrological investigations following the IFIM/PHABSIM application to the River Worfe, P.A.Johnston, 1997). The Low Flow Benefit Assessment Guidelines suggest anglers' willingness-to-pay values and participation rates for the introduction of a new trout fishery as follows:

٠	poor	£8.92 per person per trip	3.02 trips per angler per annum
•	moderate	£10.39 per person per trip	13.02 trips per angler per annum

good £16.28 per person per trip 10.98 trips per angler per annum

Combining these values with the total number of anglers allows the incremental benefits of a change in the quality of fishery to be calculated. The quality achieved by the various options has been related to the degree of flow improvement in river reaches 2 and 3, giving the annual values summarised in Table 12.6.

Table 12.6 Annual Angling Benefits for Improving Flows to the River Worte (EU	lenefits for Improving Flows to the River Worfe (£000)
---	--

Option	Upper Bound	Central Estimate	Lower Bound
1	6	1	0
2	1 1	0	0
3 and 4	0	0	0
5 and 6	8	6	1

12.4.3 Agriculture

Of the 23 surface water abstraction licences granted on the River Worfe, it is primarily the six located above the Wesley Brook confluence which may accrue agricultural benefits. Of these six it was possible to contact the holders of four of the licences.

Hatton Grange Farm holds licence numbers 18/54/5/82 and 18/54/5/137. The former is a licence of right and therefore less affected by low flows. They have lost very few days of irrigation in recent years and simply would not irrigate on the odd day lost. The second is a winter abstraction licence which has been unaffected by low flows. There is therefore no benefit to be gained on these licences.

18/54/5/104 is held by Atchley Manor and is a licence of right. In order to ease the water requirements made on the River Worfe during periods of low flows, Atchley Manor now has a borehole, the licence for which prohibits pumping from the surface water during low flows (i.e. when the flow at Burcote gauging station is below the prescribed flow of 54.6 Ml/d). From discussions with the electricity supplier, the licence holder apparently was led to believe that it would be cheaper to use the borehole rather than pump surface water. Hence during 1997, the first year that the borehole was in operation, he exclusively used the borehole regardless of the state of flow in the river. The licencee did not know on how many days he would have had to turn to the borehole rather than use the river in the last year. It is therefore not possible to ascertain the level of any benefits which may accrue in terms of savings made by pumping constantly from the river rather than incurring the costs of pumping from the borehole, which in reality are likely to be higher.

Licence number 18/54/5/67 is held by Rookery Farm and is a licence of right, there are therefore few benefits to be gained as the licencee can normally pump from the river regardless of the level of flow. The only time he loses irrigation time is when he does not restart the pump after it has sucked air in as the flows drop. As soon as he restarts the pumps irrigation begins again.

Other licence holders further downstream could benefit, particularly from the reduction in time when Burcote gauging station is below the prescribed flow. The holder of licence numbers 18/54/5/64 and 18/54/5/92 was also contacted but again it was considered that little benefit was to be gained as they are also licences of right and therefore very few days of irrigation are lost.

The timescale for completion of the report did not permit further enquiries. However, an earlier analysis by Agency staff identified a total annual benefit of \pounds 41,130 for a flow augmentation of 10 Ml/d. With the findings described above this may be considered to be an upper bound and for the purposes of this report the central estimate has been based on 50% of this figure, adjusted for the compensation flow achieved by the various options.

12.4.4 Property

Bridgnorth District Council was contacted to provide Council Tax Bands for the properties identified as adjacent to the watercourses. These are summarised in Table 12.7.

Band	1997 Midpoint		Economic Value				
	(£ 000)	Reach 1	Reach 2	Reach 3	Total	(£ 000 Q4 1997)	
A	40						
В	46						
С	61			2	2	121	
D	79	3			3	236	
Е	105	7	1	4	12	1,260	
F	141	4	1	6	11	1,555	
G	242	2		4	6	1,454	
н	323	2		1	3	969	
Total	·	18	2	17	37	5,596	

 Table 12.7
 Properties Adjacent to River Worfe by Council Tax Band

Source: Bridgnorth District Council

By applying the formulae given in the Benefit Assessment Guidelines, using the assumed changes in return periods for the low flows indicated in Table 12.2, the benefit to property owners has been estimated in terms of once-off changes in stock.

Option	Total Incremental Benefits							
	Upper Bound	Central Estimate	Lower Bound					
1	473	316	63					
2	226	151	30					
3	14	9	2					
4	39	26	5					
5	502	335	67					
6	508	339	68					

Table 12.8 Amenity and Aesthetic Stock Benefits (£000 Q4 1997)

12.4.5 Resource Cost Savings

With a significant quantity of water being added to the River Worfe there will be a higher discharge to the Severn which could be available for abstraction for public water supply downstream in preference to pumping from the Shropshire Groundwater Scheme. An earlier assessment by the Agency indicated that this benefit might pertain on average for some 75 days per year, allowing for preferential abstractions for spray irrigation upstream when the flow at Burcote gauging station is above the prescribed flow, at an estimated value of £19 per MI. This gives the following annual benefits in terms of resource cost savings:

Option 1	5 MI/d	£ 7125
Option 2	2 Ml/d	£ 2850
Options 3 and 4	1 Ml/d	£ 1425
Options 5 and 6	8 MI/d	£11400

12.4.6 Non-Use

Non-use (conservation) benefit estimates for the River Worfe have been derived for:

- local residents within 3 km;
- river users among the general public who do not visit this particular river and its tributaries but do hold non-use values towards the alleviation of low flows in rivers;
- the wider general public who are not river users.

The non-use benefits have been derived using the procedures given in Section 9 of the Benefit Assessment Guidelines.

Local resident non-use valuation

It has been assumed that there are some 8,000 households within 3 km of the River Worfe, distributed between the three river reaches as indicated below, based on population data obtained from the Agency GIS model and assuming 2.7 people/household:

Reach I	3,021 (1,834 options)	for	Option	2,	with	minor	adjustments	for	other
Reach 2	816								
Reach 3	3,993								

In accordance with the Guidelines, the following values per household per annum are applied where full low flow alleviation is achieved:

Upper Bound	£12.00
Central Estimate	£10.00
Lower Bound	£ 7.00

General public non-use valuation

It is assumed that there are 3.15 million households within Severn Trent Water's area and that 45% of the population are general river users, from which the actual number of local households already included are subtracted. The remaining 55% of the population in the service area are taken as non-users for whom a lower scale of benefits applies. The central estimates are based on the figures of £0.05 and £0.03 per household per km of river per annum for full low flow alleviation in accordance with the Guidelines, with +/- 25% for upper and lower bounds.

The annual non-use (conservation) benefit of each option, applying the flow improvement factors from Table 12.2 for each river reach, are summarised in Table 12.9 in terms of the local resident non-use benefits and the full (local resident plus general public non-use) benefits.

Option	Extent	Upper	Central	Lower
1	Local	50	42	29
	Full	2,499	2,001	1,498
2	Նօշ a ì	20	17	12
	Full	1,043	835	625
3	Local	12	10	7
	Full	461	369	276
4	Local	12	10	7
	Full	617	494	370
5	Local	60	50	35
	Full	3,344	2,677	2,006
6	Local	61	51	36
	Full	3,422	2,739	2,052

Table 12.9 Annual Non-Use Benefits (£000 Q4 1997)

12.5 Assessment of Tangibles (Cost Benefit Analysis)

The costs and the annual benefit streams have been aggregated in terms of present values in accordance with the procedures given in the Benefit Assessment Guidelines. The indicators in terms of net present values (NPV) and benefit cost ratios for the various options are presented in Table 12.10. The results are shown for a variety of combinations of the economic factors:

- both including and excluding non-use, together with two intermediate figures: one including only 50% of the general public (i.e. non-local) non-use and the other including only local non-use;
- for the central estimates, with upper and lower bounds;
- using the different discount rates and time horizons; and
- with and without rolling forward the benefits.

In addition, a variant on Option 6 is also shown which has the same benefits as Option 6, but allows for phasing of the capital costs over the implementation period and includes the additional costs of the replacement water which is expected to be required in order to provide a long term sustainable solution to the problem of over-abstraction. This variant also includes additional Agency costs for the installation of monitoring equipment. The costs for a total of 16.9 Ml/d of replacement water have been allowed for with Option 6 (long term).

All the individual options (1, 2, 3 and 4) show a positive net present value when any proportion of the non-local non-use benefits are included. For each combination of economic factors, the benefit cost ratios of the four options are similar. This indicates that each option is justifiable in its own right. When any proportion of the non-local non-use benefits is included, Option 4 is consistently seen as preferable to Option 3, with the higher benefits due to the greater length of watercourse being impacted. It therefore follows that the combination of the three options (1, 2 and 4), designated as Option 6, has the highest NPV, except when non-local non-use benefits are excluded.

The overall results are highly sensitive to the assumptions regarding non-use benefits, with benefit cost ratios in the range 2 to 11 when the full non-use benefits are included. If only the local non-use benefits are included, the NPV becomes negative in all cases considered and the benefit cost ratio reduces to the range 0.1 to 0.3 with the central estimates. If no non-use benefits are included NPVs and benefit cost ratios are even lower.

A summary of the assessment of tangibles (i.e the quantifiable costs and benefits) for all options is presented in Table 12.11. For this analysis, which has been carried forward to the Summary Business Case, the economic benefit has been determined on the following basis:

- including 50% of the general public (i.e. non-local) non-use benefits
- central estimates without rolling forward of the benefits.

A breakdown of the total present value of the benefits for Option 6 (long term) by use category (central estimates, including 50% of the non-local non-use benefits) with the 6% Treasury discount rate, with no rolling forward, is shown on Figure 12.2, together with a breakdown of the present value of the costs.

Table 12.10 (Sheet 1)

River Worfe : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

	7% Discount Rate, 30 year time period							riod					
Option	Costs		Ben	efits			Total	NPV			Benefit C	ost Ratio	
		inci fuli	incl local	incl local	excl non-	incl full	incl local	incl local	excl non-	incl full	inci local	incl local	excl non-
		non-use	and 50%	non-use	uşe	non-use	and 50%	non-use	use	non-use	and 50%	non-use	use
			non-local				non-local				non-local	}	
			non-use				non-use		0		non-use		L
Unner og	limates a		الحمديم	1									
1 1	1 <i>4 4</i> 90	0 1011110 10 1 29 675	15 627	1 580	1 004	25 1 85	11 120	2 000	3 496	6.6	26	0.05	0.00
	1 700	12 391	6522	653	424	10 692	4 822	1 047	-3,400	0.0	3.5	0.35	0.22
3	861	5 396	2 820	245	104	4 535	1 960	-616	-757	63	3.0	0.30	0.25
4	861	7.214	3,739	263	130	6.354	2.878	-598	-731	84	43	0.20	0.12
5	7,049	39,668	20,827	1,985	1,293	32,619	13,778	-5.064	-5.756	5.6	3.0	0.28	0.15
6	7,049	40,556	21,276	1,996	1,294	33,507	14.227	-5,053	-5,755	5.8	3.0	0.28	0.18
6 (long	12,681	40,556	21,276	1,996	1,294	27,875	8,595	-10,685	-11,387	3.2	1.7	0.16	0.10
term)													
	L												
	. .										_		
Upper est	limates, w	ith rolling	torward	4 6 4 7	4.000	00 700							}
	4,490	12,279	16,463	1,64/	1,039	26,790	11,974	-2,843	-3,451	7.0	3.7	0.37	0.23
	961	5,000	0,070	0/9	437	11,361	5,170	-1,021	-1,262	7.7	4.0	0.40	0.26
	961	7 609	2,974	200	109	4,630	2,113	-603	-/52	6.6	3.5	0.30	0.13
4	7.049	A1 910	21 942	2/0	1 3 4 2	24 770	3,081	-585	-/26	8,8	4.6	0.32	0.16
6	7.049	42 756	22,340	2,073	1 344	35 706	14,037	4,970	5,700	5.9	3.1	0.29	0.19
6 (long	12 681	42 756	22,420	2,004	1 344	30,700	0 720	10 507	11 227	0.1	3.2	0.30	0.19
term)	12,001	42,700	24,420	2,004	1,044	30,075	9,739	+10,397	-11,337	3.4	1.0	0.16	0.11
, í				I									
Central e	stimates, I	no rolling 1	orward									1	
1	4,490	23,509	12,272	1,034	554	19,020	7,782	-3,456	-3,936	5.2	2.7	0.23	0.12
2	1,700	9,820	5,125	429	239	8,121	3,425	-1,270	-1,461	5.8	3.0	0.25	0.14
3	861	4,295	2,235	174	57	3,434	1,374	-686	-804	5.0	2,6	0.20	0.07
4	861	5,745	2,964	184	73	4,884	2,104	-677	-788	6.7	3.4	0.21	0.08
5	7,049	31,480	16,407	1,333	757	24,431	9,358	-5,716	-6,292	4.5	2.3	0.19	0.11
Б С ((ара	7,049	32,192	16,768	1,344	759	25,143	9,719	•5,705	-6,290	4.6	2.4	0.19	0.11
6 (iong	12,681	32,192	16,768	1,344	/59	19,511	4,087	-11,337	-11,922	2.5	1.3	0.11	0.06
(enity)													
		<u> </u>											
Central e	stimates, v	with rolling	forward										
1	4,490	24,783	12,930	1,077	570	20,293	8,440	-3,413	-3,919	5.5	2.9	0.24	0.13
2	1,700	10,352	5,399	446	245	8,652	3,699	-1,253	-1,455	6.1	3.2	0.26	0.14
3	861	4,530	2,357	183	60	3,669	1,496	-677	-801	5.3	2.7	0.21	0.07
4	861	6,058	3,125	193	76	5,198	2,265	-668	-785	7.0	3,6	0.22	0.09
5	7,049	33,190	17,291	1,392	784	26,141	10,242	-5,657	-6,265	4.7	2.5	0. 20	0.11
6	7,049	33,941	17,672	1,403	786	26,892	10,623	-5,646	-6,263	4.8	2.5	0.20	0.11
6 (long	12,681	33,941	17,672	1,403	786	21,260	4,991	-11,277	-11,894	2.7	1.4	0.11	0.06
term)													
	Ľ	L	<u> </u>		<u> </u>			<u> </u>				<u> </u>	
Lower es	timates, n	o rolling fo	rward										
1	4,490	17,347	8,919	491	155	12,858	4,430	-3.999	-4.335	3.9	2.0	0.11	0.03
2	1,700	7,243	3,722	200	66	5,543	2,022	-1,500	-1,633	4.3	2.2	0.12	0.04
3	861	3,193	1,648	103	20	2,332	787	-758	-840	3.7	1.9	0.12	0.02
4	861	4,272	2,187	101	24	3,411	1,326	-759	-837	5.0	2.5	0.12	0.03
5	7,049	23,237	11,932	627	224	16,188	4,883	-6,422	-6,825	3.3	1.7	0.09	0.03
6	7,049	23,770	12,202	634	224	16,721	5,153	-6,415	-6,825	3.4	1.7	0.09	0.03
6 (long	12,681	23,770	12,202	634	224	11,089	-479	-12,047	-12,457	1.9	1.0	0.05	0.02
term)													
<u></u>	L		L										
	*imete - · ·		(an										
Lower es	umates, W	19 205		515	100	13 805	A 016	2075	4 220		.		
5	4,450	7 629	3,400	210	100	5 020	4,310		-4,329	4.1 4 E	2.1	0.11	0.04
1 1	861	3 769	1 738	108	21	2 507	877	-1,430	-1,031	4.5	2.3	0.12	0.04
A A	861	4 506	2 306	107	25	3 645	1 446	.754	-009	5.9	2.0	0.13	0.02
5	7.049	24.507	12,583	659	233	17 458	5.534	.6.390	-6.816	35	<u>د.</u> ، ۱۹	0.12	0.03
6	7.049	25.069	12 867	666	234	18.019	5.818	-6.384	-6 815	36	1.0	0.09	0.05
6 (lona	12.681	25.069	12.867	666	234	12.388	186	-12.015	.12.447	2.0	10	0.05	0.02
term)	-,]				,		,	,				
1		I		1									

Table 12.10 (Sheet 2)

River Worfe : Summary of Costs and Benefits (£ 000 Q4 1997 expressed as present values)

		6% Discount Rate, 50 year time períod													
Option	Costs		Ben	≥fits			Total	NPV		Benefit Cost Ratio					
		inci fulì non-use	incl local and 50% non-local non-use	incl local non-use	exci non- use	inc! full non-use	inci local and 50% non-local non-use	inci local non-use	excl non- use	inci full non-use	incl local and 50% non-local non-use	incl local non-use	exci non: use		
							_								
0pper es 1 2 3 4 5 6	4,810 1,829 927 927 7,565 7,565	38,213 15,949 6,965 9,308 51,113 52,258	20,072 8,370 3,639 4,819 26,781 27,359	1,931 790 313 330 2,448 2,461	1,187 494 131 158 1,555 1,554	33,403 14,120 6,038 8,380 43,548 44,693	15,262 6,541 2,712 3,892 19,215 19,794	-2,879 -1,039 -614 -597 -5,117 -5,105	-3,624 -1,335 -796 -769 -6,011 -6,011	7.9 8.7 7.5 10.0 6.8 6.9	4.2 4.6 3.9 5.2 3.5 3.6	0.40 0.43 0.34 0.36 0.32 0.33	0.25 0.27 0.14 0.17 0.21 0.21		
6 (long term)	13,733	52,258	27,359	2,461	1,554	38,525	13,626	-11,273	-12,179	3.8	2.0	0.18	0.11		
Upper est	imates, w	ith rolling	forward												
1 2 3 4 5 6 6 (long term)	4,810 1,829 927 927 7,565 7,565 13,733	41,157 17,176 7,506 10,029 55,060 58,294 56,294	21,604 9,007 3,921 5,191 28,833 29,457 29,457	2,052 837 353 2,607 2,620 2,620	1,249 518 140 168 1,644 1,643 1,643	36,347 15,347 6,579 9,102 47,494 48,728 42,560	16,794 7,178 2,994 4,264 21,268 21,891 15,724	-2,759 -992 -590 -574 -4,958 -4,945 -11,113	-3,561 -1,311 -787 -759 -5,921 -5,922 -12,090	8.6 9.4 8.1 10.8 7.3 7.4 4.1	4.5 4.9 4.2 5.6 3.8 3.9 2.1	0.43 0.46 0.36 0.38 0.34 0.35 0.19	0.26 0.28 0.15 0.18 0.22 0.22 0.12		
Central e	stimates, r	no rolling f	orward												
1 2 3 4 5 6 6 (long term)	4,810 1,829 927 927 7,565 7,565 13,733	30,286 12,647 5,544 7,413 40,577 41,496 41,496	15,773 6,583 2,884 3,822 21,111 21,577 21,577	1,261 519 223 231 1,645 1,658 1,658	640 272 71 88 901 903 90	25,476 10,817 4,617 6,486 33,012 33,931 27,763	10,963 4,754 1,956 2,895 13,546 14,012 7,844	-3,549 -1,310 -704 -696 -5,920 -5,907 -12,075	-4,170 -1,557 -856 -839 -6,664 -6,663 -13,643	6.3 6.9 - 6.0 5.4 5.5 3.0	3.3 3.6 3:1 4.1 2.8 2.9 1.6	0.26 0.28 0.24 0.25 0.22 0.22 0.22 0.12	0.13 0.15 0.08 0.09 0.12 0.12 0.12 0,01		
Central e 1 2 3 4 5 6 6 (long term)	stimates, 4,810 1,829 927 927 7,565 7,565 13,733	with rolling 32,523 13,621 5,975 7,988 43,715 44,705 44,705	forward 16,981 7,085 3,107 4,118 22,734 23,235 23,235	1,339 549 240 247 1,752 1,766 1,766	670 284 76 93 950 952 952	27,813 11,792 5,048 7,061 36,149 37,139 30,971	12,171 5,256 2,180 3,191 15,168 15,670 9,502	-3,472 -1,280 -687 -680 -5,813 -5,800 -11,967	-4,140 -1,545 -851 -834 -6,615 -6,614 -12,782	6.8 7.4 6.4 8.6 5.8 5.9 3.3	3.5 3.9 3.4 4.4 3.0 3.1 1.7	0.28 0.30 0.26 0.27 0.23 0.23 0.13	0.14 0.16 0.08 0.10 0.13 0.13 0.07		
Lower est	limates. n	o rolling fo	rward												
1 2 3 4 5 6 6 6 (long term)	4,810 1,829 927 927 7,565 7,565 13,733	22,388 9,347 4,123 5,516 29,994 30,681 30,681	11,503 4,799 2,128 2,823 15,394 15,742 15,742	619 251 132 130 795 803 803	185 79 26 29 274 274 274	17,578 7,518 3,196 4,589 22,429 23,116 16,948	6,693 2,970 1,200 1,896 7,829 8,177 2,009	-4,191 -1,578 -795 -798 -6,771 -6,763 -12,930	-4,626 -1,751 -901 -898 -7,292 -7,291 -13,459	4.7 5.1 4.4 5.9 4.0 4.1 2.2	2.4 2.6 2.3 3.0 2.0 2.1 1.1	0.13 0.14 0.14 0.14 0.11 0.11 0.06	0.04 0.03 0.03 0.04 0.04 0.04		
Lower est 1 2 3 4 5 6 6 6 (long term)	timates, w 4,810 1,829 927 927 7,565 7,565 13,733	ith rolling 24,126 10,072 4,444 5,945 32,324 33,065 33,065	forward 12,395 5,170 2,293 3,042 16,588 16,963 16,963	663 269 142 139 853 861 861	195 83 28 31 291 291 291	19,316 8,243 3,517 5,018 24,759 25,500 19,332	7,584 3,341 1,366 2,115 9,023 9,398 3,230	-4,147 -1,560 -785 -788 -6,713 -6,704 -12,872	-4,615 -1,746 -899 -896 -7,274 -7,274 -13,442	5.0 5.5 4.8 6.4 4.3 4.4 2.4	2.6 2.8 2.5 3.3 2.2 2.2 1.2	0.14 0.15 0.15 0.15 0.11 0.11 0.06	0.04 0.05 0.03 0.03 0.04 0.04 0.04		

•

Option	Agency Costs	Water Co. Costs	Economic Benefit	Net Present Value	Benefit Cost Ratio
6% discount rate,	50 year time p	period			
Do Nothing	0	0	0	0	0
Option 1	0	4,810	15,733	10,963	3.3
Option 2	0	1,829	6,583	4,754	3.6
Option 3	0	927	2,884	1,956	3.1
Option 4	0	927	3,822	2,895	4.1
Option 5	0	7,565	21,111	13,546	2.8
Option 6	0	7,565	21,577	14,012	2.9
Option 6 (long	9	13,724	21,577	7,844	1.6
term)					
7% discount rate,	ı 30 year time p	period			
Do Nothing	0	0	0	0	0
Option 1	0	4,490	12,272	7,782	2.7
Option 2	0	1,700	5,125	3,425	3.0
Option 3	0	861	2,235	1,374	2.6
Option 4	0	861	2,964	2,104	3.4
Option 5	0	7,049	16,407	9,358	2.3
Option 6	0	7,049	16,768	9,719	2.4
Option 6 (long	9	12,671	16,768	4,087	1.3
term)					

Table 12.11 Assessment of Tangibles (£000 Q4 1997)

12.6 Assessment of Intangibles

The assessment of intangible benefits (or disbenefits) has been undertaken by a weighting and scoring system and is presented in Table 12.12. The intangibles considered in the table are:

- 1. Facilitation of Agency meeting objectives
- 2. Improved public relations and maintenance of credibility of Agency
- 3. Longer term benefits not quantified in economic analysis

Each of the intangible benefits has been allocated a weighting within the range from 5 to 0 (from most important to least important). Scores reflecting the ability of each option to deliver the intangible benefit have been allocated from 5 to 0 (from greatest ability to least ability).

12.7 Risk Assessment

A risk assessment of the options has been undertaken and the results tabulated in a "Risk Register" (Table 12.13). The risks considered to be relevant in the appraisal are:

Risk 1	Operational failure of flow alleviation
Risk 2	Failure to provide anticipated benefits
Risk 3	Failure to supply a sustainable solution

Within the Risk Register the likelihood of the risk happening, and the consequent effect on the solution, are classified as "high", "medium" or "low".

Note: The area of the circles is proportional to the present value of the benefits or costs at a 6% discount rate River Worfe Option 6 (long term) Present Value of Benefits and Costs Figure 12.2

Table 12.12 Assessment of Intangible Benefits

Intangible Benefit	Weighting Factor	Opt 5 M/d rei Sheri	ion 1 lease from ffhåles	Opt 2 MVd re Liza	ion 2 lease from rd Mill	Option 3 Option 4 Option 1 MI/d release from Hett Bank 1 MI/d release from Cramp Pool 8 MI/d release Options 1 +		Option 5 Option 6 8 MV/d release B MV/d release Options 1 + 2 + 3 Options 1 + 2 + 4		Option 6 B MVd release Options 1 + 2 + 4 Ot +		ion 6 (term) 1 + 2 + 4 onal costs	Comment			
		points	weighted points	paints	weighted points	points	weight <i>e</i> d points	points	weighted points	points	weighted points	points	weighted points	points	weighted points	
1	3	3	9	2	6	1	3	1	3	4	12	4	12	5	15	Related to the extent of flow improvement
2	з	3	9	2	6	1	3	1	3	4	12	4	12	5	15	Related to the extent of flow improvement
3	3	1	3	1	3	1	3	1	3.	1	3	1	3	5	15	Limited recovery of groundwater levels, except for Option 6 (long term)
Total weighte	ed score		21		15		9		9 [,]		27		27		45	

Intangible Benefit 1:

Intangible Benefit 2:

Facilitation of Agency meeting objectives Improved public relations and maintenance of credibility of Agency

Intangible Benefit 3:

Longer term benefits not quantified in economic analysis

Table 12.13 **Risk Register**

ldentified Risk	Option 1 5 Mi/d release from Sheriifhales		Option 2 2 MI/d release from Lizard Mill		Option 3 1 Ml/d release from Hell Bank		Option 4		Option 5 8 Ml/d release Options 1 + 2 + 3		Option 6 8 MVd release Options 1 + 2 + 4		Option 6 (long term) Options 1 + 2 + 4 + additional costs		Comment
	Likeli- hood	Eflect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	Likeli- hood	Effect	
Operational failure of flow alleviation	L	L	L	L	L	L	L		L	L	L	L	L	L	
Failure to provide anticipated benefits	м	м	м	м	м	M	м	м	м	м	м	м	L	Ļ	Recovery of groundwater levels will be achieved sooner with Option 6 (long term)
Failure to supply a sustainable solution	м	м	м	м	M	М	м	M	М	м	м	м	L	L	

1 .

H high Relative risks:

М medium L

low

12.8 Selection of Preferred Option

From the assessment of tangibles presented in Table 12.11 it can be seen that each of the individual options is justifiable in its own right, with Option 4 being preferable to 3. Therefore the combination of the three options (1, 2 and 4), designated as Option 6, represents the most cost effective solution in terms of maximum net present value (NPV).

However, without further allowance for the longer term reduction in groundwater abstractions, Options 1, 2 and 4 may not be sustainable or compatible with the long term objective of a recovery of groundwater levels. This is reflected in the assessment of intangibles and the risk register in Tables 12.12 and 12.13. Only Option 6 (long term) is shown as having a low risk of failing to provide the anticipated benefits and a low risk of not supplying a sustainable solution. Option 6 (long term) is consistent with the draft water resources plan of Severn Trent Water Limited which, as indicated in Section 12.1, was recently submitted to the Agency and includes proposals for a reduction of 17 MI/d in deployable output from groundwater sources located in the Cosford unit over the AMP3 period.

It is therefore concluded that Option 6 (long term), incorporating Options 1, 2 and 4 with a total compensation release from groundwater sources of 8 MI/d and including an overall reduction in PWS groundwater abstractions of 17 MI/d, should be selected as the preferred option.

This solution will ensure that the river lengths which at present are subject to zero or low flow will be improved. It should provide a long term sustainable solution as reductions in abstraction licences for the Cosford groundwater unit have been agreed with the water company. The West Midland groundwater model, which is under development, will be used to address the suitability of the present abstraction requirement.

The interim remedial measures should restore baseflows to 13 km of watercourse whilst significantly increasing the flow over a further 21 km of river.

In the longer term, with reduced groundwater abstractions, rising groundwater levels should restore some baseflows to the river and its tributaries, with a subsequent reduction in the requirements for compensation releases.

Increased river flows in the catchment could enable some limited extra abstraction for agricultural use and there could also be more water available to support public water supply abstractions from the River Severn.

The designated trout fishery will be better able to support the wild population of brown trout as well as some introduced stock. Further habitat loss due to siltation will be avoided and some areas already degraded will be rejuvenated or restored to their former condition.

The assessed economic benefit takes account of the ecological improvements and greater water availability, in addition to the increase in the amenity and recreational value of the area surrounding the watercourses.

12.9 Tasks and Dependencies

Investigations:	Agency Midlands Region, Upper Severn Area Agency Midlands Region, Regional Office
Design and implementa	tion: Severn Trent Water Ltd
Programme for impler	nentation of the preferred option:
1998	Submission of Business Plan Construction of Sherriffhales pipeline Installation of monitoring equipment
1999	Investigation and Design Planning and Consents
2000	Construction Investigation
2001	Construction (If required)

12.10 Cost of Preferred Option

The estimated capital and operating costs of the preferred option are given in Table 12.14. The estimates of likely future capital costs are based on the assumption that the Construction Output Index (COPI) will rise by 4 per cent per annum. In the estimation of operating costs an annual increase of 2.5 per cent per annum in the Retail Price Index (RPI) has been assumed.

Year	Water Co	ompany	Agency					
ending 31/03	Capex	Opex	Сарех	Opex				
1999	3,898	88	15'	0				
2000	0	90	0	0				
2001	2,337	136	0	0				
2002	0	153	0	0				
2003	7,467²	274²	0	0				

¹ comprises submission of business plan, the cost of which has not been included in the assessment of tangibles, and the installation of monitoring equipment

² long term replacement water costs could be deferred subject to supply/demand balance

Appendix 1

•

•

•••••

•

•

•

•

•

Details of Cost Estimates

APPENDIX 1 DETAILS OF COST ESTIMATES

This Appendix includes the cost data made available by the Agency from Severn Trent Water Ltd and South Staffordshire Water Company Ltd. A summary table is also included which presents the cost estimates used in the assessments, based on the data provided. The following points should be noted in relation to the cost estimates:

- 1. In some instances costs were presented by the water companies for a more limited range of options than that considered in this report. In the absence of a more detailed disaggregation, we have pro rated the costs provided for each scheme by the figures for loss of water (for replacement water costs) and compensation flow (for PWS option costs) for each of the options.
- 2. We have assumed that the opex costs provided are annual costs for continuous operation. We have pro rated these by our estimate of the proportion of the time we expect the compensation flows to be required, based on the flow duration data provided by the Agency.
- 3. The capex data for Blakedown Brook appear to include the cost of the pipeline from the new STW (PWS option cost) as well as replacement water costs for the same volume. We can see no justification for replacement water costs for Option 1.
- 4. The river bed lining costs for Dover Beck/Oxton Dumble were confirmed verbally by the Agency.
- 5. The costs for river bed lining for Croxden Brook were provided by the Agency in a letter dated 8.9.98, together with details of a further option.
- 6. The capex data provided by Severn Trent Water Ltd appear over-estimated for some options which comprise a compensation release from an existing borehole (e.g. Battlefield / Catshill). From the limited information available the capex figures appear unrealistic and could not be reconciled with lesser figures for a new borehole of the same capacity. In many cases it would seem that a review of capex figures may be required. For the assessment in this report a nominal capex figure of £10k has been adopted where only minor works are required to existing pipework to provide a compensation release directly to a watercourse from an existing borehole.
- 7. The capex estimates provided by Severn Trent Water Ltd for some of the options which comprise a new borehole seem excessive (e.g the River Sherbourne where £1M for a single 1MI/d borehole seems grossly excessive). This capital cost should in any event only apply to the new borehole for Option 3b, and not for the compensation releases from existing installations in the other options.
- 8. The Agency provided cost data based on existing compensation boreholes which indicates a capital cost of £120 - 140k, including pump installation, for a borehole delivering 1 - 2 MI/d. The Agency also provided an indicative figure of £91k per MI/d for larger scale installations based on the Shropshire Groundwater Scheme. These figures have been used as the basis for the capital costs of new boreholes in this assessment.
- 9. For all options with compensation releases, including releases from a new borehole, replacement water costs have been included in this assessment. This reflects the fact that the analysis is concerned not only with the interim solutions but also with the proposals for the long term reduction in groundwater levels. In four cases (Blakedown Brook, Hewell Grange Lake, River Sherbourne and River Worfe) the additional long term replacement water costs of further reductions in abstractions are included as a variant on the selected option.

ENVIRONMENT AGENCY MIDLANDS REGION

AMP3 BENEFITS ASSESSMENT - ALLEVIATION OF LOW FLOWS

SUMMARY OF OPTIONS AND COSTS USED IN COST BENEFIT ANALYSIS

Ste	E	Onlines		Replac	ement \	Natari	Costs	PWS O	ndian (/	Anency	Borebole	Other	Commants
	Option Ref	Compen	% of time	Loss of	Cenex	Opey	Onex	Compan	Caney	Oney	Oper	Agentry	001011413
		selion	(no losses	Waler		(111	(pari	-sation		itul	(part	Cabex	
		Flow	essumed)			year)	ycer)	Flow		year)	year)		
		MVð		MM	0003	£000	6000	MVd	6000	£000	6000	0003	
Burntwood Pools /	1	1	65%	1	690	14	9	1	10	4	-3		Release from existing borehole
River Sow	2	2	/5%	2	1379	29	21	2	10		6		Release from existing borehole
	STW data			1	690	14							
	STVV Cete							'	200	· ·			Excessive capex for existing borehole
Croxden Brook	18	1	100%	1	690	14	14	. 1_	10	4		_13*	From existing bh to pl A + bed lining
	16	1	100%		690	14	14	1	01	4	4	25*	From existing bh to pi 8 + bed lining
	3	2	100%	ź	1379	29	29	ź	60	Å	8	25*	From existing on to pr A + bed sning From existion bh to nts A and B + bed sning
	4 (1	100%	2	1379	29	21	1.2	4620	a i	6	13*	From existing bit to pt A + bed lining, with replacement
	{	2	50%										PWS supply from new borehole
	STW date			1	690	14							
	STW data							1	200	1			Excessive capex for existing borehole
Dover Beck /	1 re-lining								1			45*	Other costs for bad lining (1.5 Mi/d)
Oxton Dumble	2 re-lining										_	60*	Other costs for bed bring (2.5 MI/d)
	4 1+3		80%		690	14	11		120		9	451	New borehole
}	5 2+3	1	80%	1	690	14	11	1	120	11	9	60*	
,	STW date			1	690	16							
	STW date							1	300	11	1 '		Excessive capex for new borehole
River Nee and					-				200				
River Ashop	2	15							200			41	Fish passes, release facilities and PHABSIM study
Rainworth Water	18	1	80%	1	690	14	11	1	25	0	0	10	Reinstall pump set in existing borehole and greater study
	10	2	80%	2	1379	219	23	2	50			10	Reinstell pump set in existing borehole and greater study
	26	2	80%	2	1379	29	23	2	200	22	18	10	New borehole and gwater study
	STW data			,	1379	29							
	STW deta			-				2	50		1		PWS option costs
	STW data							1	300	11			Excessive capex for new borehole
Battlefield/ Catshill	1	1	80%	1	690	14	11	1	10		6		Release from existing borehole
Brooks	2	1	80%	1	690	14	11	1	10	6	6		Release from existing borehole
	<u>3+z</u>	2	80%	- 2	1379	29	23	2	_20	13	12		
[STW data			2	1379	29	İ	.	1000	1.2			Fundadi u anno das avietires benetiete
									1000	ļ			
Blakedown Brook	1	3	100%	0	0	0	0	3	1000	30	30		STW effluent pipeline
	26 SSWC	2	80%	2	500	0	0	2	200	6			Release from existing SSWC borehole
	3	1	80%	1	690	14	11	1	120	6	5		Release from new Agency borehole*
	4 1+25	5		2	500	0	0	5	1200	36	35		
	5 <u>1+20+3</u> 5 <u>1+20+3</u>	6	<u> </u>	10	4691	71	71	5	1320	42	40	15	Adaptive cost of monitoring agricogram lock dad
									_1020				Long term opex cost of PWS option will reduce
	STW date			5	3448	71							
	SSWC data			5	1250	0							SSWC advise negligible additional opex
	STW data							3	200	30	ľ		EA option 1
										Ļ			
Bow Brook	1	2	80%	2	1375	29	23	2	10	15	12	15	Release from existing borehole
	ź	1 ²	2076	ŕ	13/3	29	1.4	1		1 ''	•	13) puts installing of monitoring equipment
	STW date	Ì		2	1379	29		,	400	1.6			Europethin second for an disc basebula
	STVY (BIL									13			Excessive capex for existing porendie
Hewell Grange	1	0.62	72%	0.62	427	9	6	0.62	10	14	10		Release from existing borehole
Lake	2	0.52	59% 41%	0.52	359	1		0.52	10	12			Release from existing borehole Release from existing borehole
	4	0.45	20%	0,45	310	6	1	D.45	10	10	2		Release from existing borehole
Long Term	1			1	690	9	6		_ 10	14	10		Long term opex cost of PWS option will reduce
	STW data			1	690	14							and that of replacement water increase
	STW data	L	L					<u>'</u> _	200	23			Excessive capex for existing borehole
River Sherbourne	1	1	50%	1	690	14	7	1	10	•	4		Release from existing borehole
}	2	1	50%	1	690	14	?		10	1			Release from existing borehole
	38 36		50%		690	14	2		120	ŝ			Release from new Attency borehole"
1	4 1+2	2	50%	1	1379	29	14	2	20	16	i i		
	5 1+2+3	3	50%	3	2069	43	21	3	30	24	12		
Long Term	6 1+2+3b			10.15	6999	145	133		140	24	12	15	Agency cost of monitoring equipment included.
			<u> </u>										Long Lenn opex cost of PWS option will reduce
	STW data		}	10.15	6399	145							and that of replacement water increase
	STW date	1	L					1	1000	8			Excessive capex for new borehole
River Worfe	1	5	75%	5	3446	71	54	5	300	43	32		Pipeline from existing borehole
{	2	2	78%	2	1379	29	22	2	10	17	13		Release from existing borehole
	3		80%		690 690		11		10	9	1		Release from existing borehole Release from existing borehole
1	5 1+2+3		7	6	5516	114	87	8	320	60	52		
	6 1+2+4	6	 	6	5516	114	87		320	68	52		
Long Term	1+Z+4	<u> </u>	<u> </u>	16.90	11653	242	190		320	- 08	- 22	- 10	Long term oper cost of PWS onlion will reduce
	STW data		1	15.90	11653	242							and that of replacement water increase
1	STW data							4	300	34			Pipeline from existing borehole
New Oter - 0	STAL	t	t		28-370					<u> </u>			
new outege resource		<u> </u>	L		40210		L		L			L	L

Note: Belacted options are shown them

Agency costs to be recharged to STW Ltd under AMP3

Our Ref: JR/PSH

Date: 16 March 1998

Gibb Environmental Gibb House London Road Reading Berkshire RG6 1BL

1565 16/FMW 20/3/98 .

ENVIRONMENT

AGENCY

FAO J Buckland

Dear Jon

AMP 3 - COST FROM PNS COMPANY AND EA

Enclosed is the costs provided by the water companies for the low flood alleviation scheme. These are taken from the Cost of Quality Submitting to OFWAT and do not cross match with the Agency options. To enable the Cost/Benefit to be calculated, work will be required on these figures and I hope that the following information will enable this to be completed with the minimum of problems.

1. River Worfe

PWS compensation relates to EA option 1. For option 2, 3 and 4 there will be no capital requirement but the OPEX figure will be modified to relate to the amount of water being pumped.

2. Blakedown

PWS compensations of 5MI/d and 2MI/d relate to Option 1 and 2. No figures stated for option 3, but if figures required could use the same PWS option for Burntwood.

3. Dover Beck

PWS compensation relates to option 3 only.

All other sites look straight forward, if you wish to discuss please contact me.

Yours sincerely

J Ratcliffe Senior Hydrologist - Planning

G:\wordproc\w97\2nd\monthlib\mar98\058jr

	LOSS OF WATER	REPLACEM	ENT WATER	J	PWS OPTI	ON	PWS T	OTAL		EA (NOITION	COSTOF	
SITE	ML/D	CAPEX	OPEX	COMP	CAPEX	OPEX	CAPEX	OPEX			COMP	LINING	
		COST £000	COST £000	ML/D	£000	£000	1000	£000			ML/D		
	0	6205 61	178 62		300.00	24.00	6505 A1	167 63		,			
KIVER WORFE	,	0205.01	126.05	4	300,00	34.00	0000.01	102.05		, ,	2		
										1	2		
										5			
										4	1		
BLAKEDOWN BROOK/HURCOTT SSSI	8	5516.10	114.34	5	1000.00	30.00	6516.10	144.34		1	3		
	5	1250.00	0.00	2	200.00	3.00	1450.00	3.00		2	2		
										3	1		
RATTI FEIRI D/CATSHILL BROOKS	4	2758.05	5717	2	1000.00	15.00	3758.05	77 17		1	,		
	-	2150.05	27.17	-	1000.00	13.00	2720.02	12.17		2	1		
											-		
BOW BROOK	4	2758.05	57.17	2	400.00	15.00	3158.05	72.17	1.1	1	2		
HEWELL GRANGE LAKE	6	4137.07	85.76	1	200.00	23.00	4337.07	108.76		1	0.62		
										2	0.52		
										3	0.47		
										4	0.45		
KIVER SHERBOURE	2	1379.02	28.59	1	1000.00	8.00	2379.02	36.59			1		
										2	1		
										30 21	1		
										30	L		
BURNTWOOD/RIVER SOW	1	689.51	14.29	1	200.00	4.00	889.51	18.29		1	1		
								•		2	2		
CROXDEN BROOK	i	689.51	14.29	1	200.00	4.00	889.51	18.29	•	1	1	45.5	
										2	2		
										3	2		
DOVER BECK/OXTON DUMBLE	3	2068.54	42.88	1	300.00	11.00	2368.54	53.88		1	1.5	45.5	
										2	2.5		
										3	1		
B & DUVORTH WATER	1	2058 54	47.99	•	50.00	0.00	7418 54	67 00		1.			
	2	2000.34	74.00	-	200.00	11.00	2418.34	23.00		13			
					500.00	11.00				10	-		
										2n 2b	2		
										•	-		
JAGGERS CLOUGH	0	0.00	0.00										
TOTAL	AL	29520	586.00				34670.00	744 00					
	- V	6774V	300.00				54070.00	/44.00					
						12							
NEW STRATEGIC RESOURE	40	28270.00	586.00										

.

16/03/98

SOUTH	STAFFORDSHIRE WATER PLC	1999 PERIODIC REVIEW
Document Type	Submission to OFWAT	Do Reef: MCOQSUB4.DOC
Circulation	BPE, EAS, MBT, ACM	Date: 19-Feb-98 14:58
Issue : 07	MAIN QUALITY COSTINGS	Page 22 of 38

SECTION 6: COMMENTARY AND MATERIAL ASSUMPTIONS FOR TABLE D4.3

Water service - Work programme to deliver non-core quality functions

6.1 Environmental Drivers

•

6.1.1 SSSI - Role of Company abstraction clearly identified

Line 1 Leamonsley Brook Low Flow Alleviation

This scheme is substantially complete. Costs shown are for the remaining final element of the scheme to divert source water back to the distribution system via an alternative route.

6.1.2 SSSI - Role of Company abstraction not yet calculated

Line 2 Hurcott and Podmore Pools SSSI (Blakedown Brook)

Hurcott and Podmore Pools have been identified by English Nature as a Site of Special Scientific Interest which is affected by the Company's groundwater abstractions. Appendix B is the proforma prepared by English Nature outlining the case for inclusion of this site in AMP3.

The Company has agreed with the Environment Agency (EA) that it is willing to reduce average abstraction from a combination of three groundwater abstraction sites (Hagley, Churchill and Cookley) by 5 Ml/d. The exact quantity and location of the reduction in abstraction will be determined following completion of a groundwater modelling exercise currently being undertaken by the EA. The reduction is viewed as the long term solution to the problems at Hurcott and Podmore Pools SSSI. In the short term it will be necessary to make a compensation discharge of 1-2 Ml/d to Blakedown Brook. This can be achieved by either diverting flow from Churchill Pumping Station or by drilling a new support borehole close to the Brook.

MILY. Authorised

SOUTH	STAFFORDSHIRE WATER PLC	1999 PERIODIC REVIEW
Document Type	Submission to OFWAT	Do Reef: MCOQSUB4.DOC
Circulation	BPE, EAS, MBT, ACM	Date: 19-Feb-98 14:58
Issue : 07	MAIN QUALITY COSTINGS	Page 23 of 38

Capital expenditure has been calculated on the basis of the following two elements: -

Costs associated with providing 5 MI/d of resource elsewhere at a cost of £250,000 per megalitre.

Costs associated with diverting flow from Churchill via a new pipeline (approximately 2.5 km long). These amount to approx. $\pounds 200,000$, although this will be dependent upon the final agreed location for discharge. Should negotiations with the EA confirm the need for a new borehole to provide compensation flows, then costs for this may be as high as $\pounds 500k$.

The total capital expenditure has been calculated as £1,450,000.

Operating expenditure for the compensation discharge has been calculated on the basis of pumping 2 MI/d for 180 days per year. This is in the region of £3,000 per year. The additional operating cost of abstracting 5 MI/d from an alternative source or sources will be insignificant.

6.1.3 Over-abstraction - Problem Sites

11

Line 3&4 Smestow Brook, Wombourne and Middle Stour Catchment, Stourbridge

These sites have been identified by the Environment Agency and English Nature as requiring further investigation. Capital expenditure of £50,000 per site has been included for this purpose as advised by the Environment Agency. Further expenditure will be required once the effect of the Company's abstraction has been established and measures to resolve the problem agreed.

|--|

Our ref: JR/MM Your ref:

Date: 8 September 1998

Gibb Environmental Gibb House London Road READING Berkshire RG6 1BL FAO: Mr Widgery

5050 NOW 11/2/98

Dear Nigel

AMP3 - COST BENEFIT ASSESSMENT

We have been in discussions with both the water companies who have direct involvement with the ALF's schemes and have been able to refine/update the cost information provided to you for the Draft Final Reports. This will enable the cost/benefit ratio to be reworked and complete the information requirements needed for the Business Cases for submission to DETR.

This information is as follows:-

- 1) Burntwood Pools/River Sow No change The option which is being put forwarded in the Business Case is Option 1.
- 2) Croxden Brook

The cost of lining the brook under Other Capex are:-Option 1 $\cdot = \pounds 13k$ Option $\clubsuit \& 3 = \pounds 25k$

A further Option is now to be considered. It is that STW construct a new borehole which will be situated away from the brook course so that its cone of depression will not influence flow in the brook. STW have provided a cost for this with the associated pumps and pipework of \pounds ?. The reliable sustainable yield of the aquifer is 8.4 Ml/d. At present the deployable output from Greatgates borehole is 6.5Ml/d all of which is required for supply purposes. The New Option would allow:

- i) Compensation to brook at Greatgates borehole 1Ml/d
- ii) STW, deployable output from new borehole (8.4-1.0) = 7.4 Ml/d

Could you please work this into the existing report.

Cont/d..

Environment Agency Sapphire East, 550 Streetsbrook Road, Solihull, B91 1QT DX 702280 Solihull 3 Tel: 0121-7112324 Fax: 0121-711-5824

- 3. Dover Beck/Oxton Dumble No changes required.
- 4. River Hoe and River Ashop Rework with £100k as cost for each fish pass.

5. Rainworth Water - No changes required, Option 2a looks to be the solution being accepted. STW plc data modified to 2, 1379, 29.

6. Battlefield/Catshill Brooks - No changes. STW plc data modified to 2, 1379, 29.

7. Blakedown Brook

STW plc data	5, 3448, 71		
SSWC plc data	5, 1250, 0		
STW plc data		3, 1000, 30	EA Option 1
SSWC plc data		2,200, 3	EA Option 2, new borehole

It should be noted that Option 2a and 2b should be put against SSWC name as they would be part of SSWC participation in the alleviation of low flows.

8. Hewell Grange Point

Gibbs to review % time (no losses assumed) as the figures do not appear to match calculations.

STW plc data 1, 690, 14.

At present River Sherbourne and River Worfe are still being reviewed as to how most replacement water cost should be considered in the short and long term solutions. I hope to have agreed data in the next 5 working days.

If you wish to discuss this new information, please contact me. Also if additional funding is required, please let me have breakdown of costs.

Yours sincerely

the latel. 1/

JOHN RATCLIFFE Senior Hydrologist (Resource Planning)

Our ref: JR/ED Your ref:

Gibb Environmental

Gibb House London Road Reading

Berkshire RG6 1BL

Date: 11 September 1998

5

. . ..

Num

FAO Mr N Widgery

Dear Nigel

AMP3 – COST BENEFIT ASSESSMENT

Further to my letter of 8 September 1998, the following information will complete the data input/modification.

2 Croxden Brook

The cost of a new borehole to produce 6.7 ml/d has been estimated by the EA based on STW plc data as £4.62M but having the same running cost as the existing Greatgates site.

10 River Sherbourne

Discussion with STW plc has resulted in an agreed reduction in the licences so that the figures are STW 10:15, 7003, 142.

11 River Worfe

Discussion with STW plc has resulted in an agreed reduction in licences so that these figures are STW 18.43, 12710, 258. Of this total 10.0 Ml/d has been made available via the proposed licence at Ukington and the cost will be incurred under AMP2.

In the cases of Blackdown, Sherbourne and Worfe, the licence reduction will not affect supplies at present, but if required I can find out from the supply/demand balance when the replacement resources may be needed.

Yours sincerely

J RATCLIFFE Senior Hydrologist (Resource Planning)

Extension 3233

(4)

ROM ENVIRONMENT	AGENCY	(WED) 10. 14'98	:50/\$T. :	50/NO. 3580034169 P 1
FAX RE	QUEST FORM			ENWIDONIMEN
То:	<u>C</u>	Date		AGENCY
FAO:	ninget television	Dept		
Fax No	0118 966 9554	No.of pages		
From:	Jan loss 10	Tel No/Ext		·······
Fax No. Public	•.··•	Network	·····	
Subject:	Cast districto	te on AVES	Schent	
- Message:		s //		

·····		·····		*
*1				
				- ý
	••• • • • • • • • • • • • • • • • • •	GIBS ENVIRONM	LINIAL	a da sua Suma su Suma su Suma su Susa su Susa su Susa su
		DOCUMENT NoS	460	
5		TOC.C.	4110	
		FILE		
			n Asse	
	sole . Manuscript asne	diments agreed in	ale informed	chuter in
	I costs for susmi	it andura.	picer title	
•		0		
				4
	à			
-				
	: <u>31</u>	ىرىغان يەرىخى بى غار «ئەشىلىد»، دى يارىرىچىن	د سود «جېلېرداند » رو د رومورد وروزمه	an a
				and the second

		STW		STW		PA	
		REPLACEME	NI'COST	COMPENSAT	NOITTON OFTION	COMPENSAT	ION OPTION
		CAPEX		CAPEX	OPEX	CAPEX	OPPX
	· · · · · · · · · · · · · · · · · · ·		<u> </u>			T	
		11.51	┝				
	· · · · · · · · · · · · · · · · · · ·	L					
TE DOVER BECK AN	DOXTON DUMBLE					/ /	
1998 SUBMISSION OF BUSTN	TESS FLAN					-	
5							
1999 INVESTIGATION AND	DESIGN						
FLANNING AND CONSI	ENTS					· · ·	
		1					5.25
1000 CONSTRUCTION PART	1					60	•,
CONSTRUCTION PART	2	6.10		120	9		1
	<u> </u>	- · · · ·					
TE HE WELL GRANGE	<u> </u>	t					
	·						
991 SUBMISSION OF BUSIN	ESS FLAN	•					-7
		•					
772 INVESTIGATION AND	ESIGN		┝		······································	└──── †	
PLANNING AND COM	2015				- t	+	
1. 23.00 0 0 CONS							
MOCONSTRUCTION				10	- 1		
DATE TO ATION		640			<u> ()</u>		
	· ·						
	· · · · · · · · · · · · · · · · · · ·		—— i				
TTIDIDATANO					_		
	VIN AND RIVER SOW						
ME SUBMISSION OF BUSIN	ESS PLAN		<u> </u>	- 4			
							1
WHINVESTIGATION AND D			L		-		
PLANNING AND CONSE						· _	· · · ·
	1						
DO CONSTRUCTION		690		10	د		
						·	
TE BLAKEDOWN BRO	юк		1.7				
998 SUBACISTON OF BUSIN	ESS PLAN						
			-				
1999 CONSTRUCTION OF RO	UNDHILT. PUPPLINE			1000	30		
INVESTIGATION AND D	RESIGN				¥.	••	
PLANNING AND CONSE	STIC						
CONSTRUCTION PART		690			30	120	
				1.1			0.5
ODI CONSTRUCTION FALT	2	500		200			5
		-					
LONGTERM		3509					
TE RIVER SHERBOUT	INE						
995 SUBMISSION OF BUILD	ES9 PLAN		÷ t			-	
			}				C
	ALCH ALCTON . ART.	1	These areas				
	the stratter (100)	- Pulling	THE ED	··			
PLANNING AND CONSE	-N [2		- • •				
				- •			
DUO CONSTRUCTION PART		1379			•	120	4
		÷.					
ON CONSTRUCTION FART	2			10	1		4
		L/					
LONGTERM		49 50					

FROM ENVIRONMENT AGENCY

(WED) 10. 14'98 11:50/ST. 11:50/NO. 3580034169 P 2

	· · · · · · · · · · · · · · · · · · ·	STW		PA		
	·	CAVEX	CAPEX OPEX	CAPEX OPPX	-	
					-	
SITE	RIVERWORFE			+		
1998	SUBNOSSION OF BUSINESS FLAN)	
	CONSTRUCTION OF SHEIFPHALES PIPELINE		300 33	10	4	
					÷.	
1999	INVESTIGATION AND DESIGN	.	+	+		:
	FLANNING AND CONSENTS			·····		
2000	CONSTRUCTION	2068	10			
	INVESTIGATION	+ ·		<u> </u>	1	1.4
2001	CONSTRUCTION OF RECUIRED	+	10 5.	2	-/	1.5
						· *
<u> </u>	LONGTERM	G137 -	<u> </u>			
SITE	BOW BROOK	+ -+	┼━ ──┼╸ ───	++	-	
		<u> </u>				
1998	SUDMISSION OF BUSINESS PLAN			4	5.1	
5	TELEVISION OF MONITORY EQUIPMENT		<u>+</u>	<u> </u>	4	
1999	ENVESTION TION AND DESIGN					
-	PLANNINO AND CONSENTS	+	+ ``			
2000	CONSTRUCTION	1579	10	,		
C			<u>├</u>	<u> </u>		
1	DATILETIT. D DROOM	-	┼── ┼── ──	<u>+</u> = -=	1	
1998	SUBMISSION OF BUBINESS PLAN	<u> </u>				
		├ ── ├ ── -		+ ·		64
1999	PLANNING AND CONSENTS	├ -	+		to a carde	19
					 Construction of the William Res Con- traction of the Article Construction 	14-1400
2000			10	¶,	and a consequences	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	INVEYIGATION	+	• · · · · · · · · · · · · · · · · · · ·		and an age of	- 1. A.L.
2061	CONSTRUCTION (TF REQUIRED)	690			e ee ee	- G.
-		- <u> </u>	┿━━_ ┿── ──	<u>↓</u> · · · · · · · · · · · ·	1	
SITE	RIVERS NOE AND ASHOP	·		+		2
1998	SL BMUSSION OF BUSINESS PLAN		· · · · · · · · · · · · · · · · · · ·			
f -	PRADSIM INVESTIGATION	┽╾╴╺┽┈╴╴			Part in the second second	
1999	INVESTIGATION AND DEBIGN				eratie .	
_	PLANNING AND CONSENTS					
2000	CONSTRUCTION		2000 100	╀╼╌┼╸╶──		1 1 1
		+	+		(1)	
SITE	KAINWORTH WATER	+	+			
1995	SUBMISSION OF BUSINESS PLAN	+ <u> </u>	+ ·)	
		►				
1999	GROUNDWATER INVESTIGATION	<u> </u>	+		P	1
2000	DIVESTIGATION AND DESION	+	┿╾╺─┼╴──			
	PLANNING AND CONSIDNIS					
Γ		+ <u></u>				
2001	<u></u>		100 <u>100</u>			
 			++			
SITE	CROXDEN BROOK					
-		+l				
1441	SOUPSSION OF BUSINESS FLAN	+	+		ſ	
1977	INVESTIGATION AND DESIGN					
	PLANNING AND CONSENTS	+	┾_ ╾┼ ──	·		
2000				25 0	and the second	14.12
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		،				

Our ref: JR/JA Your ref:



Date: 3 December 1998

Gibbs Limited Gibb House London Road Reading Berkshire RG6 1BL FAO: Mr N Widgery

Dear Nigel

•

#### AMP3 BENEFIT ASSESSMENTS

With reference to your letter of 24 November and enclosures, I have the following comments:

Final Report, we need 15 copies, one which is unbound.

Business Cases, I agreed to the design of the cover sheet and Table of Contents as illustrated.

With reference to the Final Report here are my comments:

- 1. In all cases when the expenditure for the Environment Agency is shown red in the enclosed spreadsheet this indicates that the Agency will be carrying out the works required under this section but will be recharging their costs to the Water Companies. This is not as it is set out in the Table 'Estimated Costs of the Preferred Option (£000)'. Where necessary would you please modify these tables, maybe with a note and number.
- 2. Croxden Brook Table 3.1, Option 4. The description is incorrect. The new borehole is for supply to public water company. The existing boreholes at Great Gates will be used to supply the compensation feed to the brook.
- 3. Croxden Brook Para 3.8. 4 paragraph Inflow of compensation water will not affect the pools on Croxden Brook.
- 4. Croxden Brook Table 4.4 EA bedlining costs would be recharged to STW under AMP3
- 5. Dover Beck Table 4.13 Agency Capex £67 would be recharged to STW under AMP3.
- 6. Rainworth Water Para 6.5 2 paragraph

#### Cont/d..

Environment Agency Sapphire East, 550 Streetsbrook Road, Solihull, B91 1QT DX 702280 Solihull 3 Tel: 0121-711 2324 Fax: 0121-711-5824



		Should have some comment on the benefits of extra water flowing through SSSI. This being the reason for choice of option 2.
7.	Battlefield	Para 7.9 2000 Construction – Wildmoor outflow 2001 Construction (if required) Washingstocks outflow
8.	Blakedown	Table 8.15 Capex 135 Opex 5 would be recharged to Severn Trent under AMP3. 4268 ³ – what does 3 mean.
9.	Hewell Grange	Para 10.8. 4 para Full capacity not full supply level as it cannot supply anything.
10.	R Sherbourne	Table 11.10 Copex £135 and Opex 4 will be recharged to Severn Trent under AMP3

- 2 -

Yours sincerely

 $\bigcirc$ 

١.

John Ratel. 16

J RATCLIFFE Senior Hydrologist (Resource Planning)

- -

	stw		STW		EA	
	REPLACEME	ENT COST	COMPENSAT	ION OPTION	COMPENSAT	ION OPTION
	CAPEX		CAPEX	OPEX	CAPEX	OPEX
	l	·				
ITE DOVER BECK AND OXTON DUMBLE			_}		+	
THE SUBAUSSION OF BUSINESS PLAN						
			+			
1999 INVESTIGATION AND DESIGN				_		
PLANNING AND CONSENTS						
2000 CONSTRUCTION PART 1		ļ			60	0 •
2001 CONSTRUCTION PART2	690			9	720	
SITE HEWELL GRANGE	1				·	
					+	
1998 SUBMISSION OF BUSINESS PLAN						4
	<u> </u>	<u> </u>				
1999 INVESTIGATION AND DESIGN						
PLANNING AND CONSENTS	ļ	╡─────			ļ,,	
GROUNDWATER INVESTIGATION		┥				
	690	† ——	10		<u> </u>	
INVESTIGATION						
/	†	1				•
SITE BURNTWOOD POOLS AND RIVER SO	<u>N</u>	<u>                                     </u>				
	<u> </u>	┟────				
1998 SUBMISSION OF BUSINESS PLAN	<u> </u>	┼────				4
	<u> </u>	<u> </u>		<u>.</u>	·	
1999 INVESTIGATION AND DESIGN			- <del> </del>			
PERINING AND CONSERVES	<u>†</u>	<u> </u>		••••••••		
2000 CONSTRUCTION	690		10	3		
SITE BLAKEDOWN BROOK						
		ļ		- <u>.                                    </u>		
1998 SUBMISSION OF BUSINESS PLAN						4
			1000			
INVESTIGATION AND DESIGN	<u> </u>	<u> </u>	1000			13
PLANNING AND CONSENTS	<u> </u>	<u> </u>	╂───┦		├────┤	
GROUNDWATER INVESTIGATION	<u> </u>	<u> </u>	1			<b>~</b>
2000 CONSTRUCTION PART 1	690		I	30	120	5
		<u> </u>			└────┤	
2001 CONSTRUCTION PART 2(SSWC)	5(4)	<u> </u>	2(8)	<u> </u>	<u> </u>	5
LONGTERM	3600	}	╂─────┤		┝	
	5500	ŀ	┨─────┤		┝}	<u>.</u>
SITE RIVER SHERBOURNE			1 1		<b>—</b> —	
					├──── <u></u> {	<u>-</u>
1998 SUBMISSION OF BUSINESS PLAN						4
1999 INVESTIGATION AND DESIGN						15
PLANNING AND CONSENTS			<b>↓</b>			
	<u> </u>		╆			
2000 CONSTRUCTION PART 1	1379		10	4	120	4
	600	<u> </u>	10			<u> </u>
ZWICONSTRUCTION PARTZ	0,00					4
LONGTERM	4930		<u>┼╼</u> ──┤		┝───────	
	·	L				

. . .

- -

		STW	<u>ا</u>	STW	l	EA	
		REPLACEME	NT COST	COMPENSA	IONOPTION	COMPENSAT	ION OPTION
		CAPEX		CAPEX	OPEX	CAPEX	OPFX
ir F	RIVER WORFF	+			·	·	
1998	SUBMISSION OF BUSINESS PLAN	·					1
	CONSTRUCTION OF SHEIFFHALES PIPELINE	3148		300	32		
	INSTALLATION OF MONITORY EQUIPMENT					10	
			1				
1999	INVESTIGATION AND DESIGN				32		··
	DIANNING AND CONSENTS		t	1		t	
	PEANING AND CONDUCTS	<u>+</u>				1	
20430	CONSTRUCTION	2068		10			
1.12	INVESTIGATION						
2601	CONSTRUCTION(IF REGUIRED)			10	52		
	LONGTERM	6137			100 C		·
				· · · · · · · · · · · · · · · · · · ·		<u>├</u> ───	
1 11 12	POW BDOOK	<u> </u>					
IIE.	BUW BROOK			<u> </u>		· · · · · · · · · · · · · · · · · · ·	
		ļ					
1998	SUBMISSION OF BUSINESS PLAN	Į		·			4
	INSTALLATION OF MONITORY EQUIPMENT					15	
1000	INVESTIGATION AND DESIGN	- 22	Ì	1	·	<u> </u> ───	
	DI A NNING AND CONSENTS	<u>+</u> -		1	<u> </u>	<u>                                     </u>	
-			<u>├</u>	1		<u>├</u> ───-}	
1				<u> </u>		┟┧	
2000	CONSTRUCTION	1379		10	12	l	
				L		Î	
						<del></del>	
ITE	BATTLEFIELD BROOK						
				<u> </u>			
1000				<u> </u>		<u>├</u>	
1998	SUBMISSION OF BUSINESS PLAN			<u> </u>		<u>├────</u> ┤	4
				<u> </u>			<u> </u>
1999	INVESTIGATION AND DESIGN						
	PLANNING AND CONSENTS						
2000	CONSTRUCTION	690		10	8		
	INVESTIGATION						
						<u> </u>	
		600	ļ			-	·
2001	CONSTRUCTION(IF REGURED)			10	10		
		• • •		ł		!	· · · · · · · · · · · · · · · · · · ·
ITE	RIVERS NOE AND A SHOP						
							· · · · · · · · · · · · · · · · · · ·
1998	SUBMISSION OF BUSINESS PLAN					······	4
	PHABSIM INVESTIGATION						
				i			
				<u> </u>		<b> </b>	
19	INVESTIGATION AND DESIGN				·	<b> </b>	<u> </u>
-	PLANNING AND CONSENTS	l		<u> </u>	······································	<b>I</b>	<u> </u>
		<b></b>	L	L		I	
2000	CONSTRUCTION			200			
те	PAINWOPTH WATEP	<u> </u>		<u>† ──-</u> {		-	
I E	AAAWUATH WATER	<u> </u>		┼───┤			
				·h			
1998	SUBMISSION OF BUSINESS PLAN	<u> </u>					4
1999	GROUNDWATER INVESTIGATION						10
				1			
7000	INVESTIGATION AND DESIGN			<u>├</u> ───┤		<u> </u>	
	DI ANNING AND CONSENTS	ł		┼───┤			
		<u>}</u>		┼───┤			
		<b> </b>		<b>├</b> ─────┤			
2001	CONSTRUCTION	1379		┝	18	200	
							_
		1		1			
TE	CROXDEN BROOK	<u> </u>					
نله ه .	Chengen Brook	†		┼───┤			<u>.</u>
		╂────┥		├────┤			
1998	SUBMISSION OF BUSINESS PLAN	ļ		<u> </u>			4
						T	
1999	INVESTIGATION AND DESIGN	1					
	PLANNING AND CONSENTS	1 1		<u>├──</u>			
		<u>}</u> ───┤		┢╌──┤			
		<u> </u>					
2000		690		80	4	25	0
		ļ		ļ!			
				<u> </u>			

Appendix 2

•

•

•

**Burntwood Pools / River Sow** 

### Burntwood Pools / River Sow

-

-

.

-----

Stafford Borough Council	-	Paul Windmill 01785 223181
Staffordshire Borough Council	-	Rebecca Gibson (Council Tax) 01785 249701
Staffordshire Wildlife Trust	-	Mike Deegan 01189 508534
Environment Agency	-	Dave Gribble 01785 211300

U:\Projects\Midlands\Reports\Contacts.doc

## <u>General</u>

<b>Ramblers Association</b>	- ÷0	0171 582 6878
Countryside Commission	÷	0171 831 3510
<b>Office National Statistics</b>	0.0	0171 233 9233
Halifax Building Society's Statisti	cal Service	01422 333 333
Talking Pages	C-	0 <b>8</b> 00 600 900

#### Burntwood Pools

At the present time there are two options to be considered to enhance flows on the upper reaches of the River Sow. In both cases the compensation release will be made from existing boreholes and will discharge to the river upstream of the fishing pool adjacent to Fairoak Grange. Option 1 is for a release of 1 Ml/d and Option 2 for a release of 2 Ml/d.

The gauging station at Walkmill will be used to regulate the compensation. This trigger will be when Q50 (4.061 Ml/d) has been reached. Similarly a second trigger will be used to stop the release. In the case of Option 1 the flow will be 5.061 Ml/d and Option 2 it will be 6.061 Ml/d.

Enclosed are copies of:-

Α	Duration/Frequency Graph	Walkmill	1990-1997
В	Duration/Frequency Table	Walkmill	1990-1997
С	Mean Daily flow against time	Walkmill	1990-1997

There are very few current meter runs upstream of the Walkmill GS, but for a limited period in 1983 flow readings were measured at the outflow from Burntwood pools (record enclosed). There is also information that the brook between Burntwood pools an 1 Km downstream dry up during 1997. We have no dates to confirm the length of this period.

The abstraction which is thought to be causing the reduction is baseflow started in 1980, I enclose a summary of the average daily abstraction for each year of its operation.

After discussion with Agency staff it is considered that both option 1 and 2 would cause the rewatering of 3.0Km of water course and provide significant increase in flow for a further 11.0 Km. This would be upto the discharge from Severn Trent Water WTW at Eccleshall.








•



### E. A. Midlands - Headquarters Hydrometry

HYDROLOG Anchive Report

LICE	NCE DETAILS					TREAT	MENT:				
23/32.74	ZONE:	STOKE	<u>énerme</u>	and the second	and the second	G	ROUP:	ANG COMMENTS OF CONTRACT OF	and the second second		
HOUR	0.13	DAY:	.05	YE	AR: 1.81	10000000000000000000000000000000000000	UP	DATE YEAR:			
TYPE:	N	TIE	Cristiania - E	er Staars	SIC: 170	TTER	HE UNITED	METER	57		
1976:	Section of the sector sector	2014 - 1994 - 2015 - 1 	1984:		Solo Strateur:	0.72	1992		0.9		
1977:			1985:			0.02	1993		0.7		
1978:			1986:			0.91	1994		0.8		
1979:			1987:			1.48	1995		0.9		
1980: ]		1.91	1988:	1.39					0.93		
1981:		1.24	1989:	Ministration	A.J.						
1982:		1.68	1990:	-	and in the second	1.02	1998				
1983:	-	1.3	1991:2			0.75	NIT	RATE			
NOTES		¥	Add reco	a rd	Find a n using Keyw	ecord y a ord	Da ta	View itabase in ble format	Quit ACCES S		
									Print		

Consider noduction : Lie to compensate Jugbank.

Yearly 1.81 say to 1.00

Washoat Burntusood, what Q

utput from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd ong Term Statistics Printed on 29/01/1998 at 15:11 hrs

#### E. A. Midlands - Headquarters Hydrometry

uth. DC. I eport erame hits	Ref. Desc. Type eter	: 4840 : SOW : Dura : Flow : Ml/d	tion/Fre	equency		Station Catchmen Grid Re: Gauge Zo Catchmen	Name : nt Ref. : f. : ero : nt Area :	WALKMI UT SJ 793 89.201 10.600	ILL 3298 L MAOD ) Sq Km	
eriod	1	: 01/0	7 <b>/1989 t</b>	:0 31/12	2/1997	Start o	f Day :	09:00	GMT	÷.
halys	sis peri	iod : Ca	alendar	Year		2				
I	DAILY ME	EAN VAL	UE EXCEI	EDED STA	ATED AM	OUNT FOI	R GIVEN	PERCENT	TAGE OF	TIME
	0	1	2	.3	4	5	6	7	8	9
0%		9.677	8.726	8.294	7.603	7.258	6.998	6.826	6.653	6.480
108	6.307	6.221	6.134	6.048	5.962	5.789	5.702	5.616	5.530	5.443
208 208	5.443	5.357	5.270	5.270	5.184	5.098	5.011	5.011	4.925	4.838
308	4.838	4.752	4.752	4.666	4.666	4.579	4.579	4.493	4.493	4.406
108	4.406	4.320	4.320	4.320	4.234	4.234	4.147	4.147	4.147	4.061
508	4.061	4.061	3.974	3. <b>97</b> 4	3.88 <b>8</b>	3.888	3.888	3.888	3.802	3.802
308	3.802	3.715	3.715	3.715	3.629	3.629	3.542	3.542	3.456	3.456
70용	3.456	3.456	3.370	3.370	3.283	3.283	3.283	3.197	3.197	3.197
308	3.110	3.110	3.024	3:024	2.938	2.938	2.851	2.851 [.]	2.765	2.678
}0 <del>8</del>	2.678	2.592	2.506	2.506	2.419	2.333	2.160	1.987	1.814	1.642

### SUMMARY STATISTICS FOR ANALYSIS PERIOD

Maximum Daily Mean Value	=	15.034	Minimum Daily Mean Val.	=	1.123
TA Daily Mean (Lin Calc)	=	4.341	Median Daily Mean Value	=	4.061
JTA Daily Mean (Log Calc)	=	4.079	Log Standard Deviation	=	0.354
Actual 95% Daily Mean	=	2.333	Calc 95% Daily Mean	=	2.280
-			(Log-Normal distribution assumed)		
Jumber of values used	=	2557			
first year used	=	1990			
last year used	=	1997			а.
Jumber of years used	=	7 out of a	В		
)nly complete calendar vez	 a r:s	s of data i	used		

Jutput from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd png Term Statistics Printed on 29/01/1998 at 15:12 hrs E. A. Midlands - Headquarters Hydrometry Station Name : WALKMILL uth. Ref. : 4840 : SOW Catchment Ref.: UT pc. Desc. Grid Ref. : SJ 793298 Gauge Zero : 89.201 MAOD eport Type : Duration/Frequency 'arameter : Flow Catchment Area: 10.600 Sg Km hits : Ml/deriod : 01/07/1989 to 31/12/1997 Start of Day : 09:00 GMT halysis period : Calendar Year DATA FREQUENCY ANALYSIS aily Mean DMV as % values Range of values of DMV No. in lue(DMV) % of LTA exceeding From To Range 

 ue (DMV)
 % of LTA
 exceeding
 From

 15.034
 346.334
 0.000
 >
 15.034

 14.000
 322.523
 0.039
 14.000

 12.000
 276.448
 0.156
 12.000

 11.000
 253.411
 0.235
 11.000

 9.900
 228.069
 0.978
 9.900

 8.900
 205.032
 1.564
 8.900

 8.100
 186.602
 3.363
 8.100

 7.300
 168.172
 4.849
 7.300

 6.600
 152.046
 8.017
 6.600

 5.900
 135.920
 14.157
 5.900

 5.300
 122.098
 21.744
 5.300

 4.800
 110.579
 30.309
 4.800

 4.300
 99.060
 43.410
 4.300

 3.900
 89.846
 53.969
 3.900

 3.500
 80.631
 67.775
 3.500

 2.600
 59.897
 90.458
 < 0 14.000 - 15.034 1 12.000 - 14.0003 11.000 - 12.000 9.900 - 11.000 2 19 9.900 15 8.100 - 8.900 7.300 - 8.100 6.600 - 7.300 5.900 - 7.500 46 - 38 81 8⊥ 157 194 219 335 270 353 235 227 2.600 - 2.900 2.300 - 2.600 2.100 - 2.300 1.900 - 2.100 1.700 - 1.900 1.500 - 1.700 1.400 - 1.500 1.200 - 1.400 1.123 - 1.200 < = 1.123118 116 33 38 20 19 9 7 1 <= 1.123 1 . . SUMMARY STATISTICS FOR ANALYSIS PERIOD Aximum Daily Mean Value = 15.034 TA Daily Mean (Lin Calc) = 4.341 Actual 95% Daily Mean = 2.333 Minimum Daily Mean Value = 4.061 Modal Daily Mean Value = 3.756 (Class Interval 5% of median value) Tumber of values used = 2557 irst year used = 1990 ist year used = 1997 = 1997 Tumber of years used = 7 out of 8

Appendix 3

**Croxden Brook** 

## Croxden Brook

Halifax Property Services	-	01785 259321
Stafford Borough Council	-	Rebecca Gibson 01785 223181
Environment Agency	-	Ann Dacey 01543 444 141
Mailing Office for Croxton	÷	01889 562346
Mailing Office for Cheadle	÷	01538 752 101
Uttoxeter County Council	÷	01889 564 085
East Staffordshire County Council	•	01283 50 80 00
Staffordshire Moorlands District Council	•	01538 48 34 93
Heritage Centre	-	<b>Mr</b> Nickson 01889 567 176
English Heritage	-	0171 973 3000
The Raddle Pub, Hollington	-	01889 507 278
Local Ramblers Association Member	-	Mr Loadwich 01785 284 359
District Secretary	•	Mr D Hewitt 01889 563 474

-----

•

••••

•

6

•

•

(

# <u>General</u>

<b>Ramblers Association</b>	-	0171 582 6878
Countryside Commission	- :	0171 831 3510
<b>Office National Statistics</b>	-	0171 233 9233
Halifax Building Society's Statistic	al Service	01422 333 333
Talking Pages	10 <del>-</del> 1	0800 600 900



.

#### Croxden Brook

During 1993 a trial compensation release was undertaken into the Winnothdale Brook to see how well the watercourse could transfer water to the downstream gauging station at Greatgate. This trial identified a problem with water leaking through the brook bed before it reached the gauging station. The Agency in conjunction with Severn Trent Water is to define the length of brook coarse which requires lining, with the expectation that this cost will be part of the AMP3 submission.

Therefore for the purpose of the benefit assessment it should be considered that all water released as compensation will remain in the watercourse till its confluence with Nothill Brook.

The options to be considered are

- 1 A compensation release of 1.0 Ml/d at all times at release point A
- 2 A compensation release of 2.0 Ml/d at all times at release point A
- 3 A compensation release of 1.0 Ml/d at release part A and 1.0 Ml/d at release part B. Both releases to be in operation 365 days/annum.

Note see enclosed map.

The gauging station at Greatgates has now had its record processed for the period 1995-1997. No trigger flow has been put forward as the MLF's artificial influences suggest a Q95 of 4.0  $Ml/d \pm 0.67$  and the actual flow record doesn't contain a flow of this magnitude. Therefore for this analysis it should be assumed that the compensation release will be in operation 365 days/annum.

Enclosed are copies of:-

- A Duration/Frequency Graph Greatgates 1997
- B The above with 1995 comparison
- C The above with 1996 comparison
- D Mean daily flow against time

The following length of water course will be improved by the various options

Option 1	rewater significant increase in flow	0.7 Km 3.0 Km
Option 2	rewater significant increase in flow	0.7 Km 3.0 Km
Option 3	rewater significant increase in flow	0.7 Km 3.0 Km

Output from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd SUMMARY REPORT Printed on 10/02/1998 at 13:47 hrs Page 2 of 3 

E. A. Midlands - Headquarters Hydrometry

Auth. Ref.	: 4130	Station Name : GREAT GATE
Loc. Desc.	: CROXDEN BK	Catchment Ref.:
Report Type	: Daily Means For Yr.	Grid Ref. :
Parameter	: Flow	Gauge Zero : 0.000 MAOD
Units	: ML/d	Catchment Area: 0.000 Sq Km
Period	: 1996	Start of Day : 09:00 GMT

1													
1	1.120	0.8158	0.774	0.737	0.768M	0.611	0.429	0.380E	0.289	0.164	0.073	0.141	
2	1.111	0.827E	0.786	0.749	0.758	0.606	0.431	0.387E	0.289	0.150	0.079	0.158	:
3	1.035	·0.846E	0.789	0.749	0.747	0.602	0.490	0.342E	0.290	0.261	0.099	0.406	
4	1.017 •	0.852E	0.796	0.733M	0.715	0.581	0.433	0.358E	0.302	0.233	0.119	0.229	4
5	1.129	0.8885	0.819		0.715	0.581	0.426	0.350E	0.226	0.193	0. <b>0</b> 98	0.164	9
6	1.142	0.895E	0.822		0.715	0.583	0.515	0.437E	0.213	0.192	0.093	0.128	(
7	1.139	0.889E	0.801	· · ·	0.713	0.668	0.532	0.355E	0.205	0.185	• 0.061	0.102	:
8	1.106	0.856E	0.800		0.685	0.622	0.519	0.322E	0.205	0.191	0.048	0.104	1
9	1.114	0.927E	0.807		0.688	0.599	0.537	0.352	0.205	0.19D	0.043	0.103	9
10	1.022	0.931	0.874		0.709	0.587	0.528	0.385	0.203	0.182	0.041	0.083	10
11	0.985	1.012	0.870		0.681	0.639	0.384	0.345	0.209	0.182	0.041	0.055	13
12	0.945	1.056	0.789		0.631	0.570	0.364	0.331	0.207	0.182	0.029	0.023	12
13	0.910	0.843	0.936		0.642	0.462	0.354E	0.317	0.198	0.182	0:022	0.022	1
14	0.890	0.807	1.216		0.635	0.443	0.338E	0.320	0.193	0.182-	0.010	- 0.014	14
15	0.988	0.814	0.961		0.646	0.433	0.331E	0.328	0.193	0.182	0.006	0.006	15
16	0.860	0.800	0.891		0.647	0.478	0.349E	0.321	0.199	0.182	0.022	0.006	16
17	0.808	0.961	0.872		0.647	0.483	0.326E	0.331	0.205	0.167	0.042	0.006	17
18	0.803	1.178	0.861		0.678	0.501	0.396E	0.311	0.205	0.167	0.022	0.133	18
19	0.785	0.876	0.889		0.678	0.477	0.354E	0.274	0.256	0,109	0.081	0.237	19
20	0.814	0.814	0.867		0.613	0.471	0.356E	0.280	0.216	0.177	0.051	0.160	20
21	0.821	0.824	0.950		0.591	0.471	0.4048	0.262	0.201	0.097	0.022	0.124	21
22	0.804	0.845	0.949		0.664	0.471	0.414E	0.285	0.194	0.095	0.013	0.117	22
23	0.819F	0.865	0.982		0.817	0.464	D.414E	0.290	0.193-	0.094	- 0.045	0.114	23
24	0.838F	0.894	0.919		0.768	0.471	0.380F	0.296	0.198	0.089	0.122	0.118	24
5	D 850F	0 907	0 878		0.655	0.471	0.354F	0.283	0.195	0.099	0.275	0.112	25
26	0.852F	0.847	0.862		0.649	0 476	0 3935	0.357	0.197	0.074	0.105	0.104	26
20 27	D AJAF	0.000	0 824		0.611	0 404	0 402F	0.292	0 175	0.096	0.055	0 116	27
9	0.0312	0.764	0.024		0.610	0.426	0.402C	0 271	0.179	0.050	0.055	0.110	26
20	0.0300	0.704	0.022		0.647	0.306	0.0100	0.277	0 101	0.109	0.206	0.034	20
29	0.02/0	0.700	0.00/		0.047	0.330	0.475	0.277	0.101	0.009	0.230	0.100	23
30	0.832E		0.780		0.616	0.415	0.448E 0.418E	0.278	0.139	0.108	0.102	0.085	31
L				0 142			0 427		 0 313				
nean	0.928	0,8/0	0.003	U./42	0.017	0.510	U.423	0.427	0.202	0.152	0.078	0.111	
	1.142	1.178	1.210	U.749	0.81/	0.008	0.010	0.43/	0.302	0.201	0.290	U.400	
ay of Nax.	6	18	14	2	23	/	28	0	4	3	29	3	
110	0.785	0.764	0.774	0./33	0.591	0.395	0.326	0.262	0.159	0.068	0.005	0.006	
Day of Min.	19 	28 	1	4 	21 <b>-</b>	29 	17	21 	30	30 	15 	16 	
fota) (TCH)	29	25	27	3	20	15	13	10	6	5	2	3	•
Runoff (mm)	N/A	N/A	N/A	N/A N	A N/A	N/A	N/A	N/A	N/A	H/A	N/A	•	

Output from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd SUMMARY REPORT Printed on 10/02/1998 at 13:47 hrs Page 3 of 3 ------_____

E. A. Midlands - Headquarters Hydrometry

1

-----

---

Auth. I Loc. De Report Paramet Units Period	Ref. ≥sc. Type ter	: 4130 : CROXDEN BK : Daily Means For Yr. : Flow : Ml/d : 1997						Station Name : GREAT GATE Catchment Ref.: Grid Ref. : Gauge Zero : 0.000 MAOD Catchment Area: 0.000 Sq Km Start of Day : 09:00 GMT						
Day	Jan	Feb	Mar	Apr	May	Jun	 Jul	Aug	Sep	0ct	Nov	Dec	Day	
1	0.080	0.037E	0.511	0.097	0.029	0.041	0.379	0.045	0.055	0.034	0.000E	0.038	 l	
2	0.078	0.035E	0.520	0.098	0.023	0.041	0.331	0.041	0.048	0.037	3000.0	0.008E	2	
3	0.070	0.033E	0.485	0.090	0.038	0.040	0.328	0.040	0.122	0.037	0.000E	0.001E	3	
4	0.065	0.031E	0.485	0.085	0.039	0.039	0.294	0.038	0.034	0.028	0.000E	0.000E	4	
5	0.065	0.020E	0.488	0.063	0.111	0.035	0.261	0.035	0.031	0.027	0.000E	0.000E	5	
6	0.067	0.018	0.306	0.057	0.050	0.041	0.251	0.034	0.020	0.003	0.000E	0.001E	6	
7	0.064	0.023	0.268	0.055	0.094	0.041	0.242	0.032	0.011	0.054	0.017E	0.004E	7	
8	0.071E	0.015	0.253	0.055	0.091	0.041	0.249	0.029	0.013	0.146	0.054	0.008E	8	
9	0.031E	0.016	0.229	0.055	0.077	0.065	0.249	0.030	0.014	0.067	0.026	0.018E	9	
10	0.030E	0.029	0.212 (	0.054	0.085	0.084	0.241	0.039	0.020	0.032	0.043	0.035	10	

Data Co	des :	E	Abov - Edi	e sum ted	nary i ? - S	s for Suspec	Dail t	y Mea U -	ns of Unche	Flow ecked	M	- Mis	sing	
Total (TCM) Runoff (mm)	1 N/A	6 N/A	7 N/A	2 N/A N	3 /A N//	4 N/A	7 N/A	2 N/A	1 N/A	1 N/A	1 N/A	17		_
Day of Min.	20	8	31	24	2	5	31	17	19 	27	1	5		-
Hia	0.020	0.015	0.101	0.032	0.023	0.035	0.047	0.011	0.001	0.000	0.000	0.000		
Day of Max.	1	26	2	2	20	28	1	-31	3	8	28	28		
Haximum	0.080	0.854	0.520	0.098	0.216	0.528	0.379	0.163	0.122	0.146	0.100	1.701		
 Hean	0.046	0.210	0.225	0.051	· 0.103	0.146	0.223	0.051	0,019	0.030	0.019	0.542		•
31	0.0408		0.101		0.041		0.047	0.163		0.000E		1.556	31	
30	0.042E		0.101	0.034	0.056	0.423	0.048	0.075	0.032	0. <b>000</b> E	0.055	1.590	30	
29	0.044E		0.103	<b>v0.033</b>	0.111	0.502	0.051	0.083	0.024	0.000E	0.090	1.477	29	
28	0.047E	0.648	0.110	0.068	0.135	0.528	0.068	0.128	0.018	3000.0	0.100	1.701	28	
27	0.049E	0.669	0.127	0.046	0.135	0.299	0.079	0.076	0.016	0.000E	0.009	1.470	27	
26	0.052E	0.854	0.134	0.067	0,136	0.331	0.081	0.034	0.011	0.000E	0.008	0.902	26	
25	0.055E	0.527	0.136	0.075	0.151	0.248	0.086	0.074	0.008	0.001	0.003	0.918	25	
24	0.057F	0.624	0.155	0.032	0.139	0.146	0,179	0,140	0,005	0.004	0,004	1.079	24	
23	0.060F	0.434	0.159	0.033	0.153	0.199	0.273	0.045	0.004F	0.005	0.004	1.233	23	
27	0.045	0.307	0.105	0.033	0.103	0.194	0.24/	0.031	0.0020	0.019	0.019	0.504	21	
20	0.020	0.541	0 165	0.033	0.210	0.100	0.243	0.01/	0.0025	0.023	0.040	0.003	20	
20	0.020	0.140	0.1/0	0.035	0.216	0.001	0.242	0.017	0.001E	0.027	0.029	0.774	- 19 19	
10	0.0245	0.003	0.120	0.043	0.130	0.001	V.25/	0.020	0.0035	0.032	0.0055	1.50/	10	
19	0.024E	0.084	0.148	0.045	0.110	0.081	0.289	0.010	0.003E	0.035	0.00UE	0.182	1/	
16	0.0255	0.049	0.154	0.034	0.103	0.0/8	0.308	0.015	0.0075	0.054	0.000	0.139	10	
15	0.0265	0.044	0.181	0.034	0.096	0.075	0.309	0.01/	0.00/E	0.057	0.000	0.130	15	
14	0.02/1	0.052	0.272	0.034	0.088	0.0/3	0.285	0.025	0.0105	0.058	0.003	0.098	14	
12	0.02/E	0.060	0.160	0.034	0.089	0.076	0.248	0.038	0.009E	0.026	0.017	0.091	13	
12	0.028E	0.058	0.165	0.035	0.092	0.086	0.245	0.034	0.016E	0.031	0.020	0.087	12	
11	0.029E	0.048	0.192	0.042	0.081	0.089	0.243	0.061	0.026	0.050	0.026	0.097	11	
10	0.0305	0.029	0.212	0.054	0.085	0.084	0.241	0.039	0.020	0.032	0.043	0.035	10	
9	0.031E	0.016	0.229	0.055	0.077	0.065	0.249	0.030	0.014	0.067	0.026	0.018E	9	
8	0.071E	0.015	0.253	0.055	0.091	0.041	0.249	0.029	0.013	0.146	0.054	0.008E	8	
7	0.064	0.023	0.268	0.055	0.094	0.041	0.242	0.032	0.011	0.054	0.017E	0.004E	7	
6	0.067	0.018	0.306	0.057	0.050	0.041	0.251	0.034	0.020	0.003	0.000E	0.001E	6	
5	0.065	0.0208	0.488	0.063	0.111	0.035	0.261	0.035	0.031	0.027	0.000E	0.000E	5	
4	0.065	0.031E	0.485	0.085	0.039	0.039	0.294	0.038	0.034	0.028	0.000E	0.000E	4	
3	0.070	0.033E	0.485	0.090	0.038	0.040	0.328	0.040	0.122	0.037	0.000E	0.001E	3	
2	0.078	0.035E	0.520	0.098	0.023	0.041	0.331	0.041	0.048	0.037	3000.0	0.008E	2	
4	0.000	v.v.)/c		0.03/	V. V2 3	0.041	0.3/3	0.045	0.000	0.034	0.000	0.000	L	



$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$	
	·.	
66.301 66.575 66.849 67.123 67.397 67.397 67.397 68.219 68.493 68.493 68.767 69.315	70.659 70.685 70.685 71.50 685 71.50 72.655 73.659 73.659 73.659 73.659 74.551 73.659 74.551 73.659 73.659 74.551 751 751 751 751 751 751 751	75.058 75.342 75.342 75.342 75.6164 775.65 775.65 816 777.58 816 777.58 816 777.58 816 777.58 816 777.58 816 777.58 816 777.58 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 777.55 816 777.55 777.55 816 777.55 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 777.55 816 822 777.55 816 822 777.55 816 822 776 777.55 816 822 778 826 826 827 778 826 827 778 826 826 827 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 826 827 778 827 778 826 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 827 778 778
000000000000000000000000000000000000000		



Output from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd Long Term Statistics Printed on 11/02/1998 at 11:18 hrs

Auth. Loc.   Repor Parame Units	Ref. Desc. t Type eter	: 4130 : CROX : Dura : Flow : M17d	DEN BK	equency	Station Name : GREAT GATE Catchment Ref.: Grid Ref. : Gauge Zero : 0.000 MAOD Catchment Area: 0.000 Sq Km							
Perio	d	: 23/0	2/1995	to 04/0	2/1998	Start o	f Day	: 09:00	GMT			
Analy	sis per	iod : C	alendar	Year								
	DAILY M	EAN VAL	UE EXCE	EDED ST	ATED AN	OUNT FO	R GIVEN	PERCEN	TAGE OF	TIME		
	0	1	2	3	4	5	6	7	8	9		
0£		1.469	1.210	0.864	0.605	0.518	0.518	0.518	0.432	0.346		
10%	0.346	0.259	0.259	0.259	0.259	0.259	0.259	0.259	0.173	0.173		
20%	0.173	0.173	0.173	0.173	0.173	0.173	0.173	0.173	0.173	0.086		
30%	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086		
40%	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086		
50%	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.000	0.000		
60%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
70%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
808	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
90%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

E. A. Midlands - Headquarters Hydrometry

#### SUMMARY STATISTICS FOR ANALYSIS PERIOD

Maximum Daily Mean Value	=	1.728		Minimum Daily Mean Val.	=	0.000
LTA Daily Mean (Lin Calc)	=	0.136		Median Daily Mean Value	÷	0.086
LTA Daily Mean (Log Calc)	=	0.160		Log Standard Deviation	=	0.779
Actual 95% Daily Mean	=	0.000		Calc 95% Daily Mean (Log-Normal distribution assumed)	2	0.045
Number of values used First year used Last year used	1	365 1997 1997	÷			
Number of years used	=	1 out of	1			÷

Only complete calendar years of data used



Appendix 4

•

**Dover Beck** 

**Dover Beck** 

.

Epperstone Park Hatcheries	-	01159 664410
Grimesmoor Farm	-	Roger Burton
Gelding District Council		0115 967 0067
Newark & Sherwood District Co	ouncil	01636 605111

-

÷

U:\Projects\Midlands\Reports\Contacts.doc

# <u>General</u>

<b>Ramblers Association</b>	3	0171 582 6878
Countryside Commission	-	0171 831 3510
Office National Statistics		0171 233 9233
Halifax Building Society's Statistic	al Service	01422 333 333
Talking Pages	-	0800 600 900

#### Dover Beck

In the last month the Agency has commissioned the flow augmentation borehole at Oxton Golf Club. This will rewater the Dover Bcck from where the borehole water enters the beck to Beanford immediately downstream of Oxton Bogs. Downstream of this point through Thorndale Plantation all flow is lost.

The Agency will identify the length of watercourse which is leaking and arrange to lct a contract a scheme to line the affecting beck course. This investigation will be concentrated on the length of beck between Thorndale Plantation and Calverton Lido. Once this lining has been installed any outflow from the Agency borehole should be transferred onward to the River Trent.

The three options which should be considered for this alleviation site are:-

- Option 1 The sealing of the beck bed between Thorndale and Calverton Lido which will produce a 1.0 MI/d flow below Oxton Bogs when borehole is in operation. This is allowing a loss within Salterford Darn and Oxton Bogs of 1.5 MI/d.
- Option 2 The sealing of the beck bed will produce a 2.5 Ml/d flow below Oxton Bogs when borehole is in operation. (assuming zero loss above Oxton Bogs).
- Option 3 A compensation release into Oxton Dumble of 1M1/d adjacent to NGR SK 6460 5300.

The gauging station at Lowdham will be used to regulate the compensation release. This will stop the pumps at both sites (Oxton Golf Club and Oxton Dumble) when Q20 is exceeded and restarted them when the flow is below Q20 (15.03 Ml/d)

Enclosed are copies of:-

- A Duration/Frequency Graph Lowdham
- B Duration/Frequency Table Lowdham

C Mean Daily flow against time

Also enclosed is a separate diagram of the Dover Beck produced by Howard Humphreys which indicates the length which has been observed to be dry. This, in conjunction with Area staff knowledge enabled an estimation of the lengths being rewatered and the watercourse provided significant increases in flow. There are:-

		2.5
Option 1	rewater	3%5 Km
-	provide extra water	8 Km
		3.5
Option 2	rewater	475 Km
	provide extra water	8 Km
	Cal.	A C T/
Option 3	rewater	3.5 Km
	provide extra water	8 Km

If Option 1 + Option 3 considered or Option 2 + Option 3 then rewater would be 6.0 Km provide extra water 8.0 Km

schwordprochard/febi063 je

		TIS WHEN DAILY NEAN 2020			4			Ophin 1+3	1 2010-1	/		
M	is mild	NO: OF DE	87 54 60	27 43 66	95 25 25							
FCK AT LOWDHA	hu 50 10 10	YEAR	0661 6861 8861	2991 2991 1991	79991 29991 29991	······································						
DOVER 3									Q/1W	ላ።ይረ P 5·2 S 6·9	.те <i>к.</i> Р 6.6	
		a tana		/			а. А			D FLOWE SUT	5	•
				9		e 4				IRES.C.". BE		•
	100					; ( <i>F</i> //	9 () (	no] 1	ذ			





E. A. Midlands - Headquarters Hydrometry

HYDROLOG Archive Report





# E. A. Midlands - Headquarters Hydrometry

HYDROLOG Archive Report

						• • • • • · · · · ·	<u>2</u> .			
		1	E. A. M:	idlands	- Head	quarter	B Hydron	netry		
Auth. Loc. Repor Param Jnite	Ref. Desc. Ct Type neter	: 4060 : DOVI : Dura : Flow : Ml/0	) ER BECK ation/Fr d	requency	Y	Station Catchme Grid Re Gauge 2 Catchme	n Name ent Ref ef. Zero ent Area	: LOWDI : LT : SK 69 : 28.69 a: 69.00	HAM 53479 90 Maod 00 Sq Ki	m
Peric	d	: 01/	3/1972	to 31/	12/1997	Start d	of Day	: 09:00	0 GMT	
Analy	sis pe	riod : (	Calendar	r Year						
	DAILY N	MEAN VAI	UE EXCI	EEDED S	TATED A	MOUNT FO	OR GIVE	V PERCEI	NTAGE O	F TIME
	0	1	2	3	4	5	6	7	8	9
0%		64.714	46.483	38,102	33.264	30.586	28.080	26.006	24.278	22.89
10%	21.600	20.650	19.786	19.094	18.230	17.712	17.107	16.502	16.070	15.55
20%	15.034	14.602	14.256	13.910	13.565	13.219	12.874	12.528	12.269	12.01
30%	11.750	11.578	11.318	11.059	10.800	10.627	10.454	10.282	10.195	10.02
40%	9.850	9.763	9.590	9.418	9.245	9.158	8.986	8.899	8.726	8.64
50%	8.554	8.381	8.294	8.208	8.122	7:949	7.862	7.776	7.776	7.69
60%	7.517	7.517	7.344	7.258	7.171	7.085	6.998	6.912	6.826	6.73
70%	6.566	6.480	6.394	6.307	6.134	6.048	5.962	5.875	5.789	5.61
80%	5.530	5.357	5.270	5.184	5.011	4.925	4.838	4.752	4.666	4.49
90%	4.406	4.320	4.234	4.147	3.974	3.888	3.715	3.629	3.456	3.11
			SUMMAR	RY STAT	ISTICS	FOR ANAL	YSIS PE	RIOD		
Maxi LTA LTA Actu	.mum Dai Daily N Daily N Daily S Dal 95%	ily Mean Mean (L: Mean (Lo Daily N	n Value in Calc) og Calc) Mean	= 208 = 11 = 208 = 12	8.138 1.960 9.347 3.888	Minimu Mediar Log St Calc 9 (Log-Nor	m Daily Daily andard 5% Dail	V Mean Va Mean Va Deviati y Mean	Val. = alue = ion = =	2.1 8.5 0.6 3.2
Numb Firs Last Numb	er of wear year u er of y	values u used used vears us	sed	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9 3 7 out of 2	25				

y . . .

- 1

•

DOVER BECK: LOW FLOW CONDITIONS





Appendix 5

**River Ashop and River Noe** 

### Jaggers Clough

-

-

**Environment Agency** 

- Keith Easton 01159 455722
- Mat Linley 01159 455722
  - Stuart King 01773 520511
- Jim Lyons 01159 455722

### **Peak Forest Angling Club**

Mr Marwood 01949 815000

.

U:\Projects\Midlands\Reports\Contacts.doc

# <u>General</u>

i.

<b>Ramblers Association</b>	÷	0171 582 6878
Countryside Commission	-	0171 831 3510
Office National Statistics	-	0171 233 9233
Halifax Building Society's Statistic	al Service	01422 333 333
Talking Pages	-	0800 600 900

#### DERWENT VALLEY RESERVOIR COMPENSATION ARRANGEMENTS

#### **River Alport and Ashop**

There is no compensation requirement at the abstraction point from these two rivers into Derwent Reservoir. So that the river Ashop downstream of the confluence can be brought back as a salmonic fishery and enhance the appearance of the river, can you please consider the affect of compensation releases from the impounding structures. The options to be considered are discharge releases of 15 Ml/d and 10 Ml/d. The length of river to be rewatered would be 3Km.

#### River Noe

•••••

At present there is no compensation release at the River Noe diversion to Ladybower Reservoir. It was initially considered that the compensation release at Jagger Clough should be split between Jagger Clough and River Noe diversion. This has now been discounted. The water course below Jagger Clough is producing a reliable fishery and should not be modified. Therefore it has been decided that the Ladybower compensation release of 57Ml/d should be considered for variation. For this benefit assessment the modification to be considered is

Option 1	Compensation	Ladybower Res (York Br) River Noe diversion		47 MI/d 10 MI/d
Option 2	Compensation	Ladybower Res (York Br) River Noe diversion	÷	42 MI/d 15 MI/d

This is expected to improve the visual appearance of the River Noe as well as providing an additional salmonic fishery. The rewatered length of river would be 2km.

Enclosed is a copy of Severn Trent Water plc environmental assessment of the river Derwent, Drought Order which you will find helpful in relationship to the York Br compensation flows.

Note in all cases the compensation release will be for 365 days/annum.

Appendix 6

Rainworth Water

## **Rainworth Water**

.

Robert Thomas Farms	с. <del>с</del> .	01623 792239
Mark Strawson	÷.	01623 870421
J W Parker & Sons	-	01623 861074
J Mawer	÷.	01623 870953
Jack Singleton Bailiff at L Lake	÷	01623 796536
Centre Parcs		Anne Goodhead 01623 827400
Notts County Council		<b>Roger Alderson</b> 0115 982 3823
Bilsthorpe Post Office		01623 870243
Newark & Sherwood Distri	ct Council	01636 605111
L Lake		Mrs Derbyshire 01623 490731

U:\Projects\Midlands\Reports\Contacts.doc

# <u>General</u>

Ramblers Association		0171 582 6878
Countryside Commission		0171 831 3510
Office National Statistics	÷.,	0171 233 9233
Halifax Building Society's Statistic	al Service	01422 333 333
Talking Pages	-	0800 600 900

,
FROM ENVIRONMENT AGENCY



#### Rainworth Water

English Nature identified 'L' Lake as a site of Wetland SSSI vulnerable to Licensed surface and Groundwater abstraction. It is thought that the lake itself is situated on perched groundwater, but the woodland adjacent to the outfall stream could be influenced by public water abstraction from groundwater.

It has therefore been identified as a site where trials will be undertaken within the AMP3 Log up period to investigate this section of watercourse. The options being considered for the trial are:-

Option 1. Review Licence 70/3, and see if it would be practical too reinstall a pump set at the existing borehole. This would provide a compensation release of either l or 2 Ml/d and this release would be triggered by flows upstream of the Rainworth Water confluence with the Gallows Hole Dyke.

Option 2.

A new borchole upstream of 'L' Lake on the Northside Tributary, which will provide 1 or 2 Ml/d with the same triggers as Option 1.

Therefore there are 4 options to be considered

Option	1a	IMI/d
	15	2M1/d
Option	2a	1 <b>M1/d</b>
-	2Ъ	2M1/d

After discussion with Area it was discussed that the trigger site would be just upstream of the Rainworth Water confluence with the Gallows Hole Dyke. This site will have to be calibrated but for the requirement of this benefit assent would you consider the compensation releases by trigger by two flow levels, Q20 and Q50. This will enable the sensitivity of this parameter to be reviewed. If it is imperative that you have a Duration/Frequency Graph, please let me know.

The length of watercourse which will benefit from the compensate release are:-

Option 1.	Rewater	1.5 Km
_	Increase flow	8.5 Km
Option 2	Rewater	2.0 Кш
	Increase flow	8.5 Km

gtherodorodorod 12 jr

i

Appendix 7

•

•

•

•

Battlefield Brook

### **Battlerfield Brook**

-

**Ramblers** Association

**Bromsgrove District Council** 

Local Ramblers Contact

Tourist Information Bromsgrove

**Environment Agency** 

- 01527 873 232

0171 582 6878

- Mrs Woodbury 01527 873 441

- 01527 831809

- Glenn Hoban 0121 711 2324 John Ratcliffe 0121 711 2324 Mike Averill 01562 863 887

U:\Projects\Midlands\Reports\Contacts.doc

# <u>General</u>

Ramblers Association	-	0171 582 6878
Countryside Commission	.÷	0171 831 3510
Office National Statistics	÷	0171 233 9233
Countryside Commission - Office National Statistics - Halifax Building Society's Statistical Servic		01422 333 333
Talking Pages		0800 600 90 <b>0</b>

I HOM LITTINGIMET. HOLNET

•

#### 

### **Battlefield Brook**

Because of low flow within the Battlefield Brook, in 1992 the NRA (The Agency) set out to alleviate the problem downstream of Saunder Park (Bromsgrove). To enable this to be achieved the Agency had a new borehole drilled (NRG SO94807050) and installed a knife edge plate weir to monitor flow within the brook (Natural and borehole) (NGR SO95307070). This ensured that the watercourse from the borehole discharge to its confluence with the Spadesbourne Brook would base flow of 1.0 Ml/d. In practice this was not always achieved, the monitoring status Q95 is . Ml/d.

This scheme did not address low flow problems upstream of Saunders Park to Catshill and the Catshill Brook itself. The proposed next alloviation is to be undertaken of the Battlefield Brook but at present has not been developed to include the Catshill Brook.

The Options to be considered are:

- 1 To use existing Severn Trent Water plc borehole at Wildmoor (NGR SO958752) to provide 1 Ml/d compensation release.
- 2 To use existing Severn Trent Water plc borehole at Washingstocks (NGR SO960730) to provide 1 MI/d compensation release.

Both the above would be triggered by the gauging station in Saunders Park, with the trigger flow being Q20 (3.6 Ml/d). For the benefit appraisals you should produce figures for Option 1, Option 2 and Option 1 + 2. To assist with the above enclosed are

- A) Duration/Frequency Graph
- B) Duration/Frequency Listing
- C) Details produced by Howard Humphreys of low flow conditions on Battlefield Brook.

The lengths which will benefit from these compensation flows are:

i)	Option 1	rewatered 6Km	increased flow 6.2Km
ii)	Option 2	rewatered 2.5Km	increased flow 6.2Km
iii)	Option ]+2	rewatered 6Km	increased flow 6.2Km

Although the benbcfits have been calculated to Saunders Park eg 6Km from Wildmoor boreholc, it is considered that an additional length of the brook, down to Sugar Brook would be enhanced by these extra flows as well as providing dilution for the effluent from Bromsgrove (NGR SO95806820) which has a DWF of 9.9 MI/d. Output from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd Long Term Statistics Printed on 04/03/1998 at 11:40 hrs

. ...

#### E. A. Midlands - Headquarters Hydrometry

Auth. Ref.	: 26004	Station Name : BATTLEFIELD BROOK
Loc. Desc.	:	Catchment Ref.: US
Report Type	: Duration/Frequency	Grid Ref. : 50954706
Parameter	: Flow	Gauge Zero : 0.000 MAOD
Units	: Ml/d	Catchment Area: 0.000 Sq Km

Period : 18/08/1992 to 09/07/1997 Start of Day : 09:00 GMT

Analysis period : Calendar Year

	DAILY 1	MEAN VAI	LUE EXCH	SEDED ST	TATED A	MOUNT PO	R GIVEN	PERCEN	TAGE OF	TIME
	0	1	2	3		5	6	7	8	9
(										(
0\$		19.699	16.675	14.515	12,528	10.973	9.590	8.640	7.517	7.171
10%	6.739	6.134	5.616	5.270	5.011	4.579	4.320	4.147	3.974	3.802
20%	3.629	3.370	3.197	3.024	2.938	2.851	2.678	2.592	2.419	2.246
30€	2.245	2.074	1. <b>9</b> 87	1. <b>9</b> 87	1.901	1.814	1.642	1.555	1.555	1.555
40%	1.469	1.469	1.382	1.382	1.296	1.210	1.210	1.210	1.210	1.123
50%	1.123	1.037	1.037	1.037	1.037	0.950	<b>0</b> ,950	0. <b>950</b>	0.950	0.864
60%	0.864	0.864	0.864	0.864	0.864	0.778	0.778	0.778	0.778	0.778
70%	0.778	0.691	0.691	0.691	0.691	0.691	0.691	0.691	0.605	0.605
80%	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.518	0.518	0.518
90%	0.518	0.518	0.432	0.432	0.346	0.259	0.173	0.173	0.086	0.086

#### SUMMARY STATISTICS FOR ANALYSIS PERIOD

Maximum Daily Mean Value LTA Daily Mean (Lin Calc) LTA Daily Mean (Log Calc)		31.363 2.634 1.407	Minimum Daily Mean Val. Median Daily Mean Value Log Standard Deviation	II- II II	•	0.000 1.123 1.075
Actual 95% Daily Mean	=	0.259	Calc 95% Daily Mean (Log-Morma) distribution assumed)	=		0.240
Number of values used First year used Last year used		1096 1994 1996				
Number of years used						

Only complete calendar years of data used



T



 Jutput from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd

 Long Term Statistics
 Printed on 18/03/1998 at 09:57 hrs

E. A. Midlands - Headquarters Hydrometry

Auth. Ref. Loc. Desc.	: 26004 :	Station Name : Catchment Ref.:	BATTLEFIELD BROOK
Parameter	: Flow	Grig Ker. : Gauge Zero :	0.000 MAOD
Units	: M1/d	Catchment Area:	0.000 Sq Km
n (-)			

Period : 10/08/1992 to 19/02/1998 Start of Day : 09:00 GMT

Analysis period : Calendar Year

.

	0	1	2	3	· 4	5	6	7	8	9
08		19.354	15.293	12.960	11.578	9.677	8.554	7.430	6.998	6.566
108	5.789	5.357	5.011	4.579	4.320	4.061	3,974	3.715	3.456	<b>3.</b> 283
20%	3.110	2.938	2.851	2.678	2.592	2.419	2.246	2.160	2.074	1.987
30%	1.901	1.814	1.728	1.642	1.555	1.555	1.469	1.469	1.382	1.296
0\$	1.296	1.210	1.210	1,210	1.123	1.123	1.123	1.037	1.037	1.037
50%	1.037	0.950	0.950	0.950	0.950	0.864	0.864	0.864	0.864	0.864
50%	0.864	0.864	0.864	0.778	0.778	0.778	0.778	0.778	0.778	0.778
0\$	0.778	0.778	0.691	0.691	0.691	0.691	0.691	0.691	0.691	0.605
108	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.518
0 %	0.518	0.518	0.518	0.432	0.432	0.346	0.259	0.173	0.173	0.086

#### SUMMARY STATISTICS FOR ANALYSIS PERIOD

Maximum Daily Mean Value LTA Daily Mean (Lin Calc)		31.363 2.415 1.335	Minimum Daily Mean Val. Median Daily Mean Value		0.000
Actual 959 Daily Moan	-	0 346	Calc 958 Daily Mean	-	0 254
Actual 55% Daily Mean		0.540	(Log-Normal distribution assumed)	-	0-2J1
Number of values used	=	1461			
First year used	=	1994			
Last year used	=	1997			
Number of years used	=	4 out of 4			 

.

Only complete calendar years of data used

Jutput from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic LtdSUMMARY REPORTPrinted on 18/03/1998 at 09:58 hrsPage 3 of 7

E. A. Midlands - Headquarters Hydrometry

Auth. Ref.	: 26005	Station Name : BATTLEFIELD BK B/H
Loc. Desc.	: BROMSGROVE	Catchment Ref.; US
Report Type	: Daily Totals For Yr.	Grid Ref. : S0948705
Parameter	: Cum. Vol	
Units	: mm	

Period : 1994

.

_____

Start of Day : 09:00 GMT

Dəy	Jàn	Feb	Mar	Арг	May	Jun	Ju)	Aug	Sep	Oct	Nov	Dec	Day
1	0.000	0.000	0.000	0,000	0.000	0.717	0.218	0.218	0.220	0.223	0.220	0.000	1
2	0.000	0.000	0.000	0.000	0.000	0.223	0,219	9.21 <b>8</b>	0.220	0.223	0.221	0.000	Ş
3	0.000	0.000	0.000	0.000	0.000	0.222	0.219	0.218	0.221	0.222	0.221	0.000	3
	0.000	0.000	0.000	0.000	0.000	0.222	0.219	0.219	0.220	0.222	0.221	0.000	4
5	0.000	0.000	0.000	0.000	0.000	0.221	0.219	0.219	0.220	0.727	0.221	0.000	5
6	0.000	0.000	0.000	0.000	0.000	0.221	0.219	0.219	0.220	0.722	0.221	0.000	6
7	0.000	0.000	0.000	0.000	0.000	0.221	0.219	0.219	0_220	0.222	0.220	0.000	7
8	0.000	0.000	0.000	0.000	0.000	0.221	0.219	0.219	0.220	0.222	0.220	0.000	3
9	0.000	0.000	0.000	0.000	0.000	0. <b>2</b> 21	0.219	0.219	0.220	0.221	0.015	0.000	9
10	0.000	0.000	0.000	0.000	0.000	0.721	0.219	0.201	0.719	0.221	0.000	0.000	10
11	0.000	0.000	0.000	0.000	0.000	0.271	0.219	0.015	0.720	0.221	0.000	0.000	11
12	0.000	0.000	0.000	0.000	0.000	0.271	0.219	0.220	0.219	0.221	0.000	0.000.0	12
13	0.000	0.000	0.000	U.000	0.183	0.221	0.219	0.219	0.219	0.221	0.000	0.000	13
14	0.000	0.000	0.000	0.000	0.223	0.221	0.219	0.219	0.035	0.221	0. <b>0</b> 00	0.000	14
15	0.000	0.000	0.000	0.000	0.223	0.221	0.219	0.219	0.000	0.221	0.000	0.000	15
16	0.000	0.000	0.000	0.000	0. <b>2</b> 23	0.221	0.219	0.219	0.000	0.221	0.000	0.000	16
17	0.000	0.000	0.000	0.000	0.223	0.220	0.219	0.220	0_000	0.221	0.000	0,000	17
18	0.000	0.000	0.000	0.000	0.222	0.220	0.219	0.220	0.000	0_7.23	0.000	0.000	18
19	0.000	0.000	0.000	0.000	0.222	0.220	0.211	0,220	0.000	0.221	0.000	0.000	19
20	0.000	0.000	0.000	0.000	0.223	0.220	0.000	0.220	0.000	0.221	0.000	0.000	20
21	0.000	0,000	0.000	0.000	0.223	0.220	0.004	0.220	0.000	0_221	0.000	0.000	21
22	0.000	0.000	0.000	0.000	0.223	0.220	0.218	0.220	0.000	0.221	0.000	0.000	22
23	0.000	0.000	0.000	0.000	0.223	0.220	0.217	0.220	0.000	0_221	0.000	0.000	23
24	0.000	0.000	0.000	0.000	0.223	0.220	0.217	0.220	0.000	0.220	0.000	0.000	24
25	0.000	0.000	0.000	0.000	0.022	0.220	0.217	0.220	0.000	0.221	0.000	0.000	25
26	0.000	0.000	0.000	0.000	0.000	0.220	0.216	0.220	0.000	0.721	0.000	0.000	26
27	0.000	0.000	0.000	0.000	0.000	0.219	0.216	0.220	0.000	0.221	0,000	0.000	27
28	0.000	0.000	0.000	0.000	0.000	0.219	0.217	- 0.220	0.000	0.221	0.000	0.000	28
29	0.000		0.000	0.000	0.000	0.219	0.217	0,220	0.000	0.221	0.000	0.000	29
30	0.000		0.000	0.000	0.000	0.219	0.218	0.220	0.174	0.221	0.000	0.000	U ۱۰
51 	0.000		0.000		0.000		0.216	0.220		0.221		0.000 	ه) 
fean	0.000	0.000	0.000	0.000	0.086	0.220	0.204	0.212	0.102	0.221	0.059	0.000	
ាំងនៅគារពា	0.000	0.000	0.000	0.000	0.223	0.223	0,219	0.220	0.221	0.223	0.221	0.000	
Day of Max.	1	1	1	1	14	2	10	20	3	1	3	1	
110	0.000	0.000	0.000	0.000	0.000	0.217	0,000	0.015	0,000	0.220	0.000	0.000	
Day of Min.	1	1	1 1	1	1	1	20	11	15	24	10	1	
	0.000	0.000	0 000	0 000	2 654	6.612	6.373	6.583	3.067	G.860	1.779	0.000	

Jutput from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic LtdSUMMARY REPORTPrinted on 18/03/1998 at 09:58 hrsPrinted on 18/03/1998 at 09:58 hrsPage 5 of 7

E. A. Midlands - Headquarters Hydrometry

Auth. Ref. Loc. Desc. Report Type Parameter Units	: 26005 : BROMSGROVE : Daily Totals For Yr. : Cum. Vol. : mm	Station Name : BATTLEFIELD BK B/H Catchment Ref.: US Grid Ref. : SO948705
---------------------------------------------------------------	--------------------------------------------------------------------------	---------------------------------------------------------------------------------

Period : 1996

Start of Day : 09:00 GMT

)ау	Jan	Feb	Маг	Арг	Мау	.)un	Jul	Aug	Sep	0ct	Nov	0ec	) 
1	0.000	0.000	D.000	0.278	0.274	0.276	0.271	0.267	0.270	0.272	0.000	0.000	
2	0.000	0.000	0.000	0.276	0.274	0.276	0.271	0.268	0.270	0_260	0.000	0.000	
3	0.000	0.000	0.000	0.275	0.Z74	0. <u>2</u> 76	0.272	0.268	0.270	0.270	0.000	0.000	
	0.000	0.000	0.000	0.275	0.275	0.275	0.272	0.269	0.270	0.268	0.000	0.000	
5	0.000	0.000	0.000	0.274	0.275	0.275	0.261	0.269	0.270	0.267	0.000	0.000	
6	0.000	0.000	0.000	0.Z74	0.275	0.275	0.272	0.268	0.258	0.267	0.000	0.000	
7	0.000	0.000	0.000	0.274	0.276	0.130	0.272	0.268	0.269	0.266	0.000	0.000	
6	0.000	0.000	0.000	0.274	0.275	0.000	0.271	0.269	0.269	0.265	0.000	0.000	
9	0.000	0.000	0.000	0.274	0.275	0.000	0.271	0.258	0.269	0,267	0.000	0.000	
0	0.000	0.000	0.000	0.274	0.275	0.000	0.271	0.270	0.268	0.267	0.000	0.000	
1	0.000	0.000	0.000	0.274	0.275	0.000	0.271	0.270	0.268	0.267	0.000	0.000	
2	0.000	0.000	0.000	0.274	0.274	0.187	0.270	0.270	0.268	0.267	0.000	0.000	
3	0.000	0.000	0.000	0.273	0.274	0.276	0.270	0.270	0.258	0.757	0.000	0.000	
1	0.000	0.000	0.000	0.274	0.274	0.275	0.259	0.270	0.268	0.267	0.000	0.000	
5	0.000	0.000	0.000	0.2/4	0.274	0.274	0.269	0.270	0.268	0.267	0.000	0.000	
6	0.000	0.000	0.000	0.274	0.274	0.274	0.269	0.270	0.267	0.267	0.000	0.000	
7	0.000	0.000	0.000	0.274	0.774	0.273	0.268	0.270	0.256	0.256	0.000	0.000	
9	0.000	0.000	0.000	0.274	0.274	0.273	0.268	0.270	0.267	0.265	0.000	0.000	
9	0.000	0.000	0.000	0.274	0.275	0.273	0.268	0.269	0.189	0.265	0.000	0.000	
0	0.000	0.000	0.000	0.274	0.275	0.272	0.268	0.268	0.111	0.265	0.000	0.000	
1	0.000	0.000	0.000	0.274	0.275	0.272	0.267	0.268	0.266	0.266	0.000	0.000	
2	0.000	0.000	0,000	0.273	0.275	0.271	0,267	0.268	0.276	0.268	0.000	0.000	
•	0.000	0.000	0.000	0.273	0.276	0.271	0.257	0.268	0.266	0.267	0.000	0.000	
4	0.000	0.000	0.000	0.273	0.275	0.271	0.266	0.268	0.267	0.267	0.000	0.000	
5	0.000	0.000	0.000	0.273	0.275	0.271	0.266	0,268	0.268	0.267	0.000	0.000	
5	0.000	0.000	0.000	0.273	0.276	0.271	0.267	0.269	0.269	0.266	0.000	0.000	
7	0 000	0.000	0.000	0.273	0.276	0.271	0.267	0.269	0.139	0.266	0.000	0.000	
R	0.000	0.000	0.000	0.273	0.277	0.270	0.267	0.269	0.000	0.092	0.000	0.000	
0 0	0.000	0.000	0.000	0.274	0.2510	0.271	0.267	0.270	0.000	0.000	0.000	0.000	
, n	0.000		0.000	0.273	0.277	0.271	0.268	0.270	0.250	0.237	0.000	0.000	
1	0.000		0.016		0.277		0.267	0_270		0.034M		0.000	_
	0.000	0.000	0.00}	0.274	0.774	0.229	0.269	0.269	0.237	0.244	0.000	0.000	
aximum	0.000	0.000	0.016	0.278	0.277	0.276	0.272	0.270	0.276	0.272	0.000	0.000	
ay of Nax.	1	1	31	1	30	13	6	14	22	1	1	1	
ัก	0.000	0,000	0.000	0.273	0.254	0.000	0.261	0.258	0.000	0.000	0.000	0.000	
ay of Min,	1	1	}	24	29	8	5	9	28	29	1	1	
		0 000				6 860					0.000	0.000	

Output from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd SUMMARY REPORT Printed on 18/03/1998 at 09:58 hrs Page 7 of 7 E. A. Midlands - Headquarters Hydrometry : 26005 Auth. Ref. Station Name : BATTLEFIELD BK B/H : BROMSGROVE Catchment Ref.: US Loc. Desc. Grid Ref. : S0948705 Report Type : Daily Totals For Yr. : Cum. Vol Parameter Units : 1107 Start of Day : 09:00 GMT Períod : 1998 -------_____ Jan Feb Mar Apr May Jun Jul Aug Sep Oct flov Dec Dav Dav ------------0.195 0.201 Ŧ 1 0.200 2 0.196 2 ٦ 0.196 0.200 3 0.196 4 0.200 5 0.196 5 0.200 6 6 0.196 0.1871 7 7 0.197 0.200 8 0.197 0.199 8 9 0.075 0.199 9 10 0.000 10 0.199 <u>, 1</u>1 0.000. 0.199 11 12 12 0.000 0.200 0.000 13 13 0.200 14 0.000 0.200 14 15 0.000 0.199 15 0.000 16 16 0.198 17 17 0.000 0.198 18 0.000 18 0.199 0.000 19 19 0.200 20 20 D.000 0.03BH 21 21 0.000% 22 22 0.000 23 0.000 23 0.000 24 24 0.000 25 25 26 0.000 26 27 27 0.000 28 28 D.000 29 29 0.139 30 30 0.202 31 31 0.201 _ _ _ _ _ 0.071 0.191 Hean Maximum 0.202 0.201 Day of Max. 30 1 Min 0.000 0.038 Day of Min. 10 20 Total 2.366 3.815 Above summary is for Daily Totals of Cum. Vol Data Codes : E - Edited ? - Suspect U - Unchecked M - Missing

<u>ار</u>

Appendix 8

•

•

•

•

•

Blakedown Brook

# Blakedown Brook

Wyre Forest District Council	-	01562 751503
Mal Storey Tackle	-	Brakemill Pool 01562 745 221
Mrs Ling	-	Stakenbridge Pool 0121 678 8257
Mr Haywood	-	Churchill Forge Pool 01562 700 476
Mr Wilcox	-	Hurcott Pool 01562 754 809
Mr Tolly	-	Podmore Pool 01562 515 619
Ramblers Association Local Re	presenta	ative
	-	Mr Baston 01562 741 322
Hereford and Worcester Count	ryside S	ecretary
		Mr Coleman 01527 877 471
Meg Payne, Walk Organiser	-	01562 68971
Mr and Mrs Pilborough, Childr	·ens Wa	lk Organiser
	- <del>-</del>	01562 700719-
Hagley Library	-	01562 883441
Environment Agency	-	Rick North 01743 272 828
		Mike Averill 01562 863 887
		John Ratcliffe 0121 711 2324
		Glenn Hoban 0121 711 2324

U:\Projects\Midlands\Reports\Contacts.doc

-

# <u>General</u>

Ramblers Association	-	0171 582 6878
Countryside Commission	i i e	0171 831 3510
<b>Office National Statistics</b>	-	0171 233 9233
Halifax Building Society's Statistica	I Service	01422 333 333
Talking Pages	1	0800 600 900

.

### Blakedown Brook

For sometime the Agency has been involved in trying to alleviate low flow problems which had occurred on the Blakedown Brook and its tributaries. This has resulted in two schemes being commissioned to solve the short term requirements on two of the tributaries.

- 1. A borehole to supplement flows into and maintain levels in the Ladies, Forge and Swans Pools.
- 2 Similarly a borehole is supplementing flow into and maintaining levels in the Coopers, Harborough and Pavillion Pools.

These boreholes are operated by the Agency and are triggered by pool levels, but will not provide in flow to the mainline Blakedown Brook.

The mainline brook has two SSSI towards the lower reaches of the brook at Podmore and Hurcott Pools. There is a requirement to provide an inflow to those pools to maintain the SSSI. At present no actual flow requirement has been quantified for these SSSIs but it has been decided that a trial flow review will be implemented before the Year 2000 to estimate what improvements can be achieved. This has further complications because the existing waste treatment works operated in Severn Trent Water plc at Hagley and Blakedown may be closed and then effluent will be transferred out of the catchment. After discussion with Severn Trent Water plc it has been agreed that:

- A) The Hagley effluent will be exported to Roundhill WTW for treatment and then returned to the Blakedown Brook.
- B) The works at Blakedown will be upgraded.

In addition to returning the Hagley effluent (1.5 Ml/d) the return pipeline will have a capacity of 3.0 Ml/d. This capacity will be available to supplement the inflow to Blakedown Brook from Roundhill WTWs.

Therefore the options which are to be considered are:

- 1 Roundhill returned and additional effluent of 3.0 Ml/d.
- 2 The main Public Works abstraction for the mainline Blakedown Brook is via boreholes operated by South Staffs Water. They have agreed to reduce their abstraction from these boreholes, and to provide a compensation release into the Blakedown Brook either from an existing borehole or from a purpose drill new borehole. The trial flow is to be 2.0 MI/d.

3 The only major pool which has not been reinstated is Windmill Pool situated on a tributary of the Blakedown Brook upstream of Pavilion Pool. The option to be considered for this pool is a new borehole to provide 1.0 Ml/d inflow to the pool. The volume to which this pool will be maintained has not yet been investigated, but for the benefit assessment it must be considered to be similar to its original capacity. This can only be estimated for contours on the OS Map. It is expected that no outflow will

occur from the pool, and that the pump at the new borehole will be in operation for at least 80% of the time.

At present we have no duration/frequency graphs for the mainline of the Blakedown Brook. Spot gauging runs are being undertaken on a monthly timescale, and a site ajacent to the upstream end of Hurcott Pool which is part of the existing current meter schedule is to have a level recorder (Logger) installed before the Summer of 1998. For the purpose of this investigation it should be noted that the Hagley returned effluent will be in operation 365 days per year (Option 1) and that Option 2 will be in operation for 80% of the time. Could you please produce benefits for Option 1, Option 1+2, Option 3 and Option 1+2+3. In respect of lengths to be affected by this additional flow, for Option 1 and 2 there will be no lengths rewatered but 6Km with substanial increase in flow. It must be emphasised that at present the inflow to Hurcott and Podmore Pools can be very close to zero and that the investigated options will very much increase these flows (see enclosed spot gauging listing).

J Ratcliffe 12 March 1998 ENVIRONMENT AGENCY

•

•

(MON) 03. 30' 98 14:04/ST. 14:03/NO. 3580034870 P 3

(											•
		BLAKEDOWN F	Brook								
	SITE	NGR	29-8 <del>- 9</del> 7	72-101-97	09-Apt-97	09- <b>3-</b> 7-96	25-Jel-96	25-J <del>22-</del> 96	13-May-96	22-Aug-95	25.'
-	NORTON STW DISCHARGE	8090408128	0.035	0.052	0,023	0,084	0.153	0.051	0.243		1.5
0	HAGLEY U/5 WRW	5089857999	1,865	0.892	0.526	0.224	0.124	0.201	0.452	0.612	1.5 -
-	HAGLEY D/8 WRW	508987790	2.998	1.132	3.225	1.371	9.860	9.835	1.478	1.645	2.0
•	NPUT FROM HAGLEY WRW		1.132	0.240	2.899	1.147	0.736	0.634	1.026	1.032	0.7
-	CLENT BROOK OUTFLOW	\$089687985		0.032	0.135	0.015	0.009	0,072	0.443	0,298	0.0
	CHURCHILL	5068107950	2.039	1.980	0.472	0.691	0.337	0.449	1.564	1.653	0.7
-	BROOME(100 ACRE FARM	\$(389707850	0.000	0.000	0.000	0.000	0,000	000.0			
	PORUE POOL U/S	8088507780	0.052	0.010/0.160		0,009	0.035	0.060			
	COOPERS POOL DAS	8087907890	0.017	0,020	0,041	0.017	0.009	0.017			
	BLAKEDOWN DA HARBOR	\$088407880	0,009	0,002	0.000	800.0		0.009		0.0 <b>0</b> 0.0	0.0
	SWAN POOL D/S	\$ C1\$7607830	0.052	0.000	0.000	0.000	0.000	0,000	0.000	0.000	
	BLAKEDOWN U/S WTW	8087207820	2.485	1,110	1.088	0.929	0.41 5	0,778	1.578	1.841	0.7
	BLAKEDOWN DIE WIW	8086507810	2.100	1.190	1-101	1.028	0.406	0,994	2,100	2.111	0.7
	NPUT FROM BLAKEDOWN WRW		-0.358	0.020	0.013	0.199	-0.009	0.216	0.522	0.270	0.0
	HURCOTT POOL DIS(MAIN)	BC85007792	0.829	0.470	0.000	0.000	0.000	0201	0.000	1.205	0.0
	HURCOTT POOL DAS(SMALL)	\$4785007788	0,000	0.000	0.000	0.000	0.000	0.000	0.009	6.463	0.0
~	SUMMATION HURCOTT POOLS		0.829	0.470	0.000	0.000	0.000	0.207	0 000	1.668	0.1
	BROADWATERS	5053907790	1.080	0,350	0.558	0.259	0.432	0.326		2115	o.:

.....

FROM
ENVI
RONME
NT AC
ENCY

BG/EQ/06

0312 16-10-95 0,332 0,984 1.693 0,709 [1073 0.213 0,860 -0.142 1.760 0.000 1218 1.452 1.016 600 23-May-95 -1,760 1.039 1.596 0.557 0,214 1.619 0000 1.603 0.289 2052 0450 1.169 0.000 1.760 0.000 1 574 2775 0.555 0.678 28-Apr-95 0,000 2.911 1.537 0,395 0.520 2,198 2,278 0.000 1.908 1.200 0.804 12-04-94 0 597 1.166 0.337 0.000 0.311 1.495 1.164 0.000 0.104 0,000 0000 09-Aug-94 0.000 0.596 0,276 0.000 0.060 0.000 0.000 0.182 1.089 0.907 . 23-5-1-54 17-5-94 0.294 0,000 0220 0.346 0.000 0.026 0.328 0.000 0520 9229 0.665 0.161 0.060 9650 0216 1.476 1210 0.000 0.000 0,000 . 20-Apt-94 212 2419 140 323 2989 0.000 1.50 0,173 02.02 . 29-5-p-93 0.829 1.045 1.192 0.147 . 254 1009 0,899 -----0,778 0.052 07-Sep-93 0.523 0.301 0.078 6229 0.734 224 0233 1050 26-Ang-95 • 0.527 0,760 6.985 0.125 0294 0.579 0,527 0.035 0.242 125'0 10-Aug-91 1.015 0.285 1.477 0.000 • 0 143 1.633 0.890 9509 8968

•

•

•

.

		•		<b>•</b>											
	BLAKEDOWN	BROOK													
апе	NOR	29-3-p-97	22.Jul-97	<b>ወን-</b> ሉpr-97	09-3ep-96	23-Jul-96	29-Jua-96	13-May-96	22-Aug-95	<b>25-Jul-93</b>	16-Jua-93	73 <b>-7.23</b> -93	78-Apt-95	12-0a-94	09-Aus-
NORTON STW DISCHARGE	3090409178	0.035	0,032	0.023	0.004	0.133	0.011	0.243		1.337	0.312	0.214	0,678	0,397	
HAOLEY U/S WR\9	#089837 <b>9</b> 99	1.866	0.093	0.326	0.224	0.124	0201	0.4.52	0.612	1.334	Q.709	0.337	1.337		
HAGLEY D/S WRW	808957790	2.998	1,1 <b>32</b>	3,225	1.371	0.860	0.835	1.478	1.645	2.060	1.693	L.596	2,911		
INFUT FROM HAGLEY WRW		1.132	0.240	2.899	1.147	0.736	Q.634	1.024	1,033	0.706	0.984	1.039	1_974		
CLENT BROOK OUTFLOW	808968798J		0.032	C133	0.013	0.00P	0,072	0.413	0.298	0.032	0.332	0,289	0.132		
CHURCHILL.	5088107950	2.039	1.960	0.472	0.091	0.337	0.419	1.364	1,653	0.759 _.	1.218	1.603	2.773	1.166	J. <b>594</b>
BROOME(100 ACRE FARM	\$089707850	0.000	0.000	Ø 000	0.000	0.000	Ø.000							0,000	0.000
Foroe pool, US	3088507790	0.012	0.010/0.160		0.009	0.033	Q \$60							d'000	0.000
COOPERS POOL DAS	S087907890	0.017	0.020	0.041	0,017	0,009	Q017							¢104	0.960
BLAXEDOWN D/S HARBOR	3095407880	· 0,009	0.008	0.000	0.008		0.009		0.000	0.000	0.000	0.000	0.000		
SWAN POOL D/3	SQ87607830	0.032	0.000	0,000	0,000	0.000	0.000	Ø 000	0.000		0.000	0.000	0.000	0.000	0.000
BLAKEDOWN U/9 WTW	3087207620	2,488	1.110	880.1	0.629	0.415	Q,770	1_570	1.041	0.742	1.780	1.760	2278	1.164	0.907
BLAKEDOWN D/3 WTW	5084107910	1100	1.190	1.101	1.078	0.406	0.994	2.100	2.111	0.781	t.dlB	0.000	2,798	1.495	1.089
NPUI FROM BLAKEDOWN WRV	V	-0.388	0.080	0.013	0.199	-0.009	9.216	0.322	0,270	0.019	-0.142	•1,760	0.520	03(1	Q (82
HURCOTT POOL DIS(MARI)	3085007792	0.829	Q470	0.000	0.000	0.000 (	0.207	0.000	1,205	0.000	0.840	1.149	0 <b>.00</b> .0	0,990	۵.000
HURCOTT POOL DAS(SMALL)	1083007788	0,000	0,000	0.000	0.000	0.000	0.000	0.000	0.463	<b>0.00</b>	0.213	0.430	0,296		
SUNIMATION HURCOTT POOLS		0,829	0,470	0.000	0.000	0.000 '	0.207	0000	1.669	0.000	1.073	1.619	1.200		,
BROADWATERS	5083907790	1.090	0.330	0,338	0,239	0.4.12	0.328		2.113	0.334	1,462	2.032	1,908	0.331	0.276

٢

*

•

.

•

.

4

ROM ENVIRONMENT AGENCY

# Appendix 9

•

•

**Bow Brook** 

# Bow Brook

Hereford and Worcester County Council	0.	01432 272 395
Wyehaven District Council	÷	01386 565 373
Environment Agency	2.1	John Ratcliffe 0121 711 2324
	i len i l	Glenn Hoban 0121 711 2324
		Anne Penny 01684 850 951
	-	Anne Hardcastle
Mr Farquar, Norgrove Court	< <u>-</u> >	01527 544 850
Mr Derrington, Worcester and District Angling	g Club	
	-	01527 871 291
Upper Wolverton Farm		01905 345 254
<b>Redditch</b> Tourist Information	-	01527 60806
Ramblers Association Local Representative		
Mrs J Mackey		0121 749 4760
Mrs P Hammond	-	0121 704 9399
	-	

U:\Projects\Midlands\Reports\Contacts.doc

# <u>General</u>

<b>Ramblers Association</b>	-	0171 582 6878
Countryside Commission	÷	0171 831 3510
Office National Statistics	-	0171 233 9233
Halifax Building Society's Statisti	cal Service	01422 333 333
Talking Pages		0800 600 900

### **BOW BROOK**

During the late eighties, problems with low flow were identified on the upper reaches of the brook (mainly above Priest bridge). This was due to two main reasons:

1 The closure of small sewage treatment works on the Bow Brook Tributaries.

2 Reduction in base flow due to pumping of water for public consumption.

A study was undertaken, with the conclusion that a compensation release was required to make up the deficit from the above of 2 MI/d. This has been agree with Severn Trent Water plc and is the only option being considered.

However, so that the amount abstracted can be considered, would you please incorporate two options in your benefit assessment.

A A compensation release at Webheath (SP 0080 6693) of 2 Ml/d to be in operation when the Agency gauging station at Besford bridge is at Q 20% (105 Ml/d) or below.

B As above but using Q 50% (33.5 Ml/d) or below as the trigger flow.

Enclosed are copies of:

A Duration/Frequency Graph - Besford Bridge 1976-1997.

B Derived Duration/Frequency Graph for Old Yarr Bridge.

Both of these show actual figures and modified to show the compensation release.

C Mean daily flow 1990 to 1997

D Mean daily flow against time 1990-1997.

The following length of water course will be improved by the following -

rewatered 2.6 Km, significant increase in flow 32 Km.

Note: 1 Water Quality Questions are being looked at by Dawn McGinn, who will be letting me have her comments within the next few days on the affect this extra water will have on GQAs etc.

2 We are at present still trying to locate Atkins report on the Bow Brook



		19	1.1				9 17		-																											
		 a.×.													FL	0	1	-	1	M١	10	<b>.</b>														
- -		 <b>T</b> TT		2		<b>T</b> 11	<u>ب</u>			4		л 1111	•	0	-			-	111	T÷T	10		~		ΠI	П	1111		•	1116	•	•		ч . ППП	ه « ۱۱۱۱۱	ō
-												++++											-													
0.05 0.1																																	#			
2	╈	╡ <del>┥</del> ┥┥ ╎┥┥┥┥											7+			Aset		NRY T		6			11    			ii li										
0.5																01	HHHH	ion /		YAR					-++								111 ++++ ++++			
-																SR		1000																		
																T-G	1	UENC		ð											T			++++		
	┿┿┿┿ ┾╌┾┾ ┿┼╋┥																	1-6		N LEX																1
-																		CAPU					+  - +  - +  -													
20																	<b>₩</b> ₩			50-0																
30																565 700				16-63																
																5				<b>P</b>																
50 60																																				
70																FLE										7-										, ,
80																Reco									1					祖王						
																								4					X							
				╫ <u>┣</u>																		拱				++++		/								
• ++																					Í						/					H				
88																										4										
<b>0</b>																THE P											e									
99.8																YUST									OWIE											
99.9																5 - F					- F				SPILIO	in - Herr	2				111-					
									#								Ť	++								11	Pure series				++					
99 -	1111			~	11	11	11	1111	1111	-	[ <u>[1]</u> ]	n 1		111			  -	-	111	111			~	111	ЦΒ				•		n 111	0	Ш. Ш.	<u>     </u> • •		. <u> </u> 11]

I

Output from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic Ltd SUMMARY REPORT Printed on 03/07/1997 at 14:45 hrs Page 1 of 8

_____ ----------

E. A. Midlands - Headquarters Hydrometry

. .

Auth. Ref.	: 2015	Station Name :	BESFORD BRIDGE
Loc. Desc.	: BOW BR.	Catchment Ref.:	LS
Report Type	: Daily Means For Yr.	Grid Ref. :	SO 927463
Parameter	: Flow	Gauge Zero :	N/A
Units	: Ml/d	Catchment Area:	156.000 Sq Km
Period	: 1990	Start of Day :	09:00 GMT

Start of Day : 09:00 GMT

Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov ·	Dec	Day
1	 88.210	787.588	177.169	33.104	23.782	13.212	10.842	4.638	6.045	9.654	18.185	13.634	1
2	155.936	919.295	122.464	35.433	22.637	13.038	13.220	3.664	4.482	13.760	16.274	13.233	. 2
3	167.133	758.470	98.958	34.567	21.909	13.917	9.926	2.868	4.226	10.935	16.598	12.809	3
4	125. <b>793</b>	385.325	87.604	32.747	22.104	12.826	9.375	2.424	4.891	9.416	15.927	13.294	4
5.	104.081	200.283	80.779	31.210	19.750	13.164	12.028	3.439	4.620	12.822	13.975	13.096	5
6	116.717	169.945	74.018	30.833	19.691	15.543	15.806	3.556	4.623	10.415	12.303	14.793	6
7	150.565	876.790	67.336	30.463	18.969	16.678	13.482	2.434	4.123	10.764	12.289	15.954	7
8	123.993	1452.257	62.134	29.113	18.383	14.183	11.166	2.216	3.677	12.592	11.963	20.355	. 8
9	106.604	332.212	55.344	28.962	18.528	18.366	10.433	2.295	3.674	10.127	11.769	31.835	9
10	96.614	203.346	52.012	29.318	21.336	19.104	8.391	2.608	3.102	7.467	11.801	147.420	_ 10
11 ·	85.697	294.918	50.209	29.159	19.633	17.213	7.371	2.218	4.013	6.924	12.602	239.614	11
12	93.474	360.474	47.770	28.911	18.437	14.168	6.388	1.894	5.745	6.443	14.883	160.138	12
13	121.306	200.755	53.441	31.621	20.007	12.455	6.617	2.327	5.115	6.213	16.588	98.195	13
14 .	104.387	222.377	50.446	33.588	18.569	10.724	5.229	2.382	5.115	5.961	18.482	44.855	14
15	91.225	217.271	43.915	31.682	22.424	11.544	5.067	2.898	5.111	5.850	18.232	32.731	15
16	82.474	163.774	42.401	29.807	30.714	11.897	4.722	- 3.875	-4.410	-7.949	16.545	28:089	16
17	71.280	142.786	42.000 -	28.473	21.631	10.310	4.749	3.848	4.408	6.923	14.695	26.492	17
18	61.555	134.863	41.750	29.518	17.684	12.135	4.055	4.556	4.055	10.069	13.987	25.938	18
19	61.334	119.544	46.280	35.776	15.943	12.629	4.413	6.172	4.413	14.350	14.441	24.560	19
20	61.343	109.276	59.322	42.132	14.652	15.325	4.212	10.031	4.212	26.921	19.509	22.944	20
21	57.327	100.061	47.605	43.043	16.409	18.955	3.375	12.447	3.375	14.996	43.452	26.757	21
22	61.940	91.066	40.565	34.426	13.854	25.290	2.787	8.211	2.787	10.867	27.478	34.608	22
23	421.780	84.968	37.373	29.783	12.360	26.443	3.301	5.475	3.301	9.673	20.930	30.087	23
24	299.369	83.129	37:912	28.933	12.472	17.558	3.142	4.744	3.142	9:167	18.571	27.552	24
25	306.424	90.405	36.030	26.943	12.787	14.426	3.267	4.038	3.267	10.184	23.452	96.984	25
26	233.588	117.594	34.035	28.073	12.201	11.938	2.968	3.894	2.968	31.139	29.023	192.008	26
27	320.570	131.295	33.664	27.229	12.734	9.586	3.300	4.246	3.303	94.846	20.812	113.745	27
28	958.427	141.733	33.694	25.755	11.172	9.778	3.811	3.883	6.590	64.448	16.809	75.682	28
29	419.834		33.590	24.694	11.216	9.795	4.245	3.228	7.689	79.124	14.924	125.186	29
30	403.533		32.442	24.649	11.578	9.824	6.022	4.043	9.750	30.045	13.969	138.187	30
31	1419.660		32.130		12.879		5.545	4.326		20.908		89.439	31
<b></b> Mean	224.909	317.564	56.593	30.998	17.627	14.401	6.750	4.157	4.541	18.740	17.682	62.910	
Maximum	1419.660	1452.257	177.169	43.043	30.714	26.443	15.806	12.447	9.750	94.846	43.452	239.614	
Day of Max.	31	8	1	21	1 <b>6</b>	23	6	21	30	27	21	11	
Min	57.327	83.129	32.130	24.649	11.172	9.586	2.787	1.894	2.787	5.850	11.769	12.809	
Day of Min.	21	24	31	30	28	27	22	12	22	15	9	3	
Total (TCM)	6972	8892	 1754	930	 546	432	209	129	136	 581	530	 1950	
Runoff.(hm)	45	57	11	6	4	3	1	1	1	4	3	13	

Above summary is for Daily Means of Flow

1.1

Output from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic LtdSUMMARY REPORTPrinted on 03/07/1997 at 14:45 hrs. Page 2 of 8

### E. A. Midlands - Headquarters Hydrometry

Auth. Ref.	:	2015	Station Name : BESFORD BRIDGE
Loc. Desc.	:	BOW BR.	Catchment Ref.: LS
Report Type	:	Daily Means For Yr.	Grid Ref. : SO 927463
?arameter	:	Flow	Gauge Zero : N/A
Jnits	:	Ml/d	Catchment Area: 156.000 Sq Km
?eriod		1991	Start of Day : 09:00 GMT

lay	Jan	Feb	Mar	Apr	May	 Jun	່ງ ^ຫ າ	Aug	Sep	0ct	Nov	Dec	Day
1	71.578	38.641	58.713	45.388	102.615	16.848	18.430	155,662	5.653	24.376	32.884	16.536	1
2	104.558	36.256	53.203	49.411	58.731	16.962	17.819	49.959	5.033	14.071	79.398	16.024	2
3	97.414	34.820	49.544	54.403	44.404	17.510	19.999	21.236	4.394	10.645	58.557	15.462	3
4	69.737	33.485	63.618	53.554	42.068	17.791	21.867	15.854	4.207	9.624	46.101	14.923	4
5	105.199	32.543	128.717	52.331	38.983	16.177	20.224	14.343	4.889	11.288	29.631	14.318	5
6	170.581	30.933	158.847	45.020	33.824	16.855	17.616	13.804	4.458	13.681	22.070	14.262	6
7	102.620	28.479	1103.080	51.719	32.055	20.784	15 <b>.890</b>	13.783	4.358	13.156	17.396	13.990	7
8	150.323	34,053	886.515	52.166	31.767	19.812	17.498	16.489	3.914	12.374	15.271	13.743	- 8
9	634.759	33.042	420.012	43.547	28.298	18.589	14.224	16.169	3.622	11.080	14.997	13.991	9.
,0	1219.116	31.764	341.980	41.485	27.297	17.909	14.936	14.253	3.627	12 - 798	15.241	13.740	10
.1	595.050	30.620	324.110	39.313	26.290	16.430	12.212	11.369	4.346	13.422	16.222	13.498	11
2 .	411.530	30.654	186.407	36.906	25.584	15.355	10.409	11.163	4.795	11.336	22.100	13.441	12
.3	185.092	31.178	147.210	34.882	24.671	15.323	10.131	9.553	5.102	10.259	22.973	13.441	13
.4	131,780	31.614	120.194	33.243	23.348	15.661	10.774	9.243	5.486	10.352	25.119	13.531	14
.5	105.763	72.438	103.718	31.209	22.183	15.723	10.076	8.268	5.872	10.927	20.725	14.442	15
6	86.607	178.110	102.213	30.490	23.111	26.766	15.566	7.474	6.620	10.157	18.022	16.420	16
.7	77.993	172.097	131.050	29.944	26.865	28.301	13.052	6.652	7.279	9.690	16.803	19.842	17
8	93.185	141.995	179.115	30.846	22.746	22.685	20.761	6.651	7.676	8.597	21.424	23.764	- 18
9	197.599	132.251	194.502	33.218	22.563	18.483	20.447	6.653	6.991	8.227	95.695	26.018	19
0	153.499	109.219	162.883	32.516	23.217	17.609	23.635	5.488	6.736	9.743	112.838	21.930	20
1	116.639	123.407	166.263	34.990	23.076	16.857	14.936	5.612	6.596	9.465	43.706	19.407	21
2	91.856	143.349	128.115	31.541	23.433	15.395	10.846	6.404	6.861	9.686	30.118	18.252	22
3 👒	78.541	147.307	105.218	28.854	21.699	20.163	11.895	7.336	6.460	10.735	26.494	17.207	23
4	68.179	123.206	87.564	27.665	19.293	32.226	13.685	7.474	6.944	10.161	23.849	16.073	24
5	61.557	104.643	73.723	28.366	´ 1 <b>9.757</b>	39.169	16.751	7.474	7.730	9.871	21.472	15.661	25
6	55.063	91.674	66.658	26.531	20.183	45.611	16.000	7.474	7.750	11.722	20.470	15.022	26
7	50.027	80.156	60.067	25.489	20.854	34.646	18.267	7.474	7.868	10.994	18.734	15.022	27
8	47.535	69.228	53.206	26.272	18.793	40.282	12.433	7.474	10.617	12.450	17.923	14.492	28
9	45.174		48.245	51.41D	17.053	25.092	10.318	6.652	18.305	10.194	17.313	14.377	29
0	42.639		46.713	186.750	16.640	20.464	11.102	5.746	38.106	12.427	16.856	14.090	30
1	40.152		46.354		17.380		34.451	5.905		26.363		13.974	31
'ean	176.172	76.684	187.024	42.982	28.993	22.049	16.008	15.778	7.410	11.931	31.347	16.029	
aximm	1219.116	178.110	1103.080	186.750	102.615	45.611	34.451	155.662	38.106	26.363	112.838	26.018	
ay of Max.	10	16	7	30	1	26	31	1	30	31	20	19	
lin	40.152	28.479	46.354	25.489	16.640	15.323	10.076	5.488	3.622	8.227	14.997	13.441	
ay of Min.	31	7	31 .	27	30	13	15	20	9	19	9	12 •	
otal (TCM)	5461	2147	5798	1289	899	 661	496		222	370	940	 497	
unoff (mm)	35	14	37	8	6	4	3	3	1	2	- 6	3	

Above summary is for Daily Means of Flow

•

2.7

Output from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic Ltd SUMMARY REPORT Printed on 03/07/1997 at 14:45 hrs Page 3 of 8

E. A. Midlands - Headquarters Hydrometry

Auth. Ref.	: 2015	Station Name :	BESFORD BRIDGE
Loc. Desc.	: BOW BR.	Catchment Ref.:	LS
Report Type	: Daily Means For Yr.	Grid Ref. :	SO 927463
Parameter	: Flow	Gauge Zero :	N/A
Units	: Ml/d	Catchment Area:	156.000 Sq Rm
Period	: 1992	Start of Day :	09:00 GMT

Jan Feb Mar Apr May յոլ Aug Sep Oct Day പന Nov Dec Day ______ ____ ______ ____ ----14.218 30.472 29.353 62.774 26.991 124.415 14.399 13.528 53.298 32.100 1 60.596 1138.654 1 14.195 29.454 33.420 111.851 25.161 189.755 35.886 12.057 32.369 32.008 60.421 1220.118 2 2 63.693 29.017 12.634 14.094 29.903 30.430 21.176 76.590 29.274 143.906 57.389 811.779 3 3 4 16.684 29.122 28.990 43.462 19.119 40.688 57.275 12.848 28.617 320.234 47.751 269.022 4 5 24.720 27.939 28.155 37.401 20.094 35.230 28.135 11.569 28.413 125.113 42.177 166.034 5 6 29.456 27.290 26.987 35.638 19.829 32.271 20.553 11.202 24.124 66.998 39.287 172.015 6 27.337 39.545 18.913 44.703 16.330 11.770 22.518 38.437 229.718 7 23.771 27.319 45.716 7 61.501 26.477 27.811 55.513 17.418 42.367 12.670 18.914 20.440 8 37.433 37.495 156.908 8 9 965.891 27.430 26.123 39.055 25.050 34.554 13.585 39.848 18.843 31.214 51.319 132.318 9 742.263 27.948 24.208 32.782 31.686 35.095 14.777 39.573 16.240 28.015 147.172 124.362 10 10 27.666 30.783 24.013 202.233 25.396 28.574 23.361 27.161 14.662 26.618 539.975 117.378 11 11 28.871 25.547 29.440 20:039 21.266 29.737 31.014 15.087 25.919 -12 116.598 303.017 119.840 - 12 13 83.592 29.572 24.799 25.945 16.260 19.030 35.208 90.105 26.905 24.790 127.411 109.630 13 14.917 14.584 103.525 111.470 14 63.217 28.530 23.962 36.945 29.632 25.024 107.647 100.491 14 51.565 27.860 21.818 113.815 14.890 14.192 79.019 71.214 27.197 26.157 282.622 15 95.174 15 43.891 26.714 23.075 -78.690 13.386 12.177 33.178 61:863 - 20.138 28.816 431.772 126.296 16 16 17 40.237 26.500 21:889 59.120 12.237 11.380 23.552 75.435 19.454 25.642 373.807 140.821 17 56.846 10.900 17.875 35.707 18 35.719 21.960 52.766 11.890 27.312 25.597 169.338 966.333 18 33.695 110.732 40.699 33.995 19 22.361 11.394 10.387 14.577 23.777 24.681 138.711 587.569 19 20 32.055 76.356 21.700 35.297 11.247 10.305 18.241 18.294 30.223 56.434 109.304 179.028 20 21 29.387 54.223 23.430 33.422 10.835 9.865 25.951 17.502 27.524 141.122 101.909 135.354 21 9.271 34.029 16.073 207.704 22 27.618 45.543 25.115 32.294 10.478 79.223 138.436 109.887 22 26.549 40.703 30.859 29.601 9.627 8.531 23.795 19.463 146.534 23 49.591 142.548 93.452 23 26.552 35.839 35.265 30.703 16.334 9.148 18.011 22.774 118.312 42.517 115.788 24 84.453 24 25 30.678 33.357 29.343 29.542 16.950 8.623 16.120 28.829 85.883 247.999 564.847 76.854 25 43.152 32.296 29.757 27.510 15.482 8.158 15.897 22.087 74.046 250.770 1501.786 26 71.437 26 29.449 25.495 20.748 27 36.876 30.500 10.582 8.133 29.178 64.912 133.253 450.508 73.705 27 28 32.668 28.766 26.630 24.136 9.422 7.968 26.435 28.995 45.524, 166.388 389.674 79.200 28 22.794 6.477 18.998 29 30.825 28.777 27.464 9.243 34.653 35.838 139.210 195.504 74.660 29 7.889 30.390 34.400 24.256 9.243 14.918 35.666 31.625 103.483 918.507 30 30 69.134 29.704 9.243 76.076 31 70.677 14.447 73.658 64.060 31 28.347 43.499 29,751 27.427 45.221 83.214 256.172 254.700 Mean 95.290 36.274 16.231 34.235 965.891 110.732 70.677 113.815 31.686 189.755 103.525 111.470 207.704 320.234 1501.786 1220.118 Maximum Day of Max. 9 19 31 15 10 2 14 14 • 22 4 26 2 14.094 9.243 12.670 11.202 Min 26.477 21.700 22.794 6.477 14.662 24.681 37.495 64.060 11 3 8 20 29 29 29 8 6 19 8 Day of Min. 31 ____ . . . . . . . Total (TCM) 2954 1052 879 1305 503 893 850 1061 1357 2580 7685 7896 Runoff (mm) 19 7 6 8 3 6 5 7 9 17 49 51

Above summary is for Daily Means of Flow

÷

utput from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic Ltd UMMARY REPORT Printed on 03/07/1997 at 14:45 hrs Page 4 of 8

177 B B B

.

E. A. Midlands - Headquarters Hydrometry

------

------

uth. Ref.	: 2015	Station Name : BESFORD BRIDGE
oc. De <b>s</b> c.	: BOW BR.	Catchment Ref.: LS
eport Type	: Daily Means For Yr.	Grid Ref. : SO 927463
arameter	: Flow	Gauge Zero : N/A
nits	: Ml/d	Catchment Area: 156.000 Sq Km
eriod	: 1993	Start of Day : 09:00 GMT

												1		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Day
	59.401	74.654	35.948	40.583	33.027	44.586	24.986	17.196	12.094	26.562	25.763	113.863		1
2	56.917	70.196	36.145	31.918	32.088	40.876	24.018	16.603	11.183	26.080	26.153	90.239		2
5. T	56.204	64.500	33.980	36.530	30.189	36.460	23.247	16.103	± 10.959	26.392	27.022	75.800		3
ł –	62.418	61.967	32.680	53.858	27.835	33.283	21.687	15.990	11.240	23.356	26.933	68.514		4
;	89.545	58.690	32.747	54.142	26.905	27.996	18.617	15.245	11.159	31.017	27.098	61.147		5
<b>i</b>	158.984	56.986	33.451	50.667	31.963	28.823	19.628	15.453	11.072	79.102	27.298	56.652		6
,	177.805	55.686	33.165	50.542	32.982	27.165	17.668	15.349	10.986	79.060	26.967	60.437		7
3	130.218	53.459	32.758	60.249	33.179	24.741	17.864	15.347	23.054	89.888	26.079	131.190		8
)	116.771	53.026	32.016	506.922	34.633	27.478	31.034	17.569	44.136	102.758	27.374	234.464		9
)	368.250	52.656	31.680	262.551	30.258	122.685	45.304	12.440	42.985	64.386	81.815	128.698		10
ι	623.252	50.705	31.555	215.938	28.118	181.042	28.337	15.585	29.74 <b>9</b>	98.580	102.286	101.458		11
	228.434	48.191	31.570	348.185	26.658	343.914	23.782	14.432	24.837	298.824	62.566	514.754	*	12
3	1807.260	46.873	31.585	137.877	26.922	116.956	28.444	13.873	54.516	572.804	287.638	866.195		13
1	1138.778	46.145	31.380	98.628	27.597	242.836	44.499	13.398	59.761	477.223	1090.773	382.800		14
;	447.242	45.183	30.184	78.145	26.813	268.152	38,448	13.212	33.079	155.188	344.110	790.087		15
;	234.355	44.441	30.041	65.463	25.954	204.338	45.097	14.698	28,482	93.852	147.707	284.426		16
7	157.579	43.569	29.269	59.025	29.448	179.012	77.448	11.282	23.743	61.959	107.371	159.415		17
3 .	130.882	42.960	30.253	54.234	31.659	109.570	33.522	11.546	20.077	48.741	87.825	154.397	÷.	18
)	120.048	41.462	28.405	46.504	26.903	83.273	28.443	11.701	17.381	41.843	71.082	243.642		19
)	113.537	39.758	28.551	43.383	38.246	56.450	26.741	15.111	18.445	38.707	61.836	288.516		20
l	110.291	39.070	31.056	40.204	120.151	45.809	27.090	10.400	24.324	35.834	57.852	428.893		21
?	118.207	38.064	34.517	38.566	61.138	40.391	24.596	15.289	25.637	33.030	49.346	201.641		22
3	132.042	37.045	32.644	38.729	40.166	36.7 <b>69</b>	24.510	23.627	22.372	30,954	45.368	198.328	:	23
1 · ·	130.384	36.267	28.586	41.390	32.900	35.062	34.626	22.122	21.428	29.247	43.491	247.180		24
5	104.494	38.493	27.122	44.354	29.974	32.723	43.557	17,491	17.689	28.397	47.737	175.564		25
5 4	88.848	43.958	28.316	46.078	334.594	30.874	28.282	16.467	19.348	27.885	64.672	132.356		26
1	102.067	38.856	28.585	46.539	271.458	29.409	22.238	15.479	18.305	27.383	77.465	111.556		27
3 .	116.486	35.388	28.164	38.443	107.150	27.599	21.423	13.517	16.980	27.306	66.844	303.270		28
}	102.959		27.565	35.303	74.327	26.332	21.802	12.403	18.534	27.218	65.334	333.925		29
)	90.794		27.913	33.676	72.969	24.756	22.770	12.201	20.998	27.133	128.144	211.873		30
L	81.913		30.804	- 1	58.468		21.334	11. <b>9</b> 69		26.265		190.494		B1 ·
ал	240.528	48.509	31.053	89.954	58.215	84.312	29.388	14.939	23.485	88.935	111.065	236.831		
aximum	1807.260	74.654	36.145	506.922	334.594	343.914	77.448	23.627	59.761	572.804	1090.773	866.195	•	
ay of Max.	13	1	2	9	26	12	17	23	14	13	14	13		
in	56.204	35.388	27.122	31.918	25.954	24.741	17.668	10.400	10.959	23.356	25.763	56.652		
ay of Min.	3	28	25	2	16	8	7	21	3	4	1	6		
stal (TCM)	7456	1358	963	2699	1805	2529	911	463	705	2757	3332	<b>_</b> 7342		
	48 	9	6 	17	12	16	6	3	5	18	21	47		

Above summary is for Daily Means of Flow

Output from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic LtdSUMMARY REPORTPrinted on 03/07/1997 at 14:45 hrsPrinted on 03/07/1997 at 14:45 hrsPage 5 of 8

E. A. Midlands - Headquarters Hydrometry

Ξ.

Auth. Ref. Loc. Desc.	: 2015 : BOW BR.	Station Name : BESFORD BRIDGE Catchment Ref.: LS
Report Type	: Daily Means For Yr.	Grid Ref. : SO 927463
Parameter	: Flow	Gauge Zero : N/A
Units	: Ml/d	Catchment Area: 156.000 Sq Km
Period	: 1994	Start of Day : 09:00 GMT

Day	Jan	Feb .	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec		Day.
1	165.687	81.929	138.022	180.102	34.223	25.681	10.484	7.261	16.983	19.685	118.440	42.739		
. 2	483.384	81.017	125.889	108.774	33.600	27.292	11.774	9.540	20.284	20.681	68.277	41.052.	,	2
3	632.789	199.263	109.368	83.261	33.090	27.242	13.176	10.750	24.059	22.305	57.266	46.626		3
4	719.609	183.281	97.759	194.204	<b>32.6</b> 57	27.921	14.543	-12.774	16.033	<b>23.75</b> 5	150.209	139.403		4
5	869.518	119.074	91.2 <b>1</b> 5	162.342	32.534	30.587	14.801	18.116	14.592	20.737	420.202	250.110		5
6	430,365	123.948	80.343	153.483	32.877	26.469	17.818	19.843	13.606	18.523	220.304	312.326		6
7	173.445	145.138	78.219	121.434	<b>33.</b> 785	23 <b>.8</b> 38	19.093	11.277	12.474	17.417	118.471	513.154		7
8	143.324	110.367	72.457	173.205	32.494	22.890	17.860	8.784	20.365	16.961	91.021	658.134		8
9	193.867	95.894	85.259	251.147	29.421	21.985	14.820	7.815	25.365	17.234	298.143	305.690		9
10	452.892	105.106	93.919	163.950	29.005	21.581	11.637	9.819	26.685	18.717	362.545	156.514		10
11	208.863	827.509	77.789	109.293	28.066	21.056	10.801	13.913	19.510	17.100	148.368	121.379		* 11
12	286.492	356.361	73.031	90.505	28.307	19.318	10.673	13.821	21.949	16.388	289.237	100.921		12
13	638.914	156.189	66.993	82.160	27.970	18.986	9.121	14.898	19.010	15.788	535.633	90.777		1 <b>3</b>
14	245.649	121.938	58.117	68.080	30.629	18.338	8.431	10.180	56.604	15.852	191.872	119.988		14
15	181.761,	104.888	59.361	60.960	49.858	17.038	9.169	8.903	289.318	16.247	137.916	99.589 [°]		15
16	177.574	95.366	59.451	55.504	55.516	15.905	9.153	-8.612	330.714	17.176	104:611	85,912		16
17	137.451	104.471	56.946	50.927	45.919	15.182	9.578	9.114	111.661	17.262	86.348	84.038		17
18	120.899	129.770	59.518	48.127	33.331	15:372	8.616	9.481	47.109	15.942	89.075	378.838		18
19	116.722	119.935	78.410	47.898	28.995	14.752	7.860	11.785	47.110	16.001	112.198	262.060		19
20	104.777	102.720	62.187	46.484	28.206	14.483	7.878	10.090	99.275	19.286	103.285	137.203		20
21	98.548	88.798	54.002	45.717	29.589	15.064	8.369	8.800	72.935	19.601	110.470	104.042		21
22	92,580	83.251	52.185	47.399	34.442	14.907	7.830	7.671	46.306	27.916	92.929	87,096		22
23	95.546	371.469	52.056	47.400	29.591	14.607	7.721	9.491	32.832	43.830	79.553	76.587		23
24	99.848	450.064	49.907	44.379	29.700	14.425	6.894	8.427	27.847	37.519	69.061	73.439		24.
25	122.059	224.188	50.288	38.788	40.935	16.797	6.334	7.149	28. <del>6</del> 61	27.424	63.107	91.556		25
26 -	174.469	880.837	49.087	36.915	70.293	15.169	7.11 <b>3</b>	12.636	29.941	24.787	56.836	159.385		26
27	129.177	504.081	45.250	35.145	57.430	13.521	8.735	10.466	25,775	24.644	53.331	854.293		27
28	101.275	179.108	55.186	34.535	35.675	12.320	9.381	8.375	22.691	24.978	50.152	692.663		28
29	90.188		47.504	34.515	30.228	11.681	11.551	7.783	21.161	98.241	45.817	363.178		29
30	85.981		47.357	34.329	27.228	10.958	8.483	7.070	19.690	209.386	44,110	264.484		30
31	79.129		86.933	_	25.827		7.659	8.313		206.532		198.191		31
Меап	246.864	219.499	71.452	 88.365	35.207	18.846	10.560	10.418	52.018	35.739	145.628	222.947		
Maximum	869.518	880.837	138.022	251.147	70.293	30.587	19.093	19.843	330.714	209.386	535.633	854.293		
Day of Max.	5	26	1	9	26	5	7	6	16	30	13	<b>2</b> 7		
Min	79,129	81.017	45.250	34,329	25.827	10.958	6.334	7.070	12.474	15.788	44.110	41.052		40
Day of Min.	31	2	27	30	31	30	25 ·	30	7	•13	30	2		
Total (TCM)	7653	6146	 2215	2651	1091	 565	327	323	1561	1108	4369	6911		
Runoff (mm)	49	39	14	17	2	۵	2	2	10	7	28	44		

Above summary is for Daily Means of Flow

Sutput from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic Ltd SUMMARY REPORT Printed on 03/07/1997 at 14:45 hrs Page 6 of 8 ______ ____

E. A. Midlands - Headquarters Hydrometry

Auth. Ref.	: 2015	Station Name : BESFORD BRIDGE
Loc. Desc.	: BOW BR.	Catchment Ref.: LS
Report Type	: Daily Means For Yr.	Grid Ref. : SO 927463
Parameter	: Flow	Gauge Zero : N/A
Units	: Ml/d	Catchment Area: 156.000 Sq Km
Period	. 1995	Start of Day : 09:00 GMT
CLICE .	•	

							1					÷		
/	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Day
	146.626	198.516			30.050	32.475	10.530	8.453	8.246	13.212	14.703	46.831		1
	134.385				28.261	26.019	9.737	8.92 <b>2</b>	8.937	12.996	13.968	37.408		2
	108.714				28.253	26.976	11.690	8.367	9.819	13.037	13.757	34.323		3
	98.317				27.490	40.455	13.366	8.499	10.449	13.327	13.749	43.706		4
	192.777				26,785	28.691	13.285	7.925	12.664	13.953	13.242	49.253		5
	214.788	•			26.486	23.287	11.078	6,501	12.826	15.364	13.029	38,490		6
	138.269				25.928	21.613 [°]	10.798	6.613	17.588	16.211	12.910	33.471		7
	123.518	· . ·	4		24.968	20.348	10.183	6.159	<b>20.9</b> 97	17.661	13.089	29.997		8
	113.055				23.780	18.142	9.162	5.461	32.182	. 17.392	17.494	27.315		9
	105.422				-23.026	15.052	9.920	5.134	25.818	15.075	40.344	24.920		- 10
	120.841	- ·		· . · ·	23.477	18.227	14.023	4.787	32.116	15.754	84.070	22.982		11
	102.949	1 (B)		· · ·	23,740	19.264	28.792	5.887	47.686	14.083	89.055	21.975		12
	90.609			· .	23.274	17.876	21.763	6.425	32.063	13.004	52.140	21.977		13
	86.907				22.726	17.174	16.110	5.955	40.387	13.028	40.673	22.073		14
	87.797	• •		· ·	22.091	15.980	27.075	5.482	28.108	13.138	35.162	21.677	2.	. 15
•	95.880	· · · ·			23.685	15.500	34.598	5.656	30.809	12.791	35.270	21.579	1	16
	772.875		÷.,	•	65.251	15.328	18.296	5.296	34.069	12.512	31:713	21.910		17
	1027.406			1	54.055	16.119	15.087	5.307	26.073	11.929	30.559	22.892		18
· · ·	405.031	3			32.135	15.120	15.488	6.393	22,722	12.601	24.339	50.420		19
	676.016				26.891	13.958	11.121	6.020	19.944	12.754	21.326	397.872		20
	652.223				24.208	12.816	11.110	5.303	16.451	12.124	20.825	666.486		21
	566.876				23.919	11.351	10.985	5.408	15.062	12.079	20.408	1888.174		22
	279.065	4			23,627	10.647	10.563	6.931	14.306	12.192	21.545	1691.761		23
	170.125				22.983	11.226	9.688	7.090	14.271	13.124	19.826	812.460		24
	273.041			38.782	22.783	10.701	9.114	7.045	13.961	21.357	20.834	236.179		25
	644.659			35.064	22.938	10.989	8.555	8.713	18.136	33.955	29.329	120.756		26
	534.544			32.325	22.569	11.125	8.277	8.674	16.743	25.281	47.207	85.860	,	27
	660.531			31.344	26.361	10.101	7.883	8.208	16.369	22.969	61.830	69.634		28
	445.198			31.676	26.972	10.038	8.052	8.116	14.956	18.703	84.732	58.059,		29
	266.699		÷.	31.933	28.230	10.485	7.492	7.616	13.712	16.515	76.208	53.639		30
	182.227		_		55.579 [.]		7.054	7.893		15.792		55.991		31
	307,012	198.516		33.520	28.468	17.569	13.254	6.782	20.916	15.610	33.778	217.099		
ximum	1027.406	198.516		38.782	65.251	40.455	34.598	8.922	47.686	33.955	89.055	1888.174		
y of Max.	18	1		25	17	4	16	2	12	26	12	22		
n	86.907	198.516		31.344	22.091	10.038	7.054	4.787	8.246	11.929	12.910	21.579		
y of Min.	14	1		28	15	29	31	11	1	18	7	16		
tal (TCM)	9517	41		193	883	527	411	210	627	484	1013	6730		
noff (mm)	61	0	N/A	1	`6	3	3	1	4	٦	6	43		

Above summary is for Daily Means of Flow

.

.

Output from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic Ltd SUMMARY REPORT Printed on 03/07/1997 at 14:45 hrs Page 7 of 8 

E. A. Midlands - Headquarters Hydrometry

Auth. Ref.	: 2015	Station Name : BESFORD BRIDGE
Loc. Desc.	: BOW BR.	Catchment Ref.: LS
Report Type	: Daily Means For Yr.	Grid Ref. : SO 927463
Parameter	: Flow	Gauge Zero : N/A
Units	: M1/d	Catchment Area: 156.000 Sq Km
Period	: 1996	Start of Day : 09:00 GMT

Day	Jan	Feb	Mar	Арг	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec .	Day
1	124.072	44.983	90.976	56.178	53.103	22.608	14.968	7.215	12.500	13.556	16.125	24.772	1
2	200.760	44.856	84 <b>.200</b> .	49.289	58.537	20.409	13.259	6.787	i1.509	14.464	19.621	22.581	2
3	166.869	43.134	79.465	46.599	45.111	21.064	12.870	6.331	11.743	12.405	16.517	27.977	3
4	144.828	41.310	72.849	43.270	38.215	20.460	12.596	5.986	11.416	12.480	16.480	58.535	4
5	149.497	41.185	67.131	42.496	35.781	19.254	13.367	5.579	10.584	12.385	17.543	36.311	5
6	253.260	44.142	63.048	43.506	35.359	18.586	14.548	5.801	- 9.617	12.652	21.148	26.723	6
7	553.999	44.185	60.329	42.022	33.820	20.782	14.388	6.218	8.849	13.938	16.750	22.447	7
8	532.305	41.071	59.597	39.918	32.235	39.502	13.658	6.191	9.417	13.578	16.134	20.597	. 8
9	952.691	107.799	69.492	38.928	30.785	26 <b>.70</b> 8	12.568	6.540	9.596	14.083	17.454	19.618	. 9
10 ;	681.189 [.]	413.468	62.582	40.824	31.630	20.238	11.382	10.210	9.094	15.803	15.393	20.046	10
11	276.628	303.029	60.972	40.533	28.922	19.829	10.429	16.656	8.439	15,532	14.319	18.043	. 11
12	380.772	482.535	103.535	129.527	28.321	21 <b>.9</b> 09	9.971	27.168	8.097	12.777	14.011	17.826	. 12
13	358.523	711.622	113.781	533.127	27.051	19.828	9.565	29.140	8.022	10.864	13.074	17.575	, 13
14	169.569	253.535	87.889	143.347	25.287	16.720	9.225	22.017	7.991	10.298	13.264	17.042	14
15	118.882	145.137	78.212	98.821	25.223	14.956	8.820	15.433	8.441	11.011	13.333	16.638	15
16	97.525	119.124	73.446	+81.311	26,296	13.873	8.286	12.525	- 8.437	10.316	13.678	15.969	16
17	87.144	100.786	. 71:470	74.929	26.342	13.063	8.052	10.989	8.279	9.740	16.881	15.765	17
18	80.162	99.335	66.161	63.045	29.340	12.850	7.685	9.713	7.491	10.250	28.168	23.500	18
19	73.746	86.117	63.150	57.636	48.135	12.675	7.143	10.262	8.018	12.651	29.780	222.652	19
20	67.836	68.752	62.114	54.771	37.849	12.084	6.824	10.188	8.422	16.347	40.305	437.373	20
21	62.767	62.910	86.487	51.422	35.597	11.316	6.478	10.446	8.327	13.925	45.513	99.910	21
22 .	63.115	65.671	95.530	51.407	57.868	10.942	5.653	11.192	8.354	15.567	31.273	51.811	22
23	60.241	67.535	125.664	178.991	44.106	10.355	5.203	14.826	8.259	12.930	22.779	39.253	23
24	72.101	100.459	118.729	115.904	45.266	10.237	5.093	23.467	7.845	12.205	22.531	31.160	. 24
25	77.745	222.963	103.309	72.623	45.482	10.371	5.092	31.643	9.144	11.341	36.224	26.826	25
26	62.547	382.639	115.741	59.073	31.762	10.543	6.141	20.835	8.777	11.866	41.873	23.221	26
27	56.051	197.484	90.986	52.054	31.239	10.814	6.419	19.700	9.495	17.066	28.033	21.995	27
28	52.914	128.509	78.515	47.456	28.498	11.798	6.108	18.781	10.313	26.522	22.614	21.097	28
29	50.242	102.843	68.521	46.338	26.862	13.571	6.285	16.735	11.779	27.610	21.063	20.968	29
30	47.980		61.401	45.587	25.804	16.711	6.431	14.108	12.360	25.332	23.671	20.166	30
31	46.672		58.581		24.002		6.998	13.208		18.351		17.776	31
	197.504	157.487	80.447	81.364	35.285	16.802	9.210	13.738	9.354	14.447	22.185	46.973	
Maximum	952.691	711.622	125.664	533.127	58.537	39.502	14.968	31.643	12.500	27.610	45.513	437.373	
Day of Max.	9	13	23	13	2	8	1	25	1 -	29	21	<b>20</b> ·	
Min	46.672	41.071	58.581	38.928	24.002	10.237	5.092	5.579	7.491	9.740	13.074	15.765	
Day of Min.	31	8	31	9	31	24	25	5	18	17	13	17	
Total (TCM)	6123	4567	2494	2441	1094	504	286	426	281	448	 666	1456	
Runoff (mm)	39	29	16	16	7	3	2	3	2	3	. 4	9	

Above summary is for Daily Means of Flow

Jutput from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic Ltd SULMARY REPORT Printed on 03/07/1997 at 14:45 hrs Page 8 of 8 _____ _______

E. A. Midlands - Headquarters Hydrometry

Nuth. Ref.	: 2015	Station Name : BESFORD BRIDGE
Joc. Desc.	: BOW BR.	Catchment Ref.: LS
leport Type	: Daily Means For Yr.	Grid Ref. : SO 927463
'arameter	: Flow	Gauge Zero : N/A
Jnits	: Ml/d	Catchment Area: 156.000 Sq Km

.............

### 'eriod : 1997

Start of Day : 09:00 GMT

ay	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug Sep	Oct .	Nov De	ec	Day
1	16.895	16.836	60.797	17.307	14.432	9.696	33.398					1
2	19.294	17.200	56.125	16.749	13.189	8.726					A. 4	2
3	17.860	16.891	49.557	17.013	13.000	8.365				12		3
4	17.884	16.820	43.845	16.328	14.916	8.163						. 4
5	17.667	17.204	44.695	16.112	21.816	8.958						5
6	17.932	16.731	41.494	16.145	33.706	10.199						6
7	17.217	16.526	38.100	16.07B	24,107	9.996				·		7.
8	16.539	16.466	35.591	14.633	20.118	10.106			•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8
9	16.805	16.834	33.662	14.565	66.282	9.051		2 4 C 4 4 5				9
D	16.766	17.937	32.688	14.175	50.091	9.217	*			-+ 2× ····		10
1 .	16:585	19.396	31.132	13.969	61.B74	14.289		4 y *	· · ·	4.1.1	· · ·	11
2	17.128	22.553	30.038	13.967	38.282	16.027	1 24.4	· ·	÷			12
3	17.842	34.137	27.005	14.296	32.217	24.579						13
4	17.567	29.998	26.222	14.712	23.576	54.070	1					14
5	16.533	24.655	27.282	14.119	19.142	44.007	1. A.		• •	· · · .		15
6	16.507	23.268	24.972	12.750	17.910	32.613	1			1	· ·	16
7	16.594	31.010	23.781	13.141	22.397	19.909			4	10 A		17
8	16.931	179.607	23.389	13.316	24.909	15.126	4	1 A A A A A		•		18
9	17.857	131.981	22.319	13.608	26.548	1 <b>3.50</b> 8	· · · · · ·				7	19
0	18.828	171.067	21.723	13.568	34.682	16.974		· · ·				20
1	17.373	87.067	21.165	13.067	35.796	33.776						21
2	18.498	61.058	20.918	12.404	25.117	38.785						22
3	23.350	56.797	21.646	11.555	19.174	27.206	-					23
4	20.695	110.212	23.020	11.670	16.479	18.621					2 -	24
5	20.062	308.810'	21.837	29.073	14.884	20.806						25
5	19.076	204.252	20.104	58.959	13.288	193.545			· · ·			26
7	18.280	122.820	19.161	44.854	12.558	331.086						27
3.	17.696	77.988	18.306	28.937	11.925	77.426						28
3	16.788		18.038	20.710	11.044	42.670						29
)	. 17.148		17.387	16.541	10.276	30.923						30
1	17.017		17.240		10.043	•		1				31
: — — — — - зал	17.846	66.647	29.459	18.144	24.315	38.614	33.398					
າະເມ	23.350	308.810	60.797	58.959	66.282	331.086	33.398					
ay of Ma	x. 23	25	1	26	9	27	1					,
in	16.507	16.466	17.240	11.555	10.043	8.163	33,398					
ay of Mi	n. 16	. 8	31	23	31	4	1					
stal (TC	H) 553	1866	913	544	754	1158	33			*		
மoff (m	ת) 4	12	6	3	5	7	0	N/A N/A	N/A N	/A N/4	4	

Above summary is for Daily Means of Flow -

Output from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic Ltd Long Term Statistics Printed on 03/07/1997 at 14:48 hrs

E. A. Midlands - Headquarters Hydrometry

Auth. Ref.	: 2015	Station Name :	BESFORD BRIDGE
Loc. Desc.	: BOW BR.	Catchment Ref.:	LS
Report Type	: Duration/Frequency	Grid Ref. :	SO 927463
Parameter	: Flow	Gauge Zero :	N/A
Units	: Ml/d	Catchment Area:	156.000 Sq Km
Period	: 01/10/1969 to 30/06/1997	Start of Day :	09:00 GMT

Analysis period : Calendar Year

Daily Mean Value(DMV)	DMV as % of LTA		% values exceeding		Ra	nge of va From	lue	es of DMV To		No. in Range	l
2505.600	2812.855	-	0.000			>2505.600				0	
1400.000	1571.678		0.173			1400.000	-	2505.600		12	
760.000	853.197		1.585			760.000	-	1400.000		98	
420.000	471.503		3.9 <b>9</b> 1			420.000	-	760.000		167	
230.000	258.204		8.818			230.000	-	420.000		335	
130,000	145.942		16.340			130.000	-	230.000		522	
71.000	7 <b>9.</b> 707		28.646			71.000	-	130.000	•	854	
39.000	43.782		45.403			39.000	-	71.000		1163	
22.000	24.698		66.427			22.000	-	39.000		1459-	
12.000	13.472		87.435			12.000-		—-22 <del>-</del> 000-—		-1458	
	7.409		96.830			6.600	-	12.000		652	÷
3.700	4.154		98.473			3.700	-	6.600		114	
2.000	2.245	• •	99.135			2.000	-	3.700		46	
1.100	1.235		99.380		· ·	1.100	-	2.000		17	
0.620	0.696		99.640 👘			0.620	-	1.100		18	
0.340	0.382		99.712			0.340	-	0.620		5	
0.190	0.213		99.798			0.190	-	0.340		6	
0.100	0.112	•	99.813			0.100		0.190_		1	
0.057	0.064		- 99.827			0.057	-	0.100		1	
0.032	0.036		99.841			0.032	_	0.057		1	
0.018	0.020		99.856		•	0.018	-	0.032		1	λ.
0.010	0.011		99.870			0.010	-	0.018		1	
0.005	0.006		99.885			0.005	-	0.010		1	
0.003	0.003		99.899			0.003	-	0.005		1	
0.002	0.002		99.914			0.002	-	0.003		1	
0.000	0.000		99.928			0.000	-	0.002		1	
0.000	0.000		99.942			0.000	-	0.000		1	
0.000	0.000		99.957	•		0.000	-	0.000		1	
0.000	0.000		99.971			0.000	-	0.000		1	
0.000	0.000		99.986			0.000	-	0.000		1	
							<=	0.000		1	

	Maximum Daily Mean value	=	2505.600	Minimum Daily Mean Val.	=	- C
2	LTA Daily Mean (Lin Calc)	=	89.077	Median Daily Mean Value	=	33
Ż	Actual 95% Daily Mean	=	8.294	Modal Daily Mean Value	-	12
				(Class Interval 5% of median value)		
]	Number of values used	=	6940	· · · · · · · · · · · · · · · · · · ·		
2	First year used	=	1976			
1	Last vear used	=	1996			

Number of years used = 19 out of 21

Output from HYDROLOG Data Management System V2.33(C) 1991-97 Hydro-Logic LtdLong Term StatisticsPrinted on 03/07/1997 at 14:47 hrs

E. A. Midlands - Headquarters Hydrometry

Nuth. Ref. : 2015 Noc. Desc. : BOW BR. Report Type : Duration/Frequency Parameter : Flow Inits : Ml/d						Station Name : BESFORD BRIDGE Catchment Ref.: LS Grid Ref. : SO 927463 Gauge Zero : N/A Catchment Area: 156.000 Sq Km					
'eric	bd	: 01/3	10/1969	to 30/0	06/1997	Start	of Day	: 09:00	) GMT	· ·	
\naly	ysis per	ciod : (	Calendaı	r Year	20	-1					
	DAILY N	IEAN VAI	LUE EXCI	EEDED S	PATED AN	MOUNT F	OR GIVE	N PERCEI	NTAGE OI	F TIME	
	0	1	2	3	4	5	6	7	8	9	
08		914.89	669.25	517.45	419.99	368.24	312.34	277.78	250,04	226.37	
10%	203.73	188.44	174.53	164.33	150.85	141.09	132.11	125.37	118.54	112.23	
20%	105.24	100.48	95.472	90.547	86.832	82.512	78.797	75.859	72.835	69.898	
30%	66.960	64.195	61.690	59.616	57.283	55.296	52.963	51.149	49.162	47.434	
40%	46.051	44.842	43.459	41.990	40.694	39.485	38.275	36.547	35.683	34.560	
50%	33.523	32.746	31.795	30.845	29.981	29.203	28.598	28.080	27.475	26.870	
60%	26.266	25.661	24.797	24.192	23.587	22.896	22.291	21.600	21.082	20.390	
70%	19.872	19.440	18.922	18:490	17.885	17.366	16.848	16.416	15.984	15.552	
808	15.120	14.774	14.429	13.997	13.651	13.219	12.701	12.182	11.664	11.232	
90%	10.800	10.368	10.022	9.590	8.986	8.294	7.690	6.394	4.493	2.419	

#### SUMMARY STATISTICS FOR ANALYSIS PERIOD

Maximum Daily Mean Value LTA Daily Mean (Lin Calc)	=	2505.60 <b>0</b> 89.077	] ]	Ainimum Daily Mean Val. Median Daily Mean Value	= =	0.000 33.523
LTA Daily Mean (Log Calc)	=	40.069	]	Log Standard Deviation	=	1.192
Actual 95% Daily Mean	=	8.294	(	Calc 95% Daily Mean	=	3.872
-				(Log-Normal distribution assumed)		
Number of values used	=	6940				
First year used	=	1 <b>9</b> 76				
Last year used	=	1996				- 10 I
Number of years used	=	19 out of	21	14 ¹		
				·		

Only complete calendar years of data used

.
E. A. Midlands - Headquarters Hydrometry HYDROLOG Archive Report Auth.: 2015 Name: BESFORD BRIDGE Locat .: BOW BR. 110 -100 90 80 70 60 -Flow M1/d 50 -40 30 . 20 10 0 90 91

Years from 01/01/1990 at 09:00



E. A. Midlands - Headquarters Hydrometry

HYDROLOG Archave Report





E. A. Midlands - Headquarters Hydrometry

HYDROLOG Archive Report

#### AMP3 Water Resources Schemes - Bow Brook.

It is proposed to increase the flow at the top of Bow Brook catchment as part of the AMP3 low flow alleviation schemes. We have therefore been asked to determine what benefits this would have in terms of water quality. In response to the email from Dave Martin on 4th February 1998 and the enquiry from John Ratcliffe in Water Resources at Solihull, I have the following comments to make:

I have recalculated the consent for Priest Bridge assuming that a constant addition of 2ml/d is made to the top of the Bow Brook at Webheath when the flow at Besford Bridge reaches a minimum value. This was done by adding 2000m3/d as a constant addition to river flow for both BOD and NH3 and re-running the mass balance calculations.

	Without 2ml/d	With 2ml/d
BOD (95%ile)	8.52mg/l	9.46mg/l
NH3 (95%ile)	2.23mg/l	2.56mg/l

There is so little dilution in relation to the discharge flow that the extra flow upstream makes very little difference. The AMP3 consent conditions proposed to STWL for Priest Bridge STW were 20:10:3. I therefore do not anticipate that the consent conditions would need to be relaxed.

1

Diane Mcliroy, 18th March 1998.

)

Appendix 10

•

•

Hewell Grange Lake



# Hewell Grange Lake

599
÷.

(

(

-

•

•

(

# <u>General</u>

Ramblers Association	-	0171 582 6878
Countryside Commission	-0 <del>2</del> 0	0171 831 3510
<b>Office National Statistics</b>		0171 233 9233
Halifax Building Society's Statistic	01422 333 333	
Talking Pages	-	0800 600 900

#### Hewell Grange - SSSI

Enclosed is a copy of the "Outline Case for inclusion in AMP3" for Hewell Park Lake. This sets out English Nature's view on the lake's requirements for maintenance of the lake. The Agency has undertaken a review of the last 10 years of Level records for the lake. From these we have compiled Tables 1 and 2 which indicate the number of days per year the lake falls below stipulated levels. In addition the rate of change of level has been calculated, this allows a leakage rate against level to be produced (see Figure 2). Using these tables and Figure 2 it is possible to estimate the volume of water which will be required to maintain stipulated levels.

You have been provided with the details of the outside contact (A Amoss) who has been involved with the SSSI as the Prison Service contact as well as our own expert Liz Galloway (Area Landscape Architect - Tewkesbury) who will be able to assist you in estimating the benefit for the option to be considered.

Could you therefore consider the benefits to both the Garden and the SSSI of keeping the lake at a minimum level of:

A	- 100mm
В	- 200 mm
С	- 300 mm
D	- 400 mm

It is known that the compensation release will be triggered by the lake level, and that this will be an Agency monitoring point. The location of the Severn Trent Water plc borehole which will provide the compensation release is at NGR SP 0020 7020, situated on the southern stream feeding the lake.

#### SSSI5: OUTLINE CASE FOR INCLUSION IN AMP3 WATER COMPANY ABSTRACTIONS

HEWELL.MID

SSSI Name	::		HEWELL PARK LAKE				
Name of w	ater body, if o	tifferent:	: Hewell Lake				
SAC Name	::						
SPA Name	:						
County: H + W EA Region: MIDLANDS EN LAT: THREE COUNTIES					THREE COUNTIES		
	- 4						
Wildlife in Open water the largest r	terest: is a scarce hab reed warbler co	bitat in Wo lonies in W	rcestershir /orcestersl	e. The lake margin hire. Breeding wate	s have extensive rfowl include gro	areas of reed, which support one of eat crested grebe. Good populations	

#### _____

of amphibians and reptiles include a high density of grass snakes.

Problem affecting wildlife interest: The lake was formerly in hydrological continuity with the water table, and received surface water from a small catchment. This maintained a high water table all year (and fed a series of water features in the Repton designed landscape). Water abstraction within clkm lowered the water table, so the lake leaks. Concurrently the lake had lost substantial inputs from surface run-off due to changes in catchment drainage. The major part of this will be restored by maintenance work on the culvert under the Worcester and Birmingham Canal. At present the Environment Agency is in discussion with BW so that modifications to feed arrangements can be agreed. These will probably be in the form of a Memorandum of Understanding which will be in operation for 5 years.

The most noticeable effect in wildlife terms is that the main body of the reedbed is dry in summer. Terrestrial vegetation is becoming established, and this main block has largely lost breeding reed warblers. Great crested grebe numbers have also apparently declined. Reed is also spreading along both the eastern and western sides of the lake, in the latter case causing a conflict with landscape objectives.

#### Origin of concern:

(

1

Impact of Water Abstraction on Wetland SSSI's (August 1996 report by hydrological consultants to English Nature) A botanical survey of wetlands planned by the Worcestershire Wildlife Trust for 1998 will quantify actual vegetation changes since an earlier survey in 1978.

Water Company:	Severn-Trent Water plc						
Abstraction location: Licence Nos: SW/GW*1		Abstraction guantity:	Likely action required *2:				
SP00087022	1 <b>8</b> /54/15/0183	GW	2903.8 tcma	Compensation pumping during periods of low levels which will be triggered by the automatic monitored reservoir level logger.			
SP00906690	18/54/19/0113	GW	2646.3 tcma	Variation in discharge rates will be trialed to confirm restoration o levels in the lake and monitor the effect on SSSI, fishery and gardens.			

Risks to nature conservation of not carrying out works:

There is likely to be a continuing decline in numbers of breeding reed warblers and aquatic waterfowl. However, these losses should be fairly easily reversed if higher water levels are restored. There are also serious implications for the aquatic flora and fauna.

*1 SW/GW - surface water/ groundwater

*² 0 - no reduction required; 1 - reduce licence by 0-25%; 2 - reduce licence by 25-50%; 3 - reduce licence by 50-75%; 4 - move borehole; 5 - revoke abstraction licence; 6 - compensation water (if reductions are seasonal, state which months)



TABLEI

HEWELL GRANGE RESERVOIR LEVELS

(

ال	0 LEVEL				
	START DATE	DAY NO. IN YEAR	END DATE	DAY NO. IN YEAR	NO. DAYS BELOW LEVEL
	18/12/88	49	01/12/92	336	1747
	01/02/93	32	01/12/93	335	303
	23/04/94	113	13/12/04	347	224
	01/02/05	60	27/06/07	178	119
	01/03/93	184	21/00/97	70	118
	03/07/97	104	21/12/97	355	101
	-100 LEVEL				
	START DATE	DAY NO. IN YEAR	END DATE	DAY NO. IN YEAR	NO. DAYS BELOW LEVEL
	07/03/88	67	18/02/89	49	347
	25/04/89	115	20/11/92	325	1305
	13/06/93	164	01/12/94	330	166
	28/04/94	' 118	01/12/94	335	217
	01/04/95	91	24/02/96	55	329
	04/03/96	64	23/06/97	174	475
	15/07/97	196	22/11/97	326	130
		÷			4
	-200 START DATE				
	10/07/88	110	20/01/80	20	NO. DATS BELOW LEVEL
	22/05/80	142	30/01/09	50	200
	20/04/00	143	00/03/90	00	287
*	30/04/90	120	07/11/92	312	922
	14/07/93	195	19/11/93	323	128
	12/06/94	163	26/11/94	330	167
	12/05/95	132	24/12/95	358	226
	03/01/96	3	04/02/96	35	32
	09/05/96	130	19/06/97	170	405
	31/07/97	212	18/11/97	322	110
	-300			¥	· ·
	START DATE	DAY NO. IN YEAR		DAY NO IN YEAR	NO DAYS BELOW LEVEL
	22/06/88	174	14/01/89	14	205
	12/06/89	163	16/02/90	47	249
	07/08/90	219	03/09/91	246	392
	07/10/91	280	13/04/92	104	189
í	24/06/92	176	19/08/92	232	56
`	01/08/93	213	11/11/93	315	102
	26/06/94	177	19/11/9/	323	146
	30/05/95	150	20/10/05	302	150
	01/12/95	335	07/12/05	2/1	152
	14/06/06	166	02/02/07	541	0
	26/03/07	85	03/03/97	02	201
	20/03/97	60 4 4 7	45/00/07	120	43
	27/05/97	147	15/06/97	100	19
	19/08/97	231	28/08/97	240	9
	11/09/97	254	04/10/97	- 211	23
	-400 LEVEL		1.1		
	START DATE	DAY NO. IN YEAR	END DATE	DAY NO. IN YEAR	NO. DAYS BELOW LEVEL
	19/07/88	201	31/12/88	365	164
	06/07/89	187	22/01/90	22	200
	02/10/90	275	30/10/90	303	28
	26/11/90	330	<b>20/12/9</b> 0	354	24
	11/07/94	192	26/09/94	269	77
	19/10/94	292	31/10/94	304	12
	18/06/95	169	17/07/95	198	29
	03/07/96	185	27/02/97	58	238

		NO. DAYS BEI	LOW LEVE	AND VOLUME I	N ML/D					
DEPTH BELOW RES. SURF.	1993 DAYS	1993 VOLUME	1994 DAYS	1994. VOLUME	1995 DAYS	1995 VOLUME	1996 DAYS	1996 VOLUME	1997 DAYS	1997 VOLUME
less than 0	303		234		305		365		359	
less than 100	166	102.92	217	134.54	274	169.88	356	220.72	304	188.48
less than 200	128	66.56	167	86.84	226	117.52	270	140.4	280	145.6
less than 300	102	47.94	146	68.62	152	71.44	199	93.53	156	73.32
less than 400	0	0	89	40.05	29	13.05	180	81	58	26.1

•

Appendix 11

•

•

•

• • •

•

•

•

•

**River Sherbourne** 



# River Sherbourne

•

Environment Agency	-	John Ratcliffe 0121 711 2324 Glenn Hoban 0121 711 2324 John Irish 01684 850 951
Nuneaton Council	-	Fax 01203 376 433
Coventry City Council	-	01203 832 333
Leisure Services	-	01203 832 437
Parks Department	-	01203 832 348
Coventry Tourist Information Centre	-	01203 832 303
Local Ramblers Association Member	-	Mr Meek 01676 541 836

U:\Projects\Midlands\Reports\Contacts.doc

• • •

••••

# <u>General</u>

Ramblers Association		0171 582 6878
Countryside Commission	÷	0171 831 3510
<b>Office National Statistics</b>	-	0171 233 9233
Halifax Building Society's Statistic	al Service	01422 333 333
Talking Pages	1.1	0800 600 900

ţ •

### **River Sherborne**

TheRiver Sherborne and its tributaries the Pickford and the Guphill brooks have all been affected by groundwater abstraction undertaken by the local public water company. This has resulted in the upper reaches of the river having a history of low/zero flow. The spot gaugings which were undertaken in 1991, 1992 and 1995 indicated that during July/Oct 91, May/Aug 93 and July/Aug 95 there was no flow in the River Sherborne at Wall Hill (SP 2950 8340) and Stonehouse (SP 2930 8210). Also at Allesley (SP 3090 8020) during Sept/Nov 95 zero flow was recorded. Similarly on the Prickford brook zero flows were recorded July/Aug 95 at Windmill Hill (SP 2860 8100) Upper Eastern Green (SP 2740 8070) and Allesley Green (SP 2910 8050). As can be seen from the enclosed full spot gauging record limited information is available, but local information suggests that the river and tributaries are dry for considerable periods each year. In February 98 sites at Sandpit Farm (SP 2750 8254) and Hawkes Enf (SP 2936 8289) were observed to have zero flows.

There are a number of options which are to be considered. In some cases this is to try and indicate how sensitive the analysis is to relatively small changes in location and flow. The options to be reviewed at:

- 1 Pickford Brook (SP 2700 8250) to receive a compensation release from existing STW plc borehole (Meriden) of 1Ml/d.
- 2 River Shelbourne (SP 3070 8280) to receive a compensation release from existing STW plc borehole (Brown Green) of 1Ml/d.
- 3a River Sherbourne (SP 2950 8300) to receive a compensation release form existing STW plc pipelines (Chlorinated Water) of 1Ml/d.
- 3b River Sherborne (SP 2850 8390) to receive a compensation release from proposed new borehole of 1MI/d.
- 4 A combination of Options 1 + 2.
- 5 A combination of Options 1 + 2 + 3a
- 6 A combination of Options 1 + 2 + 3b

In all cases the downstream point for consideration will be the confluence of the River Sherbourne with the River Avon (SP 3450 7550). Enclosed are the population figures for each option or combination of options relating to 0.8, 3 and 17 Km radius of the rivers and brooks.

With so little information it is difficult to estimate what should be the trigger flow which set the compensation release in operation. We have produced two Duration/Frequency Graphs for the sites at Kingsbury Road (SP 3090 8020) and Bagington A45 bridge (SP 3090 8020).(34Ao 1560 From these and from the spot gaugings data base could you consider a trigger of Q50 at Kingsbury (2.0 Ml/d) as the starting flow for all options. It is hoped to refine these relationships during the next 12 months.

Option 1	<b>rewatered</b>	4.2	Km
	Substantial increase in flow	7.6	Km
Option 2	<b>rewatered</b>	2.8	Km
	Substantial increase in flow	7.6	Km
Option 3a	rewatered	3.9	Km
	Substantial increase in flow	7.6	Km
Option 3b	rewatered Substantial increase in flow	5.2	<b>Кт</b> Кт
Option 1 + 2	rewatered Substantial increase in flow	7.6	<b>Km</b> Km
<b>Option 1 + 2 + 3</b> a	rewatered	10.0	<b>Km</b>
	Substantial increase in flow	7.6	Km
<b>Option 1 + 2 + 3b</b>	<b>rewatered</b> Substantial increase in flow	12.0	Km Km

0.000



SHERBOURNE

SP29308210 STONE HOUSE

07-1ป-93

0.000

SHERBOURNE	CURRENT METER CAUGINGS		UPDATE	18-Jun-97		
				Discharge	Discharge	
River name	NOR	Location	Data of gauging	cumeca	MId	Comments
SHERBOURNE	SP29508340	WALL HILL	22-May-91	0.000	0.02	6 PICKFORD GREENSURVEY
SHERBOURNE	3P29508340	WALL HILL	26-Jun-91	0.001	0.06	Ø PICKFORD GREEN BORE-HOLE SUR VEYAFTER WET SPELL
SHERBOURNE	SP29508340	WALL HELL	10-12-91	0.000	0.00	0 PICKFORD OREENBOREHOLE SURVEY
SHERBOURNE	SP29508340	WALL HILL	24-Jul-91	0.000	0.00	0 PICKFORD BOREHOLESURVEY
SHERBOURNE	SP29308340	WALL HILL	07-Aug-9)	0.000	0.03	S PICKFORD GREENBOREHOLE SURVEY
SHERBOURNE	SP29308340	WALL HILL	02-00-91	0.001	0.05	2 PICKFORD OREENBORGHOLE SURVEY
SHERBOURNE	5729508340	WALL HILL	10-00-91	0.000	0,00	
SHERBOURNE	5729308340		27.Nov.91	0.003	0.14	
SHERBOURNE	\$279508140	WALL HEL	20-Dec-91	0.001	0.26	
SHERBOURNE	SP29508340	WALL HILL	26-Dec-91	0.003	0.26	A PICKFORD GREEN BOREHOLE SURVEY
SHERBOURNE	SP29508340	WALL HEL	22-Jan-92	0.002	0.21	6 PICKFORD GREENBOREHOLE SURVEY
SHERBOURNE	SP29308340	WALL HILL	18-Mar-92	0.002	0.19	9 PICKFORD OREENBOREHOLE SURVEY
SHERBOURNE	SP29508340	WALL HILL	29-Apt-92	0.001	0.06	9 PICKFORD GREENSURVEY
SHERBOURNE	SP29508340	WALL HILL	13-May-92	0.000	0.02	% PICKFORD GREENSURVEY
SHERBOURNE	SP29508340	WALL HEL	13-May-92	0.000	0.02	6 PICKFORD OREENSURVEY
SHERBOURNE	3P29508340	WALL HILL	28-May-92	0.000	0.00	0 DOMMY GAUGINGVERY SMALL FLOWPICKFORD GREEN SURVEY
SHERBOURNE	5020508340		10-303-92	0.000	0.00	
SHERBOURNE	5779508340		24-346-92	0.000	0.00	A DIVERSIDE ADDREAD AND AND AND AND AND AND AND AND AND A
SHERBOIDINE	5229508340	WALL HUI	22-bil.97	0.000	0.00	
SHERBOURNE	SP29508340	WALL HEL	05-Anz-92	0.000	0.00	DIADAY GALORO OFLOWPICKFORD GREEN SURVEY
SHERBOURNE	SP29508340	WALL HILL	19-Aug-92	0.000	0.00	DURARY GAUGING VERYSMALL TRICKLE WITH WATERLYING IN STREAM BEDPICK FORD GREEN SURVEY
SHERBOURNE	SP29508340	WALL HILL	02-Sep-92	0.001	0.09	S PICKFORD OREEN SURVEY
SHERBOURNE	SP29508340	WALL HILL	16-Sep-92	0.000	0.02	M PICKFORD GREENSURVEY
SHERBOURNE	SP29508340	WALL HILL	30-5ep-92	0.002	0.14	17 PICKFORD GREENSURVEY
SHERBOURNE	SP29508340	WALL HILL	22-Apr-93	0.002	0.71	6 PICKFORD OREBNSURVEY
SHERBOURNE	SP29508340	WALL HILL	12-May-93	0.007	0.13	18 PICKFORD GREENSURVEY
SHERBOURNE	SP29508340	WALL HILL	09-Jun-93	0.002	0.17	3 PICKFORD GREENSURVEY
SHERBOURNE	SP29508340	WALL HILL	07-101-93	0.000	0.03	5 PICKFORD GREENSURVEY
SHERBOURNE	\$P29508340	WALL HILL	03-549-93	0.001	0.05	2 PICKFORD OREENSURVEY
SHERBOURNE	SP29308340	WALL HILL	24~101-93	0.000	0.00	D BONE DRY
SHERBOURNE	522308240	WALL MILL	23-A118-93	0.000	0.00	
SHERBOURNE	572300204	STONE HOUSE	10-FCF-98	0.000	0.00	
SHERBOURNE	SP29308210	STONE HOUSE	24-10-91	0.000	0,04	
SHERBOURNE	SP29308210	STONE HOUSE	10-Jel-91	0.000	0.00	9 PICKFORD GREENBOREHOLE SURVEY
SHERBOURNE	SP29308210	STONE HOUSE	24-Jul-91	0.000	0.01	7 PICKFORD BOREHOLESURVEY
SHERBOURNE	SP29308210	STONE HOUSE	07-Aug-91	0.000	0.00	9 PICKFORD GREENBOREHOLE SURVEY
SHERBOURNE	SP29308210	STONE HOUSE	21-Aug-91	0.000	0.01	7 GAUGED AS PICKFORDOREEN AREA STUDY
SHERBOURNE	SP29308210	STONE HOUSE	02-Oct-91	0.000	0.00	9 PICKFORD GREENBOREHOLE SURVEY
SHERBOURNE	SP29308210	STONE HOUSE	16-Oci-91	0.000	0.01	7 PICKFORD GREENBOREHOLE SURVEY
SHERBOURNE	SP29308210	STONE HOUSE	30-00-91	0.001	0.05	2 PICKFORD GREENBOREHOLE SURVEY
SHERBOURNE	SP29308210	STONE HOUSE	27-Nov-91	0.000	0.01	7 PICKFORD GREEN STUDY
SHERBOUKNE	SP29308210	STONE HOUSE	20-Dec-91	0.001	0.12	1 PICKFORD OREENBOREHOLE SURVEY
SHERBOURNE	5P29108210	STONE HOUSE	26-D60-91	0.001	0.12	
SUEPROIDE	SP29308210 SP29308210	STONE HOUSE	22-131-92 18-Mer.92	0.001	0.12	
SHERBOURNE	SP29308210	STONE HOUSE	29-Am-92	0.001	0.06	PICKFORD GREENNLRVEY
SHERBOURNE	SP29308210	STONE HOUSE	13-May-92	0.001	0.05	2 PICKFORD GREENSURVEY
SHERBOURNE	SP29308210	STONE HOUSE	13-May-92	0,001	0.05	2 PICKFORD GREENSURVEY
SHERBOURNE	SP29308210	STONE HOUSE	28-May-92	0.000	10.0E	7 PICKFORD GREENSURVEY
SHERBOURNE	SP29308210	STONE HOUSE	10-Jun-92	0.000	0.03	5 PICKFORD GREENSURVEY
SHERBOURNE	SP29308210	STONE HOUSE	24-Jun-92	0.000	0.00	0 PICKFORD GREENSURVEY
SHERDOURNE	SP29308210	STONE HOUSE	08-Jul-92	0.000	0.00	0 PICKFORD GREEN SURVEY
SHERBOURNE	SP29308210	STONE HOUSE	22-Jul-92	0.000	0.00	0 PICKFORD GREENSURVEY
SHERBOURNE	SP29308210	STUNE HOUSE	05-Aug-92	0.000	0.00	0 DURDAY OAUGINOLESS THAN 0.005 MLDPICKFORD OREEN SURVEY
BURNEY AND	SP79308210	STONETIOUSE	19-Aiig-92	0.000	0.00	0 DUMAY GAUGING REASONABLE TRICKLE BUT UNMEASURABLE. WATER LYING IN STREAM BEDPICKFORD GREEN SURVEY
SHERDOLING	5729308210	STONE HOUSE	074-3169-92	0.001	0.04	
SHERBRAUE	3873306210	STONE HOUSE	10-340-92	0.000	0.00	
SHERBOURNE	3F27398210 5979308310	STONE HOUSE	30-367-92 77-4 m-93	0.001	0.06	
SHERBOURNE	SP2930210	STONE HOUSE	44-14-73 17.kdov-01	0.002	. v.i.s	
SHERBOURNE	SP29308210	STONE HOUSE	09-Jun-93	0.001	0.05	2 PICKFORD ORGENSURVEY

0.017 PICKFORD OREENSURVEY

.

1

T.

SHERBOURNE	CURRENT METE	IR DAUDINOS		UPDATE	18-Jun-97		
					Discharge	Discharge	
River name		NOR	Location	Date of gauging	C1101-001	Mid	Commente
SHERBOURNE		SP29308210	STONE HOUSE	06-Aug-93	0.000	0.009	PICKFORD GREENSURVEY
SHERBOURNE		SP29308210	STONE HOUSE	03 <b>-</b> \$ep-93	0,000	0.009	PICKFORD OREENSURVEY
SHERBOURNE		5P29308210	STONE HOUSE	24-Jul-95	0.000	0.000	UNMEASURABLE BUT ATRICKLE OF WATER INTOSMALL POOLS.
SHERBOURNE		SP29308210	STONE HOUSE	26-Aug-95	0.000	0.000	NO MEASUREABLE FLOWTRICKLE JUST VISIBLE BYSTIRRING UP SILT POOLSIN BED MUCH LOWER THANPREVIOUS VISIT
SHERBOURNE (TRIB)	NORTH BR	SP30728160	COLINDON	28-66-85	0.004	0.346	
SHERBOURNE (TRIB)	NORTH BR	SP10728160	COUNDON	25-Od-85	0.000	0.000	
SUCEBOURNE (TRIS)		\$1777508754	SANDPIT FARM	18-5-6-98		0.000	
	PICK FORD BR	5727300204		74.501.95		0.000	
	PICKFORD BR	3725003100		75.Ane-95		0.00	
	PICKFORD DR	5725000100		3.5-748-33		0.00	
SHERBOURNE (TRIB)	PICKFORD BR	SP2/4080/0	UPPER EASTERN OREEN	24-200-73		0.00	
SHERBOUKNE (TRIB)	PICKFORD BK	372/4060/0	UPPER BASTEROT OREEN	43-Aug-55		0.00	
SHERBOURNE (TRIB)	PICKEUKUBK	3229108030	ALLESLET	24-111-93		0.00	
SHERBOUKNE (IKIB)	PICKFORD BK	5729108050	ALLESLET	22-V08-22		0.00	
SHERBOUKNE		SP30808025	ALLESLEY	US-Ang-81	0,016	1.365	
SHERBOURNE		SP30808023	ALLESLEY	25-00-85	0,006	0.518	
SHERBOURNE		3P30808025	ALLESLEY	28-F cb-86	0,024	2.074	
SHERBOURNE		\$P30108110	ALLESLEY	26-Jun-91	0,002	0.138	PICKFORD GREEN BORE-HOLE SURVEY AFTER WET SPELL
SHERBOURNE		SP30708050	ALLESLEY WEDDE PARK	24-JEL-95	0.001	0.104	U.S FOOTBR
SHERBOURNE		SP30708050	ALLESLEY WEDGE PARK	25-Aug-95	0.004	0.311	UA OF PICKFORDBROOK CONFLUENCE
SHERBOURNE		SP30968020	KINGSBURY RD.	08-Dec-94	0.237	20.451	GAUGED BY EWAN UNDERCONTRACT. GAUGED AFTERDARK BY CAR HEADLIGHTS.
SHERBOWRNE		SP30908020	KINOSBURY RD.	12-Jmi-95	0.098	8.502	OAUGED BY EWAN UNDERCONTRACT.
SHERBOURNE		SP30908020	KINOSBURY RD.	25-Jan-95	0.335	28.961	GAUGED BY EWAN UNDERCONTRACT.
SHERBOURNE		SP30908020	KINOSBURY RD.	09-Feb-95	0.113	9,789	
SHERBOURNE		SP30909802	KINGSBURY RD.	22-Feb-95	0,108	9.288	
SHERBOURNE		SP30905020	KINOSBURY RD.	09-Mar-95	0.161	13.919	
SHERBOURNE		SP30908020	KINGSBURY RD.	22-Mar-95	0.046	3.957	
SHERBOURNE		\$P30908020	KINOSBURY 3D.	06-Apt-95	0.023	2.030	
SHERBOURNE		SP30908020	KINGSBURY RD.	25-Apr-95	0,029	2.540	AVON EUTROPHICATIONSURVEY
SHERBOURNE		SP30908020	KINGSBURY RD.	25-Apr-95	0.081	7.007	RECALC DATA
SHERBOURNE		\$P30908020	KINOSBURY RD.	]]-May-95	0.013	1.149	AVON EUTROPHICATION PROJECT
SHERBOURNE		SP30908020	KINGSBURY RD.	11-May-95	0.056	4.821	RECALC DATA
SHERBOURNE		SP30908020	KINGSBURY RD.	24-May-95	0.011	0.985	AVON EUTROPHICATIONPROJECT
SHERBOURNE		SP30908020	KINGSBURY RD.	24-May-95	0.047	4.057	RECALC DATA
SHERBOURNE		SP30908020	KINOSBURY RD.	09-Jun-95	0,008	0.717	A VON EUTROPHICATIONPROJECT
SHERBOURNE		SP30908020	KINOSBURY RD	09-Jun-95	0.040	3.465	RECALC DATA
SHERBOURNE		SP30908020	KINOSBURY RD.	22-Jun-95	0.003	0.268	AVON EUTROPHICATION PROJECT
SHERBOURNE		SP30908020	KINOSBURY RD.	05-Jul-95	0.003	0.242	AVON EUTROPHICATIONPROJECT
SHERBOURNE		SP30908020	KINOSBURY RD.	18-7-1-95	0.004	0.311	
SHERBOURNE		SP30908020	KINGSBURY RD.	31-Aug-95	0.006	0.527	
SHERBOURNE		SP30908020	KINGSBURY RD.	13-Sep-95	0.000	0.000	
SHERBOURNE		SP30908020	KINOSBURY RD.	28-Sep-95	0,000	0.000	NO MEASUREABLE FLOW
SHERBOURNE		SP30908020	KINOSBURY RD.	11-04-95	0.000	0.000	NO FLOW - GAUGINGSMADE UP TO PRODUCEZERO MLD
SHERBOOKNE		3P30908020	KINGSBURY RD.	26-Oct-95	0.000	0.000	NO MEASURABLE FLOW
SHEKBOUKNE		SP30908020	KINGSBURY RD.	08-Nov-95	0.000	0.000	NO FLOW FOUND
SHERBOURNE		SP30908020	KINGSBURT KD.	23-NOV-95	0.004	0.354	
SHEKBOUKNE		SP30908020	KINUSBURY RD.	06-Dec-95	0.007	0.596	
SHERBOURNE		SP30908020	KINGSBURY RD.	15-Dec-95	0.007	0.562	
SHEKBOUKNE		3P30908020	KINGSBURY RD.	17-Jan-96	0.065	5.590	
SHEKBOURNE		SP30908020	KINUSBURY KD.	01-1-60-90	0.017	1.443	F104'
SHERBOURNE		SP30908020	KINOSBURY RD.	16-1-05-96	0.079	6.800	FIOP
SAERBOURNE		3P30908020	KINGSBURT RD.	29-1-00-90	0.066	3.068	F104
SHEKEOUKWE		SP30908020	KINUSBURY KD.	13-Mar-96	0.055	4.717	
SHERBOURNE		3930908020	KINGSBURT KD.	28-ME-90	0.014	1.184	
SHEKBOURNE		SP30908020	KINGSBURT KD.	16-Apt-96	0.020	1.754	
		3730908020	KINBABUKT KU.	26-AJT-96	0.014	1.166	TIM ABULT 2CM BELOW U.B.
SHERBOURNE		3530308030	KINGSBURT KU.	13-MORY-96	0.012	1.071	
		31,30308020	KINUSBURT KD.	31-May-96	0,006	0.553	
SUEDDOURNS		3730908020	KINUSBURT RD.	13-500-96	0.003	0.285	
		3530202020	KINGSDURT KU.	24-Jan-96	0.003	0.225	
PUTRICUTRING			KINGSBURT KD.	08-JM-96	0.030	2.375	
		3230908040	KINGSBURT KD.	24-JU-96	0.002	0.138	F104 5104
STERBOURNE		3730308040		10 4 **	0.001	0.093	
SHERBOURNE	94	SD10908020	KINGERIRY PIL	135 A BB - 90	0,000	0.017	
SHERBOURNE		SP100020	KINGSOULT ND.	ንሳ ዓ <del>ጠ</del> ም	0.003	0.270	
		C( JANGDAVA		20-36P-30	0.002	V.138	

CMR

CMR'S.WK4

SHERBOURNE	CURRENT MET	ER GAUGINOS		UPDATE	18-Jun-97		
					Discharge	Discher	
River name		NOR	Location	Date of a suging		MIG	Comments
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	29-Am-92	0.009		2708 PICKFORD GREENSURVEY
SHERBOURNE		3P30908010	SHERBOURNS FIELDS	13-May-92	0.031	2	1.637 PICKFORD GREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	13-May-92	0.031	2	1.687 PICKFORD GREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	28-May-92	0.002		207 PICKFORD GREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	10-Jun-92	0.004	Ċ	JIG PICKFORD GREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	24-Jun-92	0.002		1156 PICKFORD GREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	08-Jul-92	0.004		139 PICKFORD GREEN SURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	22-Jul-92	0.021	1	49 PICKFORD GREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	05-Atta-92	0.002	. 0	199 PICKFORD GREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	02-50-92	0.047		4.018 PICKFORD OREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	16-5m-97	0.003		142 PICKFORD GREENURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	30-Sep-92	0.014	. 1	218 PICKFORD ORFENNURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	22-Am-93	0.023	. 1	97 PICKFORD OREENSURVEYREPLACES BADLY INPUTTEDGAUGING FOR SAME PLACEAND TIME
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	09-Jun-93	0.018	. 1	529 PICKFORD GREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	07-Jul-93	0.014	i i	244 PICKFORD GREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	03-5@-93	0.002		.199 PICKFORD OREENSURVEY
SHERBOURNE		SP30908010	SHERBOURNE FIELDS	24-Jul-95	0.003		)251 D.S. RD. BR.
SHERBOURNE		3P31008000	SHERBOURNE FIELDS	25-Aug-95	0.012	: 1	.045 D/3 RD BR ON GRAY-WOOD AVE INCL. DISCHARGEUNDER BRIDGE
SHERBOURNE		SP31757930	FOUR POUNDS AVENUE	30-Oct-85	D.010	, d	).864
SHERBOURNE (TRIB)	ouphill br	SP27408080	EASTERN OREEN	25-Oct-85	0.000	i d	J.000
SHERBOURNE (TRIB)	OUPHILL BR	5P28807960	LOWER EASTERN OREEN	24-Jul-95			0.14
SHERBOURNE (TRIB)	OUPHILL BR	1P28807960	LOWER EASTERN GREEN	25-Ang-95			0.04
SHERBOURNE (TRIB)	OUPHILL BR	SP28807960	WHORBERLEY	24-Jul-95			0.37
SHERBOURNE (TRIB)	OUPHILL BR	SP30327943	WHORBERLEY	25-Ang-95			0.16
SHERBOURNE		SP32507920	UPPER SPON BK.	30-Oct-85	0.016	i 1	.382
SHERBOURNE		SP32507920	UPPER SPON BK.	28-Fcb-86	0.044	3	1.602
SHERBOURNE		SP34407830	THE CHARTERHOUSE	30-Oct-85	0.073	- 6	.307
SHERBOURNE		3P34707750	SHORTLEY RD.	12-Jan-95	0.295	25	.505 GAUGED BY EWAN UNDERCONTRACT. ALTERNATIVESITE TO BAGINGTON #45.
SHERBOURNE		SP34707750	SHORTLEY RD.	25-Jen-95	0.312	26	1974 GAUGED BY EWAN UNDERCONTRACT.
SHERBOURNE		SP34707750	SHORTLEY RD.	09-Feb-95	0.284	- 24	1.338 GAUGING INTERRUPTED- CONNECTOR FAILURE.RB-STARTED WHEN CABLE REPLACED.
SHERBOURNE		SP34707750	SHORTLEY RD.	24-Jul-95	0.090	' 7	759 LOW FLOW SURVEYFOR OP DAVIES - NO STARTOR END TIME ENTERED ONRAWDATA SHEET SO 1000AND 1020 ARE ESTIMATES
SHERBOURNE		SP34707750	SHORTLEY RD.	25-Ang-95	0.052	4	.501 OP DAVIES REQUEST

.....

.

.

.

CNR

SHERBOURNE	CURRENT METER GAUGINOS		UPDATE	16-Jun-97		
				Distant.	Distance	
River name	NGR	Location	Date of senting	Duchage	Mid	Comments
SHERBOURNE	SP34337571	BAGINGTON A45 BDOE	25-Aug-77	0.335	28.944	Conduction of the second s
SHERBOURNE	SP34337571	BAGINGTON A45 BDGE	27 Jun-78	0.078	6.739	
SHERBOURNE	SP34337571	BAGINGTON A45 BDGE	26-Sep-78	0.096	8.294	
SHERBOURNE	SP34337571	BAGINGTON A45 BDGE	24-Jul-79	0.136	11.750	
SHERBOURNE	SP34337571	BAGINGTON A45 BDGE	29-Aug-80	0.575	49.680	
SHERBOURNE	SP34337571	BADINGTON A45 BDDE	05-Aug-81	0.122	10.541	
SHERBOURNE	SP34337571	BAGINOTON A45 BDGE	15-Aug-83	0.116	10.040	
SHERBOURNE	SP34307580	BAGINGTON A45 BDGE	25-Jul-59	0.160	13.824	GAUGED SM USTREAMRD BRIDGE
SHERBOURNE	SP34407360	BAGINGTON ANS BOOK	24-Aug-89	0.147	12.004	GAUGED UNDER RD ARBAGINGTON COVENTRY
SHERBOURNE	SP34407360 SP34407560	BAGINGTON AS BOOK	(17. Alter 40.	0.0054	J.694	
SHERBOURNE	SP14407360	BAGINGTON AAS BOOF	17-Sen-90	0.142	12 286	
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	03-Sep-91	0.074	6385	
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	23-Jun-92	0.065	5.616	LOFLO
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	19-36-94	0.092	7.966	GAUGED FOR LOW FLOWSURVEY
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	08-Dec-94	1,293	111.732	GAUGED BY BWAN UNDERCONTRACT. SKEW ANOLEMEASURED BY JFC AS MALTHOUGH EWAN SAY 42. MUSED IN CALCULATIONS.
SHERBOURNE	SP34407560	BAOINGTON A45 BDGE	22-Feb-95	0,331	28.564	
SHERBOURNE	SP34307560	BAGINOTON A45 BDGE	09-Mar-95	0.406	35.078	
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	22-Mar-95	0.221	19.094	
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	06-Apt-95	0.219	18.904	
SHERBOURNE	SP34407560	BAGINGTON AAS BOOE	24-Apr-95	0.211	18.265	
SHERBOURNE	SP34407560	BAGINGTON AAS BLOCK	20-141-90 11-146-05	0,107	14 550	
SHERBOURNE	SP3407560	BAGINGTON A45 BOOE	11-Mary-95	0.100	5.892	
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	24-May-95	0.064	5.486	AVON EUTROPHICATION PROJECT
SHERBOURNE	3P34407560	BAOINGTON A45 BD05	24-May-95	0.156	13,478	RECALC DATA
SHERBOURNE	\$P34407560	BAGINGTON A45 BDGE	09-Jun-95	0.095	\$ 182	CII METER USEDBECAUSE OF CABLE FALLUREON CZ
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	22-Jun-95	0.009	0.821	AVON EUTROPHICATION PROJECT
SHERBOURNE	SP34407560	BAOINGTON A45 BDGE	05-Jul-95	0.009	0.743	avon EutrophicationProject
SHERBOURNE	3P34407560	BAGINGTON A45 BDDE	18-JE-95	0.011	0.968	
SHERBOURNE	3P34307560 \$D34307560	BAUINGTON A43 BOOK	24-701-93	Ų. <b>U</b> 76	6.506	FOR FLOW SORVER FOR OD DAYES
SHERBOURNE	SP34307560	BAGINGTON A45 BOOF	25.30.95	0 212	18 117	
SHERBOURNE	\$P34407560	BAOINGTON A45 BDGE	09-Aux-95	0.037	7.500	
SHERBOURNE	SP34407560	BAGINOTON A45 BDOE	22-Aug-95	0.048	4,164	LOW FLOW SURVEY
SHERBOURNE	\$P34407560	BAGINGTON A45 BDGE	22-Aug-95	0,048	4.164	LOW FLOW SURVEY
SHERBOURNE	\$P34307560	BAGINOTON A45 BDGE	23-Ang-95	0.067	5.754	GP DAVIES REQUEST
SHERBOURNE	\$P34407560	BAGINGTON A45 BDOE	31-Abg-95	0,097	8.355	
SHERBOURNE	SP34407560	BAGINGTON A45 DIVIE	38.940-33	0.104	10.610	
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	28-549-95	0.093	8.035	AS COMPARISON WITH CONTRACTOR GAUGING ONSAME DAY
SHERBOURNE	SP34407360	BAGINGTON AAS BOOE	11-00-95	0.092	7,923	
SHERBOURNE	SP34407560	BAGINGTON A45 BDOE	26-04-95	0.097	8.364	
SHERBOURNE	SP34407560	BAGINGTON A45 BDOE	08-Nov-95	0.089	7.716	
SHERBOURNE	SP34407560	BAGINGTON A45 BDOE	23-Nov-95	0.075	6.489	
SHERBOURNE SHERBOURNE	3234407560	BAGINGTON A45 BOOK	UB-D80-95	0.070	6,057	
SHERBOURNE	SP34407560	BAGINGTON A45 BDOE	17-Jan-96	0.121	19 259	AVON FUTRO CHECK GALIGING SITE FIG3/JFC'
SHERBOURNE	SP34407560	BAGINGTON A45 BDOB	17-Jan-96	0.205	17.677	
SHERBOURNE	SP34407560	BAGINGTON A45 BDOE	01-Feb-96	0.110	9.478	F103'
SHERBOURNE	\$P34407360	BAGINOTON A45 RDGE	16-Fcb-96	0.235	20,313	F103'
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	16-F <b>cb-96</b>	0.225	19.423	AVON EUTRO SHECK GAUGINO SITE FIOJ
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	29-Feb-96	0.228	19,725	F103
SHERBOURNE	SP34407560	BAGINGTON ANS BLOE	13-ME-96	0.191	0.502	
SHERBOURNE	\$P34407560	BADINGTON ANS BOOK	16-Apr-96	0.111	11.457	CHECK GAUGE FOR AVON FUTRO SITE F103
SHERBOURNE	SP34407560	BAGINGTON A45 BDOE	16-Apr-96	0.107	9.262	F103
SHERBOURNE	SP34407560	BAGINGTON A45 BDOE	26-Apt-96	0.094	8.096	F103
SHERBOURNE	5P34407360	BAGINGTON A45 BDGE	15-May-96	0.082	7.076	F103
SHERBOURNE	SP34407560	BAGINGTON A45 BDGE	31- <del>1</del> /17-96	0.072	6.221	F103
SHERBOURNE	SP34407560	BAGINGTON AS BOOR	13-Jm-96	0.049	4.277	F103
SHERBOURNE	3F34407560 SD34407660	BADINUTON ANS BOOK	24-300-96	0.068	5.918	5103 5100
SHERBOURNE	SP34407560	BAGINGTON ALS REAC	24.Jnj.94	0.080	0.721 4.722	
SHERBOURNE	SP3440 756	BAGINGTON A45 BODE	24-Jul-96	0.059	5.124	PART OF LOW FLOW SURVEY GAUGES SM U/S BRIDGE A45.

.

CMRS.WK4

. .

.

.

.

.

UPDATE 18-Jun-97

River name	NOR	Location	Date of gauging	Discharge Climical	Discharge Mid	Consuments
SHERBOURNE	SP34407560	BAGINGTON AAS BOOK	09-Amg-96	0.062	5.314	F103
SHERBOURNE	SP34407560	BAGINGTON A45 BOOB	19-Ang-96	0.056	4,673	F103
SHERBOURNE	SP34407560	BAGINGTON AAS BOOB	04-3ep-96	0.067	5,780	F104
SHERBOURNE	SP34407560	BAGINGTON A45 BDOB	20-Sep-96	0.053	4,588	F103

.

. •





T

Appendix 12

**River Worfe** 

## **River Worfe**

Messrs R & J Tudor, Hallon House		01746 716 229
Mr W Stuttaford, Manor Farm	÷	01952 463 082
H Shepherd and Son, Rookery Farm	-	01952 460 529
Messrs H & E Chilton, Atchley Manor		01952 750 274
Messrs S & R Slaney, Hatton Grange Fa	ırm	
	-	01952 460 215
Bridgenorth District Council	3	Mr Gwilt Fax 01746 764 414
Local Ramblers Association Member	-	Mrs M.V. Law 01952 299 9297 Mr R. Powell 01743 359 797
Cosford Woodland Walk	-	Mr R. Green 01902 373 062
Environment Agency	-	John Ratcliffe 0121 711 2324 Glenn Hoban 0121 711 2324 Rick North 01189 491 054 John Woodland Fax 01743 272 138 Anne Penney 01684 850 951 Jean Payne 01743 272 828
Salopian Flyfishers Ltd	4	Mr R Clark 01746 716 656

Mr Talbot, Moorlands Farm, Kidderminster

•

•

•

U:\Projects\Midlands\Reports\Contacts.doc

# <u>General</u>

Ramblers Association	n <del>e</del>	0171 582 6878
Countryside Commission	-	0171 831 3510
<b>Office National Statistics</b>	÷	0171 233 9233
Halifax Building Society's Statistic	cal Service	01422 333 333
Talking Pages	-	0800 600 900

FROM ENVIRONMENT AGENCY

------

#### **RIVER WORFE**

The river Worfe is one of the original top 20 low flow alleviation sites listed before AMP2. The length between the Albrighton and the Wesley brook which is listed as intermittent flow was addressed in 1996/97. This problem length has now been reclassified as low flow due to a modification provision of an alternative water supply to one riparian owner who used the river for spray irrigation. The lengths which are being targeted are the Ruckley and Cramp Pool brooks. This will enable the Western Arms of the system to be rewatered. The Neachley and Albrighton Brooks will be considered once the West Midlands Groundwater Model has been utilised to indicate which groundwater abstractions are responsible for the reduction is flows.

The Options being considered at present are:-

- (1. Pipeline from Sheriffhales Borehole (NGR SJ 766111) which could supply a compensation release of up to 5M1/d to the Ruckley Brook.
- 2. Output from Lizard Mill Borehold (NGR SJ 787096) which can supply a compensation release of up to 2M1/d. to the Ruckley Brook.
- 3. Output from Hell Bank Borehole (NGR SJ 783068) which can supply a compensation release of up to 1M1/d to the Neachley Brook.
- 4: Output from Cramp Pool Borehole (NGR SJ 969087) which can supply a compensation release of up to 1M1/d to the Cramp Pool Brook.

All the above would be triggered by the flow conditions at Cosford Gauging Station. For the present analysis the trigger flow will be Q20 (21.6M1/d). The benefit will be for all single options but will also include the sum of options (1+2+3) and  $(1\pm2\pm4)$ . Enclosed is the following information:

- 1. Duration/Frequency Graphs for Cosford and Burcote.
- 2. Duration/Frequency tables for Cosford and Burcote.
- 3. Howard Humphrey's plan of River Worfe low flow areas.

Lengths which will benefit from the addition in flows:

1.	Option 1	rewatered increased flow		11 Km 20 Km
2.	Option 2	rewatered increased flow		5 Km 20 Km
3.	Option 3	rewatered increased flow	)	additional 3Km increased flow will always be linked with Option 1
4.	Option 4	rewatered increased flow	)	additional 2Km increased flow, will always be linked with Option 1.

1

۱





. . .

4

-0

Output from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd Long Term Statistics Printed on 04/03/1998 at 10:28 hrs

E. A. Midlands - Headquarters Hydrometry

Auth. Ref. Loc. Desc. Report Type Parameter Units	: 2046 : WORFE : Duration/Frequency : Flow : Ml/d	Station Name : Catchment Ref.: Grid Ref. : Gauge Zero : Catchment Area;	COSFORD US SJ 781046 59.500 MAOD 54.900 Sq Km
Period	: 01/02/1975 to 28/02/1998	Start of Day :	09:00 GMT
• • • • • • • • • •			

Analysis period : Calendar Year

_	DAILY	MEAN VAI	LUE EXC	EEDED ST	TATED AN	IOUNT FO	DR GIVEN	PERCEI	TAGE OF	F TIME
	0	. 1	2	3	4	5	6	7	8	9
08		97.200	72.576	62.035	54.346	48.470	44.323	41.126	37.843	35.251
105	33.350	31.622	29.981	28,771	27.475	26.266	<b>25</b> .056	24.365	23.155	22.464
20%	21.600	20.909	20.304	19.786	19.267	18,749	18.230	17.712	17.107	16.762
30୫	16.416	15.898	15.466	15.120	14.774	14,429	13.910	13.478	13.219	12.874
40 <del>%</del>	12.442	12.182	11.837	11.578	11.318	10.973	10.714	10.454	10.195	10.022
50ቄ	9.763	9.504	9.331	8.986	6.813	8.640	8.467	8.208	8.035	7.862
60 <b>%</b>	7.690	7.517	7.344	7,171	6.912	6 <b>.82</b> 6	6.566	6.480	6.307	6.134
70%	6.048	5.875	5.789	5.702	5.530	5.443	5.357	5.184	5.098	5.011
80%	4.925	4.838	4.666	4.579	4.406	<b>4.23</b> 4	4.147	3.974	3.802	3.629
90%	3.456	3.283	3.110	2.938	2.765	2.592	2.419	2.160	1.901	1.469

### SUMMARY STATISTICS FOR ANALYSIS PERIOD

Maximum Daily Mean Value LTA Daily Mean (Lin Calc) LTA Daily Mean (Log Calc)	8	603.158 15.811 10.274	Minimum Daily Mean Val. Median Daily Mean Value Log Standard Deviation		0.000 9.763 0.904
Actual 95% Daily Mean	=	2.592	Calc 95% Daily Mean (Log-Hormal distribution essured)	=	2.324
Number of values used First year used Last year used Number of years used		6575 1976 1997 18 out of	22		

Only complete calendar years of data used
	E. A.	Miðlands - Hea	dquarters Hydro	ometry				
Auth. Ref. Loc. Desc. Report Type Parameter Units	: 2046 : WORFE : Duration/ : Flow : Ml/d	Frequency	Station Name Catchment Ref Grid Ref. Gauge Zero Catchment Are	Station Name : COSFORD Latchment Ref.: US Frid Ref. : SJ 781046 Gauge Zero : 59.500 MAOD Latchment Area: 54.900 Sg Km				
Period	: 01/02/197	5 to 28/02/199	8 Start of Day	: 09:00 0	m			
Analysis per	iod : Calend	lar Year						
		DATA FREQUE	NCY ANALYSIS					
Daily Mean Value(DMV)	DMV as % of LTA	<pre>% values exceeding</pre>	Range of value From	es of DMV To	No. in Range			
603.158 350.000 210.000 120.000 71.000 41.000 24.000 14.000 8.200 4.800 2.800 1.600 0.960 0.560 0.330 0.190 0.110 0.066 0.039 0.023 0.013	3814.854 2213.679 1328.207 758.976 449.061 259.317 151.795 88.547 51.863 30.359 17.709 10.120 6.072 3.542 2.087 1.202 0.696 0.417 0.247 0.145 0.082	0.000 0.015 0.091 0.380 2.251 7.027 17.278 35.787 57.414 81.262 93.749 98.722 99.437 99.741 99.848 99.863 99.924 99.939 99.924 99.939 99.954 99.970 99.985	<pre>&gt; 603.158 350.000 - 210.000 - 120.000 - 71.000 - 41.000 - 24.000 - 14.000 - 8.200 - 4.800 - 2.800 - 1.600 - 0.960 - 0.560 - 0.330 - 0.190 - 0.110 - 0.066 - 0.039 - 0.023 - 0.013 -</pre>	603.158 350.000 210.000 120.000 71.000 41.000 24.000 14.000 8.200 4.800 2.800 1.600 0.960 0.560 0.330 0.190 0.110 0.066 0.039 0.023 - 0.000	0 1 5 19 123 314 674 1217 1422 1568 821 327 47 20 - 7 1 4 1 1 1 1 1 1			
Maximum Dai LTA Daily M Actual 95% Number of v First year Last year u Number of year	SUMM ean (Lin Cal Daily Mean alues used used sed ears used	<pre>IARY STATISTICS ie = 603.158 ic) = 15.811</pre>	FOR ANALYSIS F Minimum Dail Median Daily Modal Daily (Class Interval St	PERIOD y Mean Valu y Mean Value Mean Value of median value)	= 0.000 le = 9.763 e = 4.638			

Output from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd Long Term Statistics Printed on 04/03/1998 at 10:30 hrs

E. A. Midlands - Headquarters Hydrometry

Auth. Ref.	: 2024	Station Name :	BURCOTE
Loc. Desc.	: WORFE	Catchment Ref.:	US
Report Type	: Duration/Frequency	Grid Ref. :	SP 747953
Parameter	: Flow	Gauge Zero :	33.220 MAOD
Units	: Ml/d	Catchment Area:	258.000 Sq Km
Period	: 01/04/1969 to 01/03/1998	Start of Day :	09:00 GMT

Analysis period : Calendar Year

	DAILY N	MEAN VAI	LUE EXCE	EEDED ST	PATED AN	OUNT FO	OR GIVEN	I PERCEI	TAGE OF	TIME
	0	1	2	3	4	5	6	7	8	9
0 <del>%</del>		427.85	346.81	299.81	268.27	245.29	223.26	210.38	197.68	186.97
10%	179.37	170.90	164.33	158.89	153.62	149.21	144.72	140.92	137.12	133.23
20%	130.12	126.92	124.16	121.22	118.63	116.21	113.44	111.28	108.95	106.88
30%	104.72	102.64	100.14	98.582	97.027	95.040	93.571	91.757	90.374	88.992
40%	87.437	85 <b>.9</b> 68	84.672	83.462	82.253	81.130	79.834	78.451	77.069	75,686
50%	74.304	73.267	71.798	70.502	69.120	67.910	66. <b>6</b> 14	65.491	64.541	63.331
60%	62.467	61.517	60.566	59.616	58.493	57.802	57.024	56.160	55.4 <u>6</u> 9	54.605
70%	53.654	52.963	52.099	51.494	50.803	49.939	49.075	48.384	47.347	46.570
80%	45.619	44.755	43.978	43.114	42.336	41.299	40.435	39.398	38.275	36.893
90%	35.424	33.955	32.573	30.586	28.944	26.870	24.883	22.637	19.958	15.898

## SUMMARY STATISTICS FOR ANALYSIS PERIOD

Maximum Daily Mean Value	=	1125.792	1
LTA Daily Mean (Lin Calc)	=	96.539	1
LTA Daily Mean (Log Calc)	=	76.530	]
Actual 95% Daily Mean	=	26.870	(
Number of values used	=	10227	
First year used	=	1970	
Last year used	z	1997	
Number of years used	=	28 out of	28

Minimum Daily Mean Val. = 4.320 Median Daily Mean Value = 74.304 Log Standard Deviation = 0.670 Calc 95% Daily Mean = 25.436 (Log-Hormal distribution assumed)

Only complete calendar years of data used

Output from HYDROLOG Data Management System V2.50(C) 1991-97 Hydro-Logic Ltd Long Term Statistics Printed on 04/03/1998 at 10:30 hrs

E. A. Midlands - Headquarters Hydrometry

	Auth. Ref.	:	2024	Station Name	:	BURCOTE
	Loc. Desc.	:	WORFE	Catchment Ref.:	:	US
	Report Type	:	Duration/Frequency	Grid Ref.	:	SP 747953
	Parameter	:	Flow	Gauge Zero	:	33.220 MAOD
)	Units	:	M1/d	Catchment Area:	:	258.000 Sq Km

## Period : 01/04/1969 to 01/03/1998 Start of Day : 09:00 GMT

Analysis period : Calendar Year

First year used

Number of years used

Last year used

DMV as % of LTA	% values exceeding	Range of valu From	es of DMV To	No. in Range
1166.155	0.000	>1125.792		0
932.267	0.020	900.000 -	1125. <b>792</b>	2
745.814	0.029	720.000 -	900.000	1
600.794	0.156	580,000 -	720.000	13
476.492	0.714	460.000 -	580.000	57
383.265	1.613	370.000 -	460.000	<b>9</b> 2
310.756	2.982	300.000 -	370.000	140
248.605	5.173	240.000 -	300.000	224
196.812	8.693	190.000 -	240.000	360
155.378	14.775	150.000 -	1 <b>90,0</b> 00	622
124.302	23.37 <b>9</b>	120.000 -	150.000	880
100.478	33.998	97.000 -	120,000	1086
80.797	47.296	78,000 -	97.000	1360
64.223	60.526	62.000 -	78,000	1353
51.793	74.988 .	50.000 -	62.000	1479
41.434	86.448	40.000 -	50,000	1172
33.147	92.266	32.000 -	40.000	595
26.932	95.473	26.000 -	32,000	328
21.753	97.565	21.000 -	26,000	214
16.574	98.944	16-000 -	21,000	141
13.466	99.286	13.000 -	16.000	35
11.394	99.452	11.000 ~	13,000	17
<b>B.701</b>	99.619	8,400 -	11.000	17
6,940	99.775	6.700 -	8,400	16
5.594	99,902	5,400 ~	6.700	13
4.475	99.990	4.320 -	5,400	ģ
		<pre></pre>	= 4 320	í
	% of LTA         1166.155         932.267         745.814         600.794         476.492         383.265         310.756         248.605         196.812         155.378         124.302         100.478         80.797         64.223         51.793         41.434         33.147         26.932         21.753         16.574         13.466         11.394         8.701         6.940         5.594         4.475	% of LTA       exceeding         1166.155       0.000         932.267       0.020         745.814       0.029         600.794       0.156         476.492       0.714         383.265       1.613         310.756       2.982         248.605       5.173         196.812       8.693         155.378       14.775         124.302       23.379         100.478       33.998         80.797       47.296         64.223       60.526         51.793       74.988         41.434       86.448         33.147       92.266         26.932       95.473         21.753       97.565         16.574       98.944         13.466       99.286         11.394       99.452         8.701       99.619         6.940       99.775         5.594       99.902         4.475       99.990	\$ of LTAexceedingFrom1166.1550.000>1125.792932.2670.020900.000745.8140.029720.000600.7940.156580.000476.4920.714460.000383.2651.613370.000310.7562.982300.000248.6055.173240.000196.8128.693190.000155.37814.775150.000124.30223.379120.000100.47833.99897.00064.22360.52662.00051.79374.98850.00041.43486.44840.00041.43486.44840.00016.57498.94416.00013.46699.28613.00011.39499.45211.0008.70199.6198.4006.94099.7756.7005.59499.9904.3204.47599.9904.320	\$ of LTAexceedingFromTo1166.1550.000>1125.792932.2670.020900.000 - 1125.792745.8140.029720.000 - 900.000600.7940.156580.000 - 720.000476.4920.714460.000 - 580.000383.2651.613370.000 - 460.000384.6055.173240.000 - 300.000196.8128.693190.000 - 240.000100.47833.99897.000 - 150.000100.47833.99897.000 - 120.00064.22360.52662.000 - 78.000110.47833.99897.000 - 120.000111.43486.44840.000 - 50.000111.43486.44840.000 - 50.000111.43499.45211.000 - 21.000111.43499.45211.000 - 21.000111.43499.45211.000 - 21.00011.39499.28613.000 - 16.00011.39499.45211.000 - 13.00011.39499.9905.400 - 6.70011.47599.9904.320 - 5.400

= 1970

**≠ 1997** 

= 28 out of 28

Year



GIBB LTD GIBB HOUSE, LONDON ROAD READING, BERKSHIRE RG6 1BL, UK TEL: +44 (0)118 963 5000 FAX: +44 (0)118 949 1054

.

Re-

Offices throughout Europe, Africa, Asia, the Americas and the Middle East