# **ENVIRONMENTAL PROTECTION**



**River Water Quality Classification 1990** 

> NOVEMBER 1991 WQP/91/002 B L MILFORD



National Rivers Authority South West Region

GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

### ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

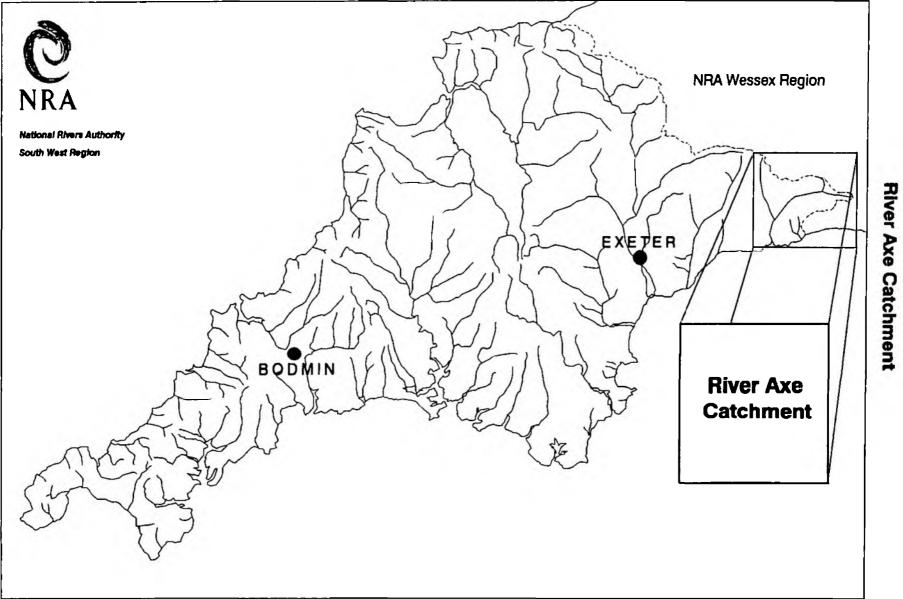
- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.


Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ



# **National Rivers Authority South West Region**



# RIVER WATER QUALITY IN THE RIVER AXE CATCHMENT

# LIST OF CONTENTS

1

2

3

4

5

6

7

8

9

10

|         |                                                                    | Page No. |
|---------|--------------------------------------------------------------------|----------|
| Introdu | uction                                                             | 1        |
| River A | Axe Catchment                                                      | 1        |
| Nationa | al Water Council's River Classification System                     | 2        |
| 1990 Ri | iver Water Quality Survey                                          | 3        |
| 1990 Ri | iver Water Quality Classification                                  | 4        |
| Non-cor | mpliance with Quality Objectives                                   | 4        |
| Causes  | of Non-compliance                                                  | 5        |
| Glossa  | ry of Terms                                                        | 6        |
| Referen | nces                                                               | 6        |
| Append  | ices:                                                              |          |
| 10.1    | River Quality Objectives including Monitoring points               |          |
| 10.2    | Basic Determinand Analytical Suite                                 |          |
| 10.3    | National Water Council (NWC) River Classification System           |          |
| 10.4    | NWC Criteria for Non-Metallic Determinands - Regional<br>Variation |          |
| 10.4.1  | NWC Criteria for Metallic Determinands - Regional<br>Variation     |          |
| 10.5    | 1990 River Water Quality Classification - tabular<br>format        |          |
| 10.6    | 1990 River Water Quality Classification - map format               |          |
| 10.7    | Calculated Determinand Statistics used for Quality<br>Assessment   |          |

- 10.8 Compliant/Non-Compliant River Reaches
- 10.9 Number of Samples Results exceeding quality standards
- 10.10 Percentage Exceedance of Determinand Statistics from Quality Standard
- 10.11 Identification of Possible Causes of Non-Compliance with River Quality Objectives

## 1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Axe catchment.

## 2. RIVER AXE CATCHMENT

The River Axe flows over a distance of 44.1 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at ten locations on the main river; eight of these sites were sampled at approximately monthly intervals. The site at Whitford Bridge, which is a national water quality monitoring point, was sampled fortnightly. The site at Slymlakes was sampled on twenty occasions during 1990 because of no recent water quality data.

Branscombe Stream flows over a distance of 5.2 km from its source to the tidal limit, (Appendix 10.1) and was monitored at one site at approximately monthly intervals.

The River Coly flows over a distance of 13.8 km from its source to the tidal limit in the Axe Estuary, (Appendix 10.1) and monitored at four locations.

Throughout the Axe catchment eleven secondary and one tertiary tributaries were monitored at monthly intervals. One secondary stream (Temple Brook) was sampled on twenty occasions during 1990 because of no recent water quality data.

1

# 2.1 SECONDARY TRIBUTARIES

The River Yarty flows over a distance of 24 km from its source to the confluence with the River Axe, (Appendix 10.1) and was monitored at four locations.

The Umborne and Offwell Brooks flow over a distance of 14.6 km and 6.8 km respectively before joining the River Coly. Each of these tributaries was monitored at two locations.

The Kit Brook and Forton Brook flow over a distance of 9.4 km and 5.5 km respectively before joining the main River Axe. Each of these tributaries was monitored at two locations.

Temple Brook (4.7 km), Whatley Stream (5.4 km), River Synderford (7.2 km), Drimpton Stream (5.6 km), Whetley Stream (4.4 km) and Blackwater River (7.5 km) were all monitored at one location. Monitoring points are all located in the lower reaches of these streams.

## 2.2 TERTLARY STREAMS

The Corry Brook flows over a distance of 12.7 km before joining the River Yarty and was monitored at two locations.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

## 3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

## 3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Axe catchment are identified in Appendix 10.1.

## 3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

| Description         |
|---------------------|
| Good quality        |
| Lesser good quality |
| Fair quality        |
| Poor quality        |
| Bad quality         |
|                     |

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

# 4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

## 5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the <u>classification</u> of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

#### 6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

4

# 7. CAUSES OF NON-COMPLIANCE

.

1

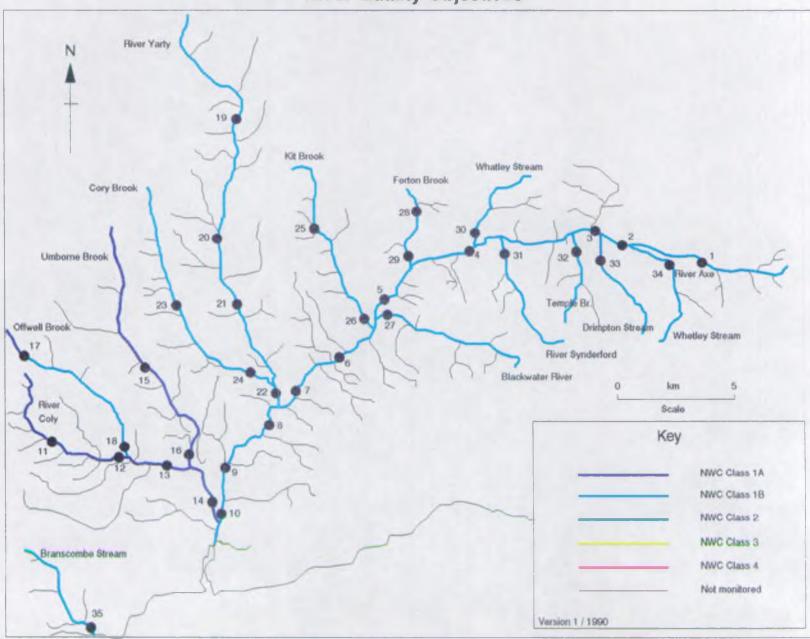
For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

5

.

8. GLOSSARY OF TERMS

RIVER REACH A segment of water, upstream from sampling point to the next sampling point. RIVER LENGTH River distance in kilometres. RIVER QUALITY OBJECTIVE That NWC class, which protects the most sensitive use of the water. Maximum limits, which must be met for at least 95 percentiles 95% of the time. 5 percentiles Minimum limits, which must be met for at least 95% of the time. BIOLOGICAL OXYGEN DEMAND A standard test measuring the microbial uptake of (5 day carbonaceous ATU) oxygen - an estimate of organic pollution. pH A scale of acid to alkali. UN-IONISED AMMONIA Fraction of ammonia poisonous to fish, NH<sup>3</sup>. SUSPENDED SOLIDS Solids removed by filtration or centrifuge under specific conditions. USER REFERENCE NUMBER Reference number allocated to a sampling point. INFERRED STRETCH Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.


## 9. REFERENCES

# Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

6

Axe Catchment River Quality Objectives



# BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/1 NAmmonia un-ionised as mg/1 N Nitrate as mq/l N Nitrite as mg/l N Suspended solids at 105 C as mg/lTotal hardness as mg/l CaCO3 Chloride as mg/1 Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/l SiO2 Sulphate (dissolved) as mg/l SO4 Sodium (total) as mg/l Na Potassium (total) as mg/l K Magnesium (total) as mg/1 Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

APPENDIX 10

| River Class        |                                     | Quality criteria                                                                                                                                                                                                                                                                                                                                    |                              | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Currer               | nt potential uses                                                                                                                                               |
|--------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                     | Class limiting criteria (95 percent                                                                                                                                                                                                                                                                                                                 | tile)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                                                                                                                                                 |
| 1A Good<br>Quality | (i)<br>(ii)<br>(iii)<br>(iv)<br>(v) | Dissolved oxygen saturation<br>greater than 80%<br>Biochemical oxygen demand<br>not greater than 3 mg/l<br>Ammonia not greater than<br>0.4 mg/l<br>Where the water is abstracted<br>for drinking water, it complies<br>with requirements for A2* water<br>Non-toxic to fish in EIFAC terms<br>(or best estimates if EIFAC<br>figures not available) | (i)<br>(ii)                  | Average BOD probably not<br>greater than 1.5 mg/l<br>Visible evidence of pollution<br>should be absent                                                                                                                                                                                                                                                                                                                                                                                                               | (i)<br>(ii)<br>(iii) | Water of high quality<br>suitable for potable supply<br>abstractions and for all<br>abstractions<br>Game or other high class<br>fisheries<br>High amenity value |
| 18 Good<br>Quality | (i)<br>(ii)<br>(iii)<br>(iv)<br>(v) | DO greater than 60% saturation<br>BOD not greater than 5 mg/1<br>Ammonia not greater than<br>0.9 mg/1<br>Where water is abstracted for<br>drinking water, it complies with<br>the requirements for A2* water<br>Non-toxic to fish in EIFAC terms<br>(or best estimates if EIFAC<br>figures not available)                                           | (i)<br>(ii)<br>(iii)<br>(iv) | Average BOD probably not<br>greater than 2 mg/l<br>Average ammonia probably not<br>greater than 0.5 mg/l<br>Visible evidence of pollution<br>should be absent<br>Waters of high quality which<br>cannot be placed in Class 1A<br>because of the high proportion<br>of high quality effluent presen<br>or because of the effect of<br>physical factors such as<br>canalisation, low gradient or<br>eutrophication<br>Class 1A and Class 1B together<br>are essentially the Class 1 of<br>River Pollution Survey (RPS) |                      | Water of less high quality<br>than Class 1A but usable for<br>substantially the same<br>purposes                                                                |
| 2 Fair<br>Quality  | (i)<br>(ii)<br>(iii)<br>(iv)        | DO greater than 40% saturation<br>BOD not greater than 9 mg/l<br>Where water is abstracted for<br>drinking water it complies with<br>the requirements for A3* water<br>Non-toxic to fish in EIFAC terms<br>(or best estimates if EIFAC<br>figures not available)                                                                                    | (i)<br>(ii)<br>(iii)         | Average BOD probably not<br>greater than 5 mg/l<br>Similar to Class 2 of RPS<br>Water not showing physical<br>signs of pollution other than<br>humic colouration and a little<br>foaming below weirs                                                                                                                                                                                                                                                                                                                 | (i)<br>(ii)<br>(iii) | Waters suitable for potable<br>supply after advanced<br>treatment<br>Supporting reasonably good<br>coarse fisheries<br>Moderate amenity value                   |

|                  |                                                                                                                                                                                                  | 10 A                                                                                                        |                                                                                                                                                     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Poor<br>Quality  | <ul> <li>DO greater than 10% saturation</li> <li>Not likely to be anaerobic</li> <li>BOD not greater than 17 mg/l.</li> <li>This may not apply if there is high degree of re-aeration</li> </ul> | Similar to Class 3 of RPS<br>a                                                                              | Waters which are polluted to<br>an extent that fish are absent<br>only sporadically present.<br>Way be used for low grade<br>industrial abstraction |
|                  |                                                                                                                                                                                                  |                                                                                                             | purposes. Considerable<br>potential for further use<br>if cleaned up                                                                                |
| 4 Bad<br>Huality | Waters which are inferior to<br>Class 3 in terms of dissolved<br>oxygen and likely to be<br>anaerobic at times                                                                                   | Similar to Class 4 of RPS                                                                                   | Waters which are grossly<br>polluted and are likely to<br>cause nuisance                                                                            |
| <b>H</b>         | DO greater than 10% saturation                                                                                                                                                                   |                                                                                                             | Insignificant watercourses                                                                                                                          |
|                  |                                                                                                                                                                                                  |                                                                                                             | and ditches not usable, where<br>the objective is simply to<br>prevent nuisance developing                                                          |
| Notes (a)        |                                                                                                                                                                                                  | lood, drought, freeze-up}, or when dominated by pland<br>nd 3 may have BODs and dissolved oxygen levels, or |                                                                                                                                                     |

- stated levels for those Classes. When this occurs the cause should be stated along with analytical results.
- (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Amnonia figures are expressed as NH4. \*\*
   (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons statec.
   (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

Annonia Conversion Factors

 $(mg NH_{\ell}/1 \text{ to } mg N/1)$ 

| Class | 14 | 0.4 | ng | NHe/3 | : | 0.31 | ng | N/1  |
|-------|----|-----|----|-------|---|------|----|------|
| Class | 1B | 0.9 | ng | NH4/1 | : | 0.70 | ng | N/1- |
|       |    | 0.5 | ng | NHc/1 | : | 0.39 | ng | N/1- |

# NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

- 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/1 0 Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l 0 Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
  - 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/l 0 Total ammonia not greater than 1.56 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
  - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
  - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Determinand Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH

5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile arithmetic mean

Statistic

Suspended solids

# NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

| Total Hardness (mean)<br>mg/l CaCO3                  | Statistic                                                        | Soluble Copper*<br>ug/l Cu<br>Class 1 Class 2        |
|------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 95 percentile<br>95 percentile<br>95 percentile<br>95 percentile | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

\* Total copper is used for classification until sufficient data on soluble copper can be obtained.

.

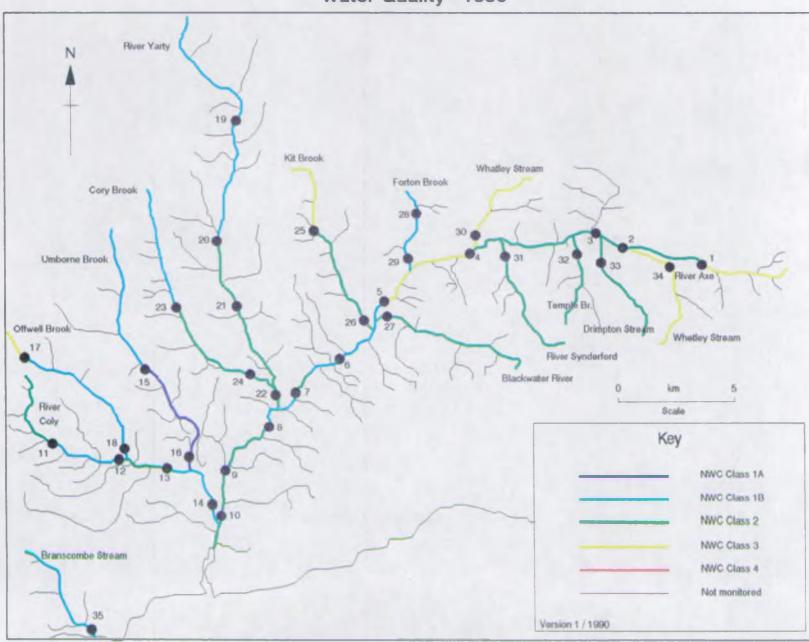
# TOTAL ZINC

| Total Hardness (mean)<br>mg/l CaCO3                  | Statistic                                                        | Total Zinc<br>ug/l Zn<br>Class 1 Class 2 Class 3                                                                                          |
|------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 95 percentile<br>95 percentile<br>95 percentile<br>95 percentile | <pre>&lt; = 30 &lt; = 300 &gt; 300 &lt; = 200 &lt; = 700 &gt; 700 &lt; = 300 &lt; = 1000 &gt; 1000 &lt; = 500 &lt; = 2000 &gt; 2000</pre> |

#### NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT : AXE (02)

| 1990 Map     | •                | User                                  | •          |             |  |  |  |  |
|--------------|------------------|---------------------------------------|------------|-------------|--|--|--|--|
| Position     |                  |                                       | Reference  |             |  |  |  |  |
| Number       |                  |                                       | Number     | Reference   |  |  |  |  |
| l            |                  |                                       |            |             |  |  |  |  |
|              |                  |                                       | 0          |             |  |  |  |  |
| 5            |                  |                                       | 1          |             |  |  |  |  |
| - <u></u> '  | AXE              | AJ066 BRIDGE MOSTERTON                | R02C001    | ST 4573 052 |  |  |  |  |
| 2 1          | AXE              | SEABOROUGH                            | R02C002    | ST 4296 057 |  |  |  |  |
| 3 1          | AXE              | OATHILL PARM WAYFORD                  | R02C003    | ST 4048 06  |  |  |  |  |
| 4            | AXE              | FORDE BRIDGE                          | R02C004    | ST 3622 05  |  |  |  |  |
| 5 1          | AXE              | BROOM                                 | R02C005    | ST 3263 024 |  |  |  |  |
| 6            | AXE              | A358 BRIDGE WEYCROFT                  | R02C006    | ST 3073 000 |  |  |  |  |
| 7            | AXE              | BOW BRIDGE                            | R02C007    | SY 2901 987 |  |  |  |  |
| 8            | AXE              | SLYPLAKES                             | R02B021    | SY 2800 967 |  |  |  |  |
| 9            | AXE              | WHITFORD BRIDGE                       | R02B001    | SY 2623 953 |  |  |  |  |
| 10           | AXE              | AXE BRIDGE                            | R02B002    | SY 2593 926 |  |  |  |  |
|              | AXE              | NORMAL TIDAL LIMIT (INPERRED STRETCH) |            | l           |  |  |  |  |
|              |                  |                                       | _!         | l           |  |  |  |  |
| 11           | COLY             | WOODBRIDGE                            | ROZBOO3    | SY 1888 956 |  |  |  |  |
| 12           | COLY             | BRINKLEY BRIDGE                       | R02B004    | SY 2135 951 |  |  |  |  |
| 13           | COLY             | HEATHAYNE PARM                        | R02B005    | SY 2355 943 |  |  |  |  |
| 14 İ         | COLY             | COLYFORD                              | R02B006    | SY 2535 92  |  |  |  |  |
| 1            | COLY             | NORMAL TIDAL LIMIT (INPERRED STRETCH) | 1          |             |  |  |  |  |
| i            |                  |                                       | _!         |             |  |  |  |  |
|              | UMBORNE BROOK    | TRIFFORDS FARM                        |            | SY 2238 994 |  |  |  |  |
| 16           | UMBORNE BROOK    | UMBORNE BRIDGE                        | RUZBOUA    | SY 2485 942 |  |  |  |  |
| 17           | OFFWELL BROOK    | WEST COLNELL                          | R02B009    | SY 1938 992 |  |  |  |  |
| 18           | OFFWELL BROOK    | ROADPITT PARM                         | R02B010    | SY 2150 953 |  |  |  |  |
| !            | OFFWELL BROOK    | COLY CONFLUENCE (INFERRED STRETCH)    | !!!        |             |  |  |  |  |
| <br>         | YARTY            | NEWHAVEN BRIDGE                       | -1-R020003 | ST 2588 109 |  |  |  |  |
| (            | YARTY            | LONGBRIDGE                            |            | ST 2551 055 |  |  |  |  |
|              | YARTY            | BECKFORD BRIDGE                       |            | ST 2652 015 |  |  |  |  |
| •            | YARTY            | A35 BRIDGE GAMMORS HILL               | •          | SY 2815 980 |  |  |  |  |
| •            | YARTY            | AKE CONFLUENCE (INFERRED STRETCH)     | 1          |             |  |  |  |  |
|              |                  | !                                     |            |             |  |  |  |  |
|              | CORRY BROOK      | ROSE FARM                             | , ,        | ST 2420 023 |  |  |  |  |
| 24           | CORRY BROOK      | PRIOR TO RIVER YARTY                  | KUZDUO2    | SY 2808 982 |  |  |  |  |
| - 25         | KIT BROOK        | NARFORDS                              | R02C012    | ST 2961 062 |  |  |  |  |
| •            | KIT BROOK        | AKE PARM                              | R02C013    | ST 3199 016 |  |  |  |  |
| - <u>1</u> - | KIT BROOK        | AXE CONFLUENCE (INFERRED STRETCH)     | 1          |             |  |  |  |  |
| 27           | BLACKWATER RIVER | BUDDLEWALL                            |            | ST 3308 022 |  |  |  |  |
|              | BLACKWATER RIVER | AXE CONFLUENCE (INFERRED STRETCH)     |            | JI JJUG V24 |  |  |  |  |
| i            |                  |                                       | _ii        |             |  |  |  |  |
|              | FORTON BROOK     | B3162 BRIDGE FORTON                   | . ,        | ST 3401 073 |  |  |  |  |
|              | FORTON BROOK     | TATWORTH                              | RUZCO11    | ST 3368 048 |  |  |  |  |
| 1            | FORTON BROOK     | AXE CONFLUENCE (INFERRED STRETCH)     |            |             |  |  |  |  |
| 30           | WHATLEY STREAM   | AMMERHAM                              | R02C015    | CT 1650 057 |  |  |  |  |

| - •    |          |           |       |             |             |                       |       | - 00 1     |
|--------|----------|-----------|-------|-------------|-------------|-----------------------|-------|------------|
|        | Distance |           | 85    | 86          | 87          | 86                    | 89    | 90         |
| Length | from     | Quality   |       | NWC         | NHC         | NHC                   | NWC   | NWC        |
| (km)   | •        | Objective | Class | Class       | Class       | Class.                | Class | CISSI      |
|        | (kms)    |           |       |             |             |                       |       |            |
|        | 1        |           |       |             |             | 1                     | [     |            |
|        | 1        |           |       |             | l           |                       |       |            |
|        | 1        |           |       |             | !!          | ·                     |       | II         |
| 4.5    | 4.5      | 18        | 3     | 3           | 2           | 2                     | 18    | 31         |
| 3.0    | 7.5      | 18        | 3     | 3           | 3           | 3                     | 3     | 2          |
| 3.8    | 11.3     | 18        | 2     | 2           | 2           | 2                     | 2     | 2          |
| 6.3    | 17.6     | 1B        | 2     | 2           | 1B          | 2                     | 2     | 2          |
| 7.0    | 24.6     | 1B        | 2     | 3           | 2           | 2                     | 2     | i 3 i      |
| 4.3    | 28.9     | 18        | 2     | 3           | 2           | 2                     | 18    | 18 1       |
| 3.3    | 32.2     | 18        | 2     | 3           | 2           | 2                     | 2     | 2 1        |
| 3.8    | 36.0     | 18        | 2     | 2           | 2           | 18                    | 18    | 18         |
| 3.8    | 39.6     | 1B        | 2     | 2           | 2           | 1B                    | 18    | 2          |
| 4.0    | 43.8     | 18        | 18    | 2           | 2           | 2                     | 2     | 2          |
|        | •        | 1B        | 18    | 2           | 2           | 2                     | 2     | 2          |
| 0.3    | 44.1     | 10        | 10    | 4           | -           |                       | •     |            |
|        | 4.3      | 1A        |       | 3           | 3           | 3                     | 3     | - <u>-</u> |
| 4.3    |          |           |       | 1B          | J  <br>  1B | J  <br>  18           | 18    | 18         |
| 2.8    | 7.1      | 18        | 18    |             |             |                       | 18    | 2          |
| 2.8    | 9.9      | 1         | 1B    | 2           | 2           |                       |       | •          |
| 3.3    | 13.2     | 18        | 2     | 3           | 3           | 18                    | 18    | 1B         |
| 0.6    | 13.8     | 1.4       | 2     | 3           | 3           | 18                    | 1B    | 18         |
|        | II       |           | ll    |             | _           |                       |       |            |
| 7.8    | 7,8      | 18        | 18    | 18          | 18          | 10                    | 18    | 18         |
| 6.8    | 14.6     | 14        | 18    | 18          | 1B          | 18                    | 1 1   | LA I       |
|        |          |           |       |             | i i         |                       | 1     | L 1        |
| 2.0    | 2.0      | 14        | 18    | 18          | 1B          | 2                     | 3     | 3          |
| 4.5    | 6.5      | 18        | 1B    | 2           | 2           | 10                    | 1B    | 1B         |
| 0.3    | 6.8      | 18        | 1B    | 2           | 2           | 18                    | 1B    | 1B         |
|        |          | I         |       |             | lI          | اا                    |       | LI         |
| 7.3    | 7.3      | 18        | 18    | 2           | 2           | 2                     | 18    | 1 <b>B</b> |
| 6.2    | 13.5     | 18        | 2     | 3           | 3           | 2                     | 2     | 1B         |
| 4.9    | 18.4     | 18        | 2     | 3           | 3           | 2                     | 2     | 2          |
| 4.4    | 22.8     | 18        | 2     | 2           | 2           | 1B                    | 2     | 2          |
| 1.2    | 24.0     | 18        | 2     | 2           | 2           | 18                    | 2     | 2          |
|        | Iİ       | I         | I     | İ <u></u> İ | II          |                       | ll    | I          |
| 5.9    | 5.9      | 18        | 2     | 18          | -3          | 3                     | 2     | <u>1</u> B |
| 6.8    | 12.7     | 1B        | 18    | 1B          | 18          | 18                    | 2     | 2          |
|        | II       | I         | l     |             |             | _                     |       | I          |
| 3.3    | 3.3      | 18        |       | 18          | 18          | <u>1</u>              |       | 3          |
| 5.8    | 9.1      | 18        | 18    | 2           | 18          | 18                    | 2     | 2          |
| 0.3    | 9.4      | 19        | 1B    | 2           | 1B          | 18                    | 2     | 2          |
|        | l        | ll        |       |             | ll          | ا <u>ــــــــــ</u> ا |       | I          |
| 6.8    | 6.8      | 18        | 2     | 3           | 3           | 18                    | _     | 2          |
| 0.7    | 7.5      | 18        | 2     | 3           | 3           | 18                    | 2     | 2          |
|        | اا       |           |       |             |             |                       | اا    | 1          |
| 2.3    | 2.3      | 18        | 2     | 3           | 3           | 3                     | 2     | 18         |
| 2.5    | 4.8      | 18        | 1B    | 18          | 18          | 18                    | 18    | 18         |
| 0.7    | 5.5      | 18        | 18    | 18          | 18          | 18                    | 18    | LB         |
|        | !!       |           |       |             |             |                       |       |            |
| 5.3    | 5.3      | 1B        | 2     | 2           | 2           | 2                     | 2     | 3          |


.

#### NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION 1990 River Water quality classification Catchment : Ake (02)

| 1990 Map<br>Position<br>Number | •                                | ver Reach upstream of                               |         |             |  |  |  |  |  |
|--------------------------------|----------------------------------|-----------------------------------------------------|---------|-------------|--|--|--|--|--|
|                                | WHATLEY STREAM                   | AKE CONFLUENCE (INFERRED STRETCH)                   |         | ·           |  |  |  |  |  |
| 1                              | SYNDERFORD<br>SYNDERFORD         | BEERE PARM<br>AXE CONFLUENCE (INFERRED STRETCH)     |         | ST 3775 057 |  |  |  |  |  |
| 32                             | TEMPLE BROOK                     | OATHILL BRIDGE<br>AXE CONFLUENCE (INFERRED STRETCH) | R02C018 | ST 4072 059 |  |  |  |  |  |
| 33                             | DRIMPTON STREAM                  | NETHERHAY<br>AXE CONFLUENCE (INFERRED STRETCH)      | R02C009 | ST 4170 057 |  |  |  |  |  |
|                                | WHETLEY STREAM<br>WHETLEY STREAM | POTWELL FARM                                        | R02C016 | ST 4474 048 |  |  |  |  |  |
| 35                             | BRANSCOMBE STREAM                | BRANSCOMBE MOUTH                                    |         | SY 2070 88  |  |  |  |  |  |

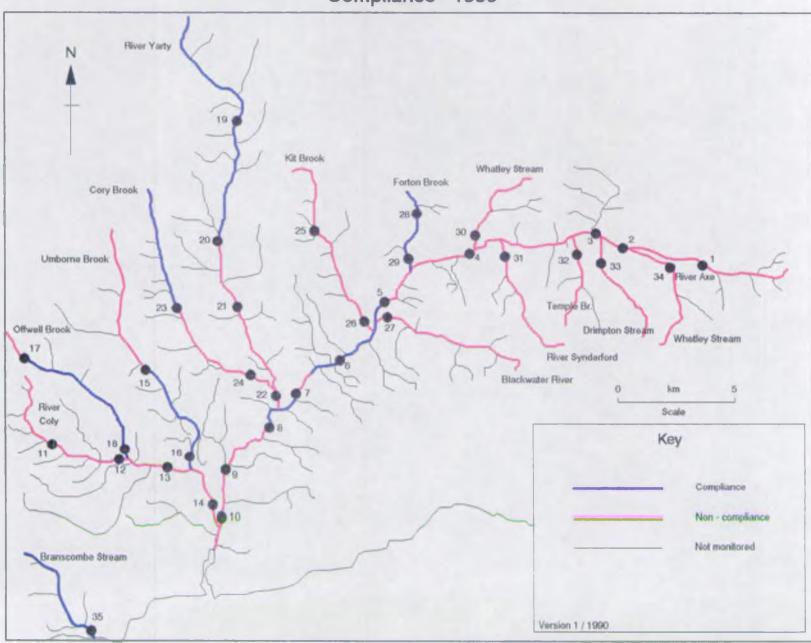
| Reach  | Distance | River      | 85    | 86             | 87     | 68    | 69    | 90       |
|--------|----------|------------|-------|----------------|--------|-------|-------|----------|
| Length | from     | Quality    | NHC   | NHC            | SWC    | INC   | NWC   | NHC      |
| (km)   | Source   | Objective  | Class | Class          | Class. | Class | Class | Class    |
|        | (kaa)    | i          | ì     | Ì              | i      |       | Ì     | i        |
|        | 1        | i          | i     | i              | i      |       | ì     | i        |
|        |          | 1          | i     | i              | i      |       | ì     | i        |
|        | ;        | 1          | 1     |                | }      |       |       |          |
| 0.1    | 5.4      | 18         | 2     | 2              | 2      | - 2   | 2     | 3        |
| •      | 1 3.4    |            | •     |                |        | -     |       |          |
| 6.9    | 6.9      | 1B         | 2     | 2              | 2      | 18    | 2     | 2        |
| 0.3    | 7.2      | 1B         | 2     | 2              | 1 2    | 18    | 2     | 2        |
| 0.3    | 1 1.4    | 1 10       |       | [ <del>-</del> |        | i to  |       | -        |
| 4.3    | 4.3      | !          | !     | !              | !      | !     |       | !        |
|        |          | 18         | !     | !              |        |       | !     | 2        |
| 0.4    | 4.7      | 18         | ļ     | ļ              |        |       |       | 2        |
|        | !        | ! <u> </u> | !     | !              |        |       |       | <u> </u> |
| 5.1    | 5.1      | 1B         | 4     | 3              | 3      | 18    | 2     | 2        |
| 0.5    | 5.6      | 1B         | 4     | 3              | 3      | 18    | 2     | 2        |
|        | I        | I          | 1     | l              |        |       | _     |          |
| 3.5    | 3.5      | <u>1</u> B | 2     | 2              | 2      | 3     | 1 3   | <u> </u> |
| 0.9    | ] 4.4    | ) 1B       | 2     | 2              | 2      | 3     | 3     | 3        |
| 1.0    | Ì        | Ì          | ĺ .   | Í              | İ 👘    | 1     | ł     |          |
| 5.0    | 5.0      | 18         | i —   | i —            | i      |       |       | 18       |
| 0.2    | 5.2      | 18         | i     | i              | i      | i     | i i   | i 1B     |
|        |          | i          | i     | i              | i      | i     | i     |          |
|        | ·'       | ·          | ·     | '              | '      | ·     | `     | ·        |

Axe Catchment Water Quality - 1990



NREICHAL RIVERS AUTHRETY - SOUTH WEST REGION 1990 RIVER WREER QUALITY CLASSIFICATION CALOUARED DETERMINAND STRUISTICS USED FOR QUALITY ASSESSMENT CRECHERT : ARE (02)

.-


| River                                 | Reach upstream of       | User   90   Calculated Determinent Statistics used for Quality Assessment |           |               |                |              |                 |                |          |              |              |          |                   |            |                      |              |                  |            |               |                 |                 |                                               |                    |
|---------------------------------------|-------------------------|---------------------------------------------------------------------------|-----------|---------------|----------------|--------------|-----------------|----------------|----------|--------------|--------------|----------|-------------------|------------|----------------------|--------------|------------------|------------|---------------|-----------------|-----------------|-----------------------------------------------|--------------------|
|                                       |                         | Ref.                                                                      | •         |               | -              |              | 22.53           | 1              |          | !            |              | !        |                   | L          |                      | <u> </u>     | _                |            |               | !               | _               | !                                             |                    |
|                                       |                         | Sunber<br>                                                                |           | pH<br>  Class | Lower<br>Skile |              | upper<br>95kile |                | s 95kile |              | (%)<br>Skile |          | ) (ACU)<br>951110 |            | Personia<br>: 95kile |              | Amenia<br>95kile |            | olids<br>Meen |                 | Opper<br>95kile | •                                             | al Zinc<br>595kile |
|                                       |                         | Ì                                                                         |           |               |                | ļ            |                 |                |          | ĺ            |              | ļ        |                   | ļ          |                      | i<br>I       |                  |            |               | ĺ               |                 | -                                             |                    |
|                                       | A3066 HRIDGE MORDERICEN | <br>[F02C001                                                              | 3         | 1<br>1 A      | 7.9            | <u></u>      | 8.4             | 1.             | 18.5     | <br>         | 80.9         | 2        | 7.3               | 2          | 0.831                | 3            | 0.023            | 18         | 16.8          | <br>  -         |                 | <u> </u>                                      |                    |
| ARE                                   | SEABCROUGH              | [R020002                                                                  | 2         | 1.            | 7.7            | 1A           | 8.4             | 1A             | 19.0     | <u> </u> 1A  | 82.0         | 2        | 6.0               | 113        | 0.482                | j IX         | 0.021            | 18         | 9.1           | i -             | -               | i -                                           | -                  |
| NE .                                  | CREMELL FARM MAXICAD    | [F020003                                                                  | 2         | 1 A           | 7.7            | 1A           | 8.3             | I IA           | 17.0     | 1B           | 73.0         | 2        | 7.9               | 2          | 0.760                | <b>J 1</b> A | 0.010            | 14         | 7.5           | i -             | -               | i -                                           | -                  |
| NE                                    | (FORDE BRIDGE           | (R020004                                                                  | 2         | 1 A           | 7.7            | 1A           | 8.3             | 1 <b>x</b>     | 17.5     | j 18         | 78.2         | 2        | 5.3               | 2          | 0.756                | j 1A         | 0.010            | 18         | 19.7          | i -             | -               | 1 -                                           | -                  |
| ne                                    | BROOM                   | F02005                                                                    | 3         | 17            | 7.8            | 1 1          | 8.4             | I IA           | 17.0     | 18           | 79.9         | 2        | 7.3               | 18         | 0.520                | 1 <b>λ</b>   | 0.010            | 3          | 33.9          | 1A              | 17.0            | 1A                                            | 50.0               |
| AME                                   | A356 BRIDGE WEXCROPT    | (F020006                                                                  | I IB      | 1A            | 7.7            | 1 14         | 8.3             | IA             | 17.2     | 1.           | 83.8         | 118      | 4.9               | 118        | 0.511                | <b>j 1</b> A | 0.011            | 1.         | 16.0          | 1 -             | -               | -                                             | -                  |
| NE                                    | BOW BRIDGE              | (8020007                                                                  | 2         | 1A            | 7.7            | 1 14         | 8.5             | I IA           | 19.2     | 1A           | 85.7         | 2        | 5.9               | 18         | 0.475                | 1A           | 0.010            | 18         | 17.9          | 1 -             | -               | -                                             | -                  |
| NE                                    | SLARES                  | (R02B021                                                                  | 1 18      | 1 <b>I</b> A  | 7.7            | 1 IA         | 8.7             | 1A             | 18.0     | 1B           | 75.0         | I IB     | 4.8               | 14         | 0.220                | j 1λ.        | 0.010            | 14         | 11.7          | 1 14            | 5.0             | 1A                                            | 34.0               |
| NE                                    | MILLIPOID BRIDDE        | FC2B001                                                                   | 2         | 1 <b>⊼</b>    | 7.7            | 1A           | 8.4             | IA             | 19.0     | 1B           | 77.0         | 2        | 5.1               | į 18       | 0.353                | j 1A         | 0.010            | 14         | 12.4          | j 1A            | 7.0             | <b>j 1</b> .                                  | 17.9               |
| ane                                   | ANDE BRIDGE             | <b>1R02B002</b>                                                           | 2         | 14            | 7.6            | 11           | 8.4             | AL             | 18.6     | 11B          | 70.9         | 2        | 5.2               | j 18       | 0.389                | Į IA         | 0.010            | 18         | 13.0          | 14              | 7.0             | Į IA                                          | 10.0               |
|                                       | NOTERIDE                | 102003                                                                    | 2         | 1             | 7.2            | <br>  1A     | 8.3             |                | 16.7     | 118          | 69.8         | 2        | 7.8               | <br>  1A   | 0.291                |              | 0.010            | 14         | 7.2           | -               | -               |                                               |                    |
| COLY                                  | BRINKLEY BRIDGE         | F028004                                                                   | 1 1B      | 1A            | 7.4            | i 1A         | 8.4             | İ 1A           | 16.5     | iшв          | 74.4         | i 1A     | 2.9               | 1 1        | 0.201                | i 1A         | 0.010            | 14         | 8.3           | -               | _               | - 1                                           | _                  |
| COLY                                  | HEPOHANNE PARM          | (R028005                                                                  | 12        | Í 1A          | 7.4            | i la         | 8.5             | i 1A           | 16.9     | i IA         | 60.3         | i 2      | 7.6               | 1 18       | 0.341                | 1 1          | 0.010            | 1          | 6.4           | i -             | -               | i –                                           | -                  |
| arr                                   | COLLEGRE                | R022006                                                                   | •         | AL I          | 7.3            | <b>م</b> د ا | 8.5             | IN             | 17.2     | 118          | 73.2         | 13       | 3.9               | i IA       | 0.158                | 1A           | 0.010            | 1A.        | 6.0           | j IA            | 15.1            | ц м.                                          | 14.9               |
| UMECHNE ERCCK                         | TRIPPING PAR            | <br> R02B007                                                              | <br>  1B  | <br>  1a      | 7.5            | 11           | 8.2             | <br>  1A       | 16.0     | 1<br>1 18    | 74.2         | 1.18     | 3.8               |            | 0.367                | <b>I</b>     | 0.010            | 1.         | 5.9           | - 1             | _               | <u>                                      </u> |                    |
| umborne brock                         | UNBORNE BRODCE          | R028008                                                                   | j 1a      | AL            | 7.5            | 1A.          | 8.5             | 1X             | 16.4     | j IV         | 86.2         | Л        | 2.9               | 1 IA       | 0.178                | 1            | 0.010            | 14         | 6.5           | I IA            | 7.4             | <b>1</b>                                      | 11.8               |
| OFTWELL, HROOK                        | WEST CORNELL            | R028009                                                                   | •         | 1             | 7.0            | 11           | . 7.6           | , IV           | 17.1     | 1.8          | 73.5         | 2        | 5.2               | <u> </u> 3 | 2.198                | 1.           | 0.019            | 18         | 7.0           |                 | -               |                                               | -                  |
| OPTWEEL BROOK                         | RINIPITT PROM           | R02B010                                                                   | ( 18<br>( | AL            | 7.5            | 1A<br>       | 8.3             | I IA           | 16.4     | 1 <b>.</b> . | 82.0         | 1.       | 2.5               | 18         | 0.512                | AL           | 0.010            | 18         | 5.3           | 17              | 14.3            | I IV                                          | 17.5               |
| YNRIY                                 | NEMERON BRIDER          | R020003                                                                   | 18        | 1             | 7.5            | <u>1</u> A   | 8.4             | 14             | 18.7     | 18           | 78.4         | 118      | 3.9               | <br>  1B   | 0.335                | 1A           | 0.010            | 1.         | 10.1          | ¦ _             | _               | i -                                           | -                  |
| YARTY                                 | LONGERUDGE              | R020004                                                                   |           | <b>i 1</b>    | 7.4            | 1A           | 8.5             | 1 IA           | 19.8     | 1A           | 83.7         | 18       | 4.8               | 118        | 0.511                | 1A           | 0.010            | <b>1</b> A | 10.4          | 1 -             | -               | - 1                                           | -                  |
| YARTY                                 | BECREAD BRIDGE          | R02005                                                                    | Į 2       | 1A            | 7.4            | [ ]¥         | 8.3             | I IV           | 19.4     | 1A           | 81.0         | 2        | 5.8               | 1B         | 0.618                | 1A           | 0.010            | 1.         | 9.6           | 1 -             | -               | -                                             | -                  |
| A A A A A A A A A A A A A A A A A A A | A35 BRIDGE GAMMERG HILL | [R02006                                                                   | 2         | I IA          | 7.4            | 1A           | 8.4             | 11             | 19.0     | I IA         | 83.0         | 2        | 5.7               | 18         | 0.636                | 14           | 0.014            | 1          | 12.1          | j IX            | 16.0            | I IA                                          | 17.1               |
| CORRY BROOK                           | ROSE PARM               | 10020001                                                                  | 1<br>  18 | 18            | 7.2            | IA           | 8.0             | AL             | 18.3     | 1 18         | 78.4         | <u> </u> | 2.5               | 14         | 0.296                | 14           | 0.010            | 1.         | 9.3           | <u> </u><br>  - | -               |                                               |                    |
| COMER BROOK                           | PRICE TO RIVER YARTY    | (ROZDOO2                                                                  | 2         | 1A            | 7.2            | 1 14         | 8.6             | AL             | 19.0     | 18           | 75.1         | 18       | 3.9               | 2          | 0.875                | IA           | 0.010            | IA.        | 12.7          | I IA            | 7.7             | IA                                            | 12.7               |
| KIT BROOK                             |                         | 17020012                                                                  |           | AL            | 7.7            |              | 8.3             |                | 16.6     | <br>  1A     | 83.1         | <br>  3  | 14.2              |            | 0.079                | <br>  1A     | 0.010            | 18         | 5.4           | <u> </u>        |                 |                                               |                    |
| KIT BROCK                             | lane farm               | 7020013                                                                   | 2         | AL            | 7.7            | Į 1A         | 8.6             | , IV           | 17.6     | 1A           | 85.4         | 2        | 6.7               | 118        | 0.604                | 18           | 0.018            | 1A.        | 17.3          | 1               | 37.1            | <b>N</b>                                      | 36.7               |
| BLACHWRITER RIVER                     | BUTLENNIL               | 102008                                                                    | 2         | 1A            | 7.1            | <br>  1A     | 8.0             | AL             | 18.7     | <br>         | 82.2         | 2        | 6.4               | 118        | 0.570                | <b>]</b>     | 0.010            | 12         | 12.4          | i ia            | 32.8            | 1 18                                          | 66.8               |
| FOREON BROOK                          | B3162 BRIDGE FORION     | 19020010                                                                  |           | 1             | 7.6            | <br>         | 8.4             |                | 18.0     |              | 85.0         | <br>  1B | 3.5               | <br>  18   | 0.330                | <br>  1A     | 0.010            | 1.         | 13.1          | ╎╌ <u>╶</u>     |                 |                                               |                    |
| PORTON ERCOK                          | 1 DAIWORDH              | R02c011                                                                   | 1 18      | IA I          | 7.8            | I IA         | 8.5             | AL             | 17.0     | I IA         | 88.0         | 18       | 4.5               | 118        | 0.395                | • -          | 0.010            | 1A.        | 12.6          | ม               | 33.6            | IA                                            | 40.0               |
| WROLEY STREAM                         | AMMERIAM                | R020015                                                                   | 3         | I JA          | 7.9            |              | 8.5             | <u>       </u> | 18.2     | 1 18         | 65.0         | 2        | 6.9               | 2          | 1.022                | <br>  1A     | 0.020            | 3          | Z7.6          | 14              | 23.2            | 11                                            | 140.5              |
| SYNDERCIPD                            | BEERE FAIM              | <b>R02</b> :014                                                           | 2         | <br>  1.A     | 7.3            | i la         | 8.3             | <u>  1</u>     | 17.4     | AL I         | 83.4         | 2        | 5.2               | 1.B        | 0.446                | <br>  1A     | 0.010            | 1a         | 12.5          | 1.              | 5.0             | <u>م</u> ل                                    | 10.7               |
| TEMPLE BROOK                          | ORDHILL BRIDGE          | <br> R020018                                                              | 2         |               | 7.6            | - IA         | 8.2             | <u> </u>       | 16.0     | 1.18         | 74.0         | 2        | 7.4               | <br>  1B   | 0.670                | <br>  1A     | 0.010            | 14         | 10.7          |                 | -               |                                               | -                  |

.

#### NATIONAL RIVERS AUTHORITY - SOLIH WEST REGION 1990 RIVER WRIER GLALITY CLASSIFICATION CALCULARED DETERMINING STRUSTICS USED FOR GLALITY ASSESSMENT CRICHMENT : ANE (02)

| River            | Reach upstream of | User               | 90    |          |       | Calcul | ated Det  | at an an an an an an an an an an an an an | d Statis | tics u   | ed for Q | ality.   | Assessme | nt.      |        |          |        |                     |       |          |        |       |          |
|------------------|-------------------|--------------------|-------|----------|-------|--------|-----------|-------------------------------------------|----------|----------|----------|----------|----------|----------|--------|----------|--------|---------------------|-------|----------|--------|-------|----------|
| t                | 1                 | Ref.               | NKC   |          |       |        |           |                                           |          |          |          | I        |          | 1        |        | 1        |        | 1                   |       | I        |        | ł     | 1        |
| 1                | 1                 | Number             | Class | pH i     | Lower |        | Upper     |                                           | erature  | •        | (\$)     | •        |          | •        |        | •        | Ameria | •                   | olida | •        | Opper  |       | ul Zinc  |
| 1                | 1                 |                    | l     | Class    | Skile | Class  | s 95% ile | Class                                     | 95kile   | Class    | : Skile  | Class    | 95kila   | Class    | 95bile | Class    | 95kile | Class               | Maan. | Class    | 95tile | Class | s 95kile |
| 1                | 1                 |                    |       | l        |       |        |           |                                           |          |          |          | 1        |          | 1        |        | 1        |        | ł                   |       | 1        |        |       |          |
| 1                | 1                 | 1 1                |       |          |       |        |           | ł                                         |          | 1        |          | 1        |          | 1        |        | 1        |        | ł                   |       | 1        |        | +     |          |
| I                | <u> </u>          |                    |       | _        |       |        |           | l                                         |          | l        |          | L        |          | l        |        |          |        | L                   |       |          |        | _     |          |
| icko-pick streem | VEDERAY           | R02009             | 2     | ĪA       | 7.7   | 11     | 8.3       | 1A                                        | 17.3     | 18       | 73.4     | 2        | 6.5      | 118      | 0.597  | 14       | 0.010  | <b>1 1</b>          | 8.5   | ~        | -      | -     | -        |
|                  |                   | l                  |       |          |       | 100    |           |                                           |          | l        |          | l        |          | <u> </u> |        |          |        |                     |       | <u> </u> |        | L     |          |
| WETLEY STREAM    | FORMELL FARM      | [ <b>F02</b> :016] | 3 (   | 1A       | 7.6   | 1A     | 8.3       | AL I                                      | 17.5     | 18       | 68.9     | 3        | 9.1      | 1 18     | 0.640  | 1A       | 0.017  | <b>1</b> 1 <b>A</b> | 9.5   | I IV     | 5.7    | 1A    | 12.0     |
| l                |                   |                    |       |          |       |        |           |                                           |          | <u> </u> |          | <u> </u> |          | <u> </u> |        | <u> </u> |        | L                   |       | <u> </u> | 1      |       |          |
| HARACCIME STREAM | ERWINGCOMEE MOUTH | F02A001            | 18    | 1A       | 8.0   | 1A     | 8.3       | 17                                        | 15.0     | 17       | 85.0     | 1B       | 4.2      | 17       | 0.120  | AL       | 0.010  | 1                   | 14.8  | -        | -      | -     | -        |
| I                | _ <b></b>         |                    |       | <u> </u> |       |        |           | l                                         |          | l        |          |          |          | L        |        | L        |        | l                   |       |          |        |       |          |

Axe Catchment Compliance - 1990



| MENES NOLAN | CTYLEGE DYDER, LYRH      | 1100208               | ជ         | <u>  -</u>     | _¤_       | <u> </u>        | ព            | <u>  -</u>      | ជ        |          | <u></u>  | τ        | <u> </u>                     | ļ <u> </u>     | <u></u>    | !            | <u>_</u>   | 1            | 0        | <u> </u>   | 0        | -    |
|-------------|--------------------------|-----------------------|-----------|----------------|-----------|-----------------|--------------|-----------------|----------|----------|----------|----------|------------------------------|----------------|------------|--------------|------------|--------------|----------|------------|----------|------|
| 30049 37346 | 20038 70000              | 19102203              | ត         | <br>  -        | ត         | <br>  -         | 81           | <br>  -         | 81       | -        | ត        | •        | ត                            | <br>  -        | धा         | -            | ្ត         | τ            | 0        | -          | 0        | -    |
|             |                          | 1 1                   |           | Ì              |           | Ì               |              | <u> </u>        |          |          |          | Ţ        |                              | <br>  -        | ~~~~       | -            |            | τ            |          | -          | x        |      |
|             |                          | 19702081              | μ         |                | <u> </u>  | ╎╌╌             |              | <u> </u>        | <u> </u> |          | <u>u</u> | <u> </u> | <u> </u>                     | ╎              | 92         | <u> </u>     | <u> </u>   |              | 92       | ¦          | <u></u>  | -    |
| Man Stan    |                          | 15702001              | LZ.       | -              | _12       | <u>.</u> -      | _12          | <u>  -</u>      | <u>µ</u> | <u> </u> | LZ.      | 2        | <u> </u>                     | <u>z</u>       | <u>X</u>   | -            | UZ.        |              | <u>×</u> | <u>  -</u> | <u>×</u> | -    |
| NOOME ALLER |                          | ITICOZOBI             | æ         | -              | ۶Z        | i -             | 82           | í –             | ız       | -        | 82       | -        | sz i                         | i -            | ız         | -            | R          | τ            | u        | i -        | Ľ        | -    |
| X008 9000   | NUDEN STORE LAILE        | OTOCON                | X         |                | X         | <u> </u>        | 97           | <u>  -</u>      | 92       | -        | <u> </u> | -        | <u> </u>                     |                | <b>X</b>   | <u>├</u>     | ×.         | _ <b>}</b> _ | <u>s</u> | -          | 5        |      |
|             | Theward                  | 1000-2011             | μ         | -              | u         | <u></u>         | μ            | -               | μ        |          | μ        |          | <u>_µ </u>                   | <u> </u>       | <b>%</b>   | -            | 4          |              | <u> </u> | 1          | и        | •    |
| 1000 T      | )<br>Iver sevi           | I ETODEOH)            | u         |                | μ         | 1               | LZ.          | <br>  _         | u        | _        | Ľ        | T        |                              | Ι<br>! τ       | ١Z         | 1.2          | ız         | z            | Σ.       | - 1        | 92       | _    |
| TL HOOK     |                          |                       |           | -              | и<br>92   | i -             | ж<br>Ж       | í –             | ST.      | -        | ж.       | τ        | Ω.                           | i -            | <u>я</u>   | 1.4          | x          | ī            | õ        | <u>i -</u> | 0        | -    |
|             |                          | i i                   |           | Ì              |           | Î               |              | 1               |          |          |          |          | Ĩ                            | ]              |            | [            |            |              |          | <u> </u>   |          |      |
| NOTE INCOM  | TURN REVER TO HEAR INNER | 12002COH              | 9£        | -              | 90        |                 | 90           | ! -             | 96       | -        | 96       | -        | 96                           | Z              | ĸ          | -            | g          |              |          | -          | Z        | -    |
| THE BOOK    | N5(2 2303                |                       | <u> 1</u> |                | 92        | ╎──             | <b>8</b> 7   | <u> -</u> -     | 97       |          | <u>R</u> |          | <u> </u>                     | _ <del>_</del> | <u> </u>   | <u>├</u> ─── | <b>1</b> 2 | <u> </u>     | 0        | <b>-</b>   | 0        |      |
|             | TTDI INDINI STUDII SIV   | 1900070N              | 21        | -              | К         | j -             | 75           | - 1             | Т        | -        | π        | T        | κi                           | İτ             | π          | i -          | π          |              | π        | i          | π        | -    |
| 3.2%        |                          | SOUTION               |           | i –            | g         | ì-              | ي.<br>ج      | -               | g        | - 1      | ¥        | I        | <b>1</b>                     | l t            | R          | - 1          | 8          | ۲ I          | • I      | •          | 0        | -    |
| 1DR         | 12010 CONTRACT           | HOOTZOEL              | 97        | i –            | æ         | i -             | 9Z           | i -             | 92       | -        | 9C       | τ        | 97 I                         | I –            | 92         | I -          | 9Ľ         | <u>ع</u> ا   | 0        | -          | Ô        | -    |
| 100         | STATUTE NUMBER           | 000201                | <u> </u>  | <b>-</b>       | X         |                 | <del>x</del> | <u> </u>        | <u>×</u> |          | ×        | -        | <u> </u>                     |                | <u>x</u>   | <u>├</u> _   | 97         | 5            |          |            | 0        | -    |
| XCOM TENNA  | I BONEALL LINES          | OTOBZOK               | R         | i –            | \$        | -               | g.           | - 1             | Ø        | - 1      | <b>Z</b> | -        | g i                          | -              | Ω          | -            | g          | _            | <b>x</b> | <b>i</b> - | 9        | -    |
| XCOB TENI   |                          | 6008ZOU               | <u> </u>  | <u>  - </u>    | g         | <u> </u>        | 8            | <u>  -</u>      | 2        | <u> </u> | <u>x</u> |          | <u> </u>                     | <u> </u>       | <u>α</u>   | !            | <u>ç</u>   |              | 0        |            | 0        | -    |
| NOOR BROOM  | i<br>Ineque Batter       | i sogezozi            | R         | _              | SZ.       | : -             | S.           | <br>  _         | g        | _        | g.       | _        | g                            |                | π          |              | g          | -            | SZ       | )<br>  _   | g        | •    |
| XCOM SMICH  |                          | 1,005208              | ĝ         | i -            | <u>\$</u> | i -             | ŝ            | i –             |          | 2        | <u>z</u> | ε        | <u>ĝ</u> i                   | 3              | ĝ          | -            | ĝ          | -            | <u>ī</u> |            | <u>ī</u> | -    |
|             |                          |                       |           |                |           | 1               |              |                 | _        |          |          |          | _                            |                | ~          | 194          | -          | •            | _        |            | ~        |      |
| 870<br>870  | internet                 | 9009204 <br>  9009204 |           | · -            | л<br>Я    | -               | a<br>S       | · -             | π<br>Ω   | Z        | a<br>g   | 2        | α I<br>92 I                  | ī              | 30<br>54   | 1 -          | π<br>Ω     | L L          | <u>π</u> |            | Σ<br>0   | _    |
| 70          | BECHACKA BECHCE          | I NOOHZUH!            |           | i – i          | ŝ         | i -             | ġ            | i -             | g        | ż        | 8        | τ        | Ω i                          | i -            | <b>EZ</b>  | i –          | 2          | τ            | o i      | - 1        | Ō        | -    |
|             | 2006000                  | ECONECON              | <u>x</u>  | <u> </u>       | <u> </u>  | <u></u>         | <u> </u>     | <u> </u>        | <u>g</u> | E        | 8        | _ Z      | <u></u>                      | <u>  -</u>     | <u>_K_</u> | !            | <u>8</u>   |              |          |            | 0        | -    |
| 300         | 30008 20V                |                       | 80        | )<br>  -       | 85        | - 1             | 95           | -               | 85       | -        | SC.      | Ζ        | 8E                           | _              | 90         | -            | 95         | s            | त        | <br>  -    | ត        | _    |
| 36          | MALE CHEVE               | TODEZOLI              |           | <b>i</b> -     | 08        | i -             | 90           | i -             | 08       | -        | 09       | •        | 09                           | i –            | SL.        | i –          | 08         | 6            | 09       | i –        | 08       | -    |
| 305         | SEMARE                   | TZOEZOH               |           | . –            | ត         | ļ -             | ត            | -               | ត        | -        | ត        | -        | ត                            | ! -            | ត          | ļ —          | ត          | 3            | ត        | -          | ត        | -    |
| 20          | ECONE ACE                | LOUDEON               |           | ! -            | LE        | ! -             | Ľ            | ! -             | Ľ        | -        | Ľ        | z        | LC                           | ! -            | SE .       | ! -          | LL<br>LL   |              | 0        | -          | 0        | -    |
| 30          | TRACKIN MUCH             | 1900-20H              |           | [ <del>-</del> | Æ         | ! -             | 9C           |                 | 82<br>   | -        | ĸ        | I I      | <b>6</b><br>1<br>2<br>1<br>2 |                | រ          | -            | ۶C<br>۲    | E            | 0        | -          | 0        | -    |
| 20          | NCOEL                    |                       |           | -              | 6E<br>06  | 1 ]             | 6£           | -               | 6E<br>00 | -        | 6E<br>00 | E .      | 64  <br>07                   |                | 92.<br>62. | 1 -          | 6E<br>09   | 5            | 60       |            | 6E       | 20   |
| 20          | GIOJON HINI TIMOD        | 1 E0026091            |           | 1 -            | 65        | 1 -             | 0%<br>6E     | _               | 6E       | -        | 6        | z        | 62                           | ĺž             | 6E         | -            | 6          | T            | τ        | -          | ĩ        | -    |
| 20          | HUDDARE                  | IZOCOECULI            |           | -              | 90        | i -             | 96           | i -             | 96       | i –      | <b>8</b> | ž        | RE I                         | i -            | ec i       | İτ           | RC         | ī            | o i      | - 1        | ō        | _    |
| 300         | NODESDECK SECTOR SPORT   | TOCCEDH!              |           | <u> </u>       | <u> </u>  | <u>.</u> -      | 95           | <u> </u>        | BE       | <u> </u> | <u>R</u> | ٤        | <u> </u>                     | <u> </u>       | <u> </u>   | <u> </u>     | )K         | 2            |          |            | 0        | -    |
|             |                          |                       |           |                |           | 1<br> <br> <br> |              | r<br> <br> <br> |          |          |          |          |                              |                |            | <br> <br>    |            |              |          |            | •        |      |
|             | i                        | Jacquires             | 11        | i a            | N         | i a             | N            |                 | N        | a i      | N        | 4        | N                            |                | N          | i a          | N          | a            | м        | 4          | R        | 4    |
|             |                          | 1 . Mart 1            | 1.1       |                |           | 1               | _            | ļ               |          | ľ        |          |          | 1                            |                |            | ļ            |            |              |          |            |          |      |
| Jevi I      | Reach upstress of        | (JHH)                 | 71 HP     | 3000           | th Hd     | 1               | Technil      | l enth          | 00       | (1)      | ) 0008   | ោ        | TOCOL A                      | a harden       | . main     | a transfer   | 06.2       | SPT1         | TEACT    | Jaddag     | MOOT.    | עניב |

1...1

18

.

ORCHARTE : MOL (05)

(1) OMONG ALTAND CHICKERS IN STREAM ON (11) STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN STREAM IN ST

HOUSEN HEARING - ALDERHON SEADI THEOREM

#### NATIONAL REVERS AUDIORITY - SOLUH WEST REFERN 1990 REVER WEER GUNLETY CLASSIFICATION NUMBER OF SHIPLES (N) AND RUMBER OF SAMPLES EXCERTING GUNLETY STANDARD (P) CRECHERT : ARE (02)

G.

.

| River         | (Panch upstream of | User  <br>  Ref. | <u>bų r</u> |   | pH t | tper | Temper | ature |      | (%) | (BCD)( | ATU) | Total / | Ameria | lunian.  | America | S.30 | Lids | Total | Other | Total | Zinc |
|---------------|--------------------|------------------|-------------|---|------|------|--------|-------|------|-----|--------|------|---------|--------|----------|---------|------|------|-------|-------|-------|------|
|               |                    | Nuther           | N           | 2 | R    | *    | N      | F     | N    | r   | 1      | F    | 1 21    | r      | N        | r i     | N    | P    | j n   | F.    | 1 15  | F    |
| P             |                    |                  |             |   | ļ    |      | ļ      | 1     |      |     | í      |      | į –     |        | İ        | į       |      |      | į     | I     |       |      |
| ļ             |                    |                  |             |   | ļ    |      | ļ      |       | <br> |     | ¦      |      | ļ       |        | <u> </u> |         |      |      | į     |       | •     |      |
| ORDEPEN SEREN | ARTHRADY           | P02009           | 26          | - | 8    | -    | 26     | -     | 26   | -   | 26     | 2    | 26      | -      | 26       |         | 26   | -    | 26    | -     | 26    | -    |
| METLAY STREM  | FORMELL PARM       | iscososi         | X           | - | 26   | 7    | 26     | -     | 26   | -   | 25     | 2    | 26      | 1      | 25       |         | 26   | 1    | 28    | -     | 26    | -    |
| BINGONE SCHOP | ENNISCONSE MOUTH   |                  | 10          | - | 10   | -    | 10     | -     | 10   | -   | 10     |      | 10      | _      | 10       |         | 10   | 1    | 0     |       | 0     |      |

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT : AXE (02)

> . . .

|                  |                         | Ref.<br>  Number |             | 1            | 1 1                                     |        | 1 1       |                  | 1                       | 1                   | 1                 | 1               |
|------------------|-------------------------|------------------|-------------|--------------|-----------------------------------------|--------|-----------|------------------|-------------------------|---------------------|-------------------|-----------------|
|                  | i                       |                  | i pri Lower | pH Upper<br> | Temperature                             | DO (¥) | BOD (ATU) | Total<br>Ammonia | Un-ionised<br>  Ammonia | Suspended<br>Solids | Total<br>  Copper | Total<br>  Zinc |
|                  |                         | Ì                | ĺ           |              |                                         |        |           |                  | ļ                       | Ì                   | ļ                 | 1               |
|                  |                         |                  | 1           |              | i i                                     |        | i         |                  | 1                       | ł                   | i                 |                 |
| AXE              | A3066 BRIDGE MOSTERTON  | R02C001          |             |              | ·¦                                      |        | 45        | 19               | 10                      | -                   |                   |                 |
| AXE              | SEABOROUGH              | R02C002          | •           | 1. A.Y       | i – i                                   | -      | 20        |                  | -                       | i –                 | i ~               | i –             |
| AXE              | OATHILL FARM WAYFORD    | R02C003          |             | -            | i - i                                   | -      | 58        | 9                | i -                     | i _                 | i -               | i –             |
| AXE              | FORDE BRIDGE            | R02C004          |             | -            | i – i                                   | -      | 6         | 8                | ,<br>  _                | -                   | -                 | i –             |
| AXE              | BROOM                   | R02C005          |             | -            | i - i                                   | -      | 46        | -                | i -                     | 36                  |                   | i –             |
| AXE              | A358 BRIDGE WEYCROFT    | R02C006          |             |              | i - i                                   | -      | -         | -                | i -                     | i –                 | i -               | i –             |
| AXE              | BOW BRIDGE              | R02C007          |             | -            | i - i                                   | -      | 18        | -                | i -                     | i -                 | i ~               | í –             |
| AXE              | SLYMLAKES               | R02B021          |             | -            | i - i                                   | -      | -         | -                | i -                     | ì -                 | i -               | i -             |
| AXE              | WHITPORD BRIDGE         | R02B001          | •           | -            | i - i                                   | -      | 1         | -                | i -                     | i –                 | -                 | i –             |
| AXE              | AXE BRIDGE              | R02B002          |             | 4.4          | -                                       | -      | j 5 j     | -                | -                       | - 1                 | i -               | i -             |
|                  | i                       | i                |             | 1            | i i                                     |        |           | ĺ                |                         | İ                   | İ                 | i i             |
| COLY             | WOODBRIDGE              | R02B003          | -           |              | i – – – – – – – – – – – – – – – – – – – | 13     | 161       | -                | -                       | - 1                 | -                 | - 1             |
| COLY             | BRINKLEY BRIDGE         | R02B004          | i -         | -            | i - i                                   | 7      |           | ~                | 1 -                     | - 1                 | i -               | - 1             |
| COLY             | HEATHAYNE FARM          | R02B005          | i -         | -            | i - i                                   | -      | 154       | 10               | i -                     | 1 -                 | -                 | 1 -             |
| COLY             | COLYFORD                | R02B006          | i -         |              | -                                       | 9      | 30        | -                | -                       | -                   | ( <del>-</del> )  | -               |
| UMBORNE BROOK    | TRIFFORDS FARM          | R02B007          | í <u> </u>  |              | ¦                                       | - 7    | 25        | 18               | ¦                       |                     |                   | i <del></del>   |
| UMBORNE BROOK    | UMBORNE BRIDGE          | R02B008          | -           |              | -                                       | -      | -         | -                | -                       | l –                 | 1 -               | -               |
| OFFWELL BROOK    | OFFWELL 100m d/s CONFL  | R02B009          |             |              | · [                                     | 8      | 75        | 609              | ·;                      |                     | ·                 | ·}              |
| OFFWELL BROOK    | ROADPITT FARM           | R02B010          |             | -            | -                                       | -      | -         | -                | -                       | -                   | -                 | -               |
| YARTY            | NEWHAVEN BRIDGE         | R020003          | ¦           |              |                                         |        |           |                  |                         |                     | ¦                 | ¦               |
| YARTY            | LONGBRIDGE              | R02D004          | ! -         | -            | 1 - 1                                   | -      | -         | -                | 1 -                     | 1 -                 | - 1               | 1 –             |
| YARTY            | BECKFORD BRIDGE         | R02D005          | - 1         | -            | 1 - 1                                   | -      | 15        | i –              | i -                     | 1 -                 | - 1               | · -             |
| YARTY            | A35 BRIDGE GAMMONS HILL | 1R02D006         | -           | -            | -                                       | -      | 14        | -                | į –                     | -                   | 1.690             | -               |
| CORRY BROOK      | ROSE FARM               | R02D001          |             | -            | -ii                                     |        |           |                  | ·¦                      |                     |                   | -               |
| CORRY BROOK      | PRIOR TO RIVER YARTY    | R02D002          | 1 -         |              | 0 0 <del>7</del> 0                      | -      | -         | 25               | -                       | -                   | -                 | -               |
| KIT BROOK        | NARFORDS                | R02C012          | i           | -            |                                         |        | 184       | -                | i                       | i -                 | i                 | i               |
| KIT BROOK        | AXE FARM                | R02C013          | -           | 1.1          | nev.                                    | -      | 34        | -                | ! -                     |                     | -                 | -               |
| BLACKWATER RIVER | BUDDLEWALL              | R02C008          |             |              | -                                       |        | 28        | -                |                         | -                   | -                 |                 |
| FORTON BROOK     | B3162 BRIDGE FORTON     |                  | ¦           |              |                                         |        |           |                  |                         |                     |                   | ╎────           |
| FORTON BROOK     | TATWORTH                | R02C011          |             |              | - (÷                                    | -      | -         | i -              | į -                     | -                   | -                 | i -             |
| WHATLEY STREAM   | AMMERHAM                |                  | -           |              | -                                       |        | 38        | 46               | -                       | 11                  | -                 | -               |
| SYNDERFORD       | BEERE PARM              | R02C014          | -           |              |                                         |        | 4         | -                |                         |                     |                   |                 |
| TEMPLE BROOK     | OATHILL BRIDGE          | R02C018          | -           | -            |                                         |        | 48        |                  |                         |                     | -                 | ·               |
| CLAPTON STREAM   | CLAPTON DAIRY FARM      | <br>             | ¦           | -            |                                         |        |           |                  | ·                       | ·                   | ¦                 | \               |

...

.

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT : AXE (02)

| River             | Reach upstream of | User    |          | PERCENTAGE | EXCEEDENCE OF                           | STATISTIC | FROM QUALIT | Y STANDARD |         |             |         |       |
|-------------------|-------------------|---------|----------|------------|-----------------------------------------|-----------|-------------|------------|---------|-------------|---------|-------|
| •                 |                   | Ref.    |          | 1          | 1                                       | 1         | ! (         |            | ŧ.      | 1           | 1       | t     |
| ł                 |                   | Number  | pH Lower | pH Upper   | Temperature                             | DO (%)    | BOD (ATU)   |            |         | Suspended   | ] Total | Total |
| ł                 |                   | 1       |          | 1          | !                                       |           |             | Ammonia    | Amsonia | Solids      | Copper  | Zinc  |
|                   |                   |         |          |            |                                         |           | !!!         |            |         |             | ļ       | 1     |
|                   |                   |         |          |            | !                                       |           |             |            | 1       |             |         |       |
|                   |                   | -¦      |          | ¦          | ¦                                       |           | ·           | <u></u>    |         |             | ¦       | -     |
| DRIMPTON STREAM   | NETHERHAY         | R02C009 | -        | -          |                                         |           | 31          | -          | -       |             | -       |       |
|                   |                   | 1       |          |            | í – – – – – – – – – – – – – – – – – – – |           | · ·- ·      |            |         | 1           |         |       |
| WHETLEY STREAM    | POTWELL FARM      | R02C016 |          |            | -                                       | -         | 83          |            | -       | -           | -       | -     |
| i                 | 4                 | 1       |          | 1          | 1                                       |           | 1 1         |            | ł       | i I         |         | II    |
| BRANSCOMBE STREAM | BRANSCOMBE MOUTH  | R02A001 |          | -          | -                                       |           | -           | -          | -       | 1           | -       | -     |
| !                 |                   | _I      |          | l          | I                                       |           | tI          |            |         | ا <u></u> ا |         | ll    |

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT : AXE (02)

\* = WORK ALREADY IN HAND

| - · · · · | River            | Reach upstream of       | User      |      | Possible causes of non-compliance                              |
|-----------|------------------|-------------------------|-----------|------|----------------------------------------------------------------|
| Position  |                  |                         | Reference |      |                                                                |
| Number    |                  |                         | Number    | (km) |                                                                |
|           |                  |                         |           |      |                                                                |
|           |                  |                         |           |      |                                                                |
|           |                  |                         |           |      |                                                                |
| 1         | AXE              | A3066 BRIDGE MOSTERTON  | R02C001   | 4.5  | FARMING ACTIVITIES, UP-STREAM ABSTRACTIONS                     |
| 2         | AXE              | * SEABOROUGH            | R02C002   | 3.0  | UP-STREAM ABSTRACTIONS, ON-GOING POLLUTION, FARMING ACTIVITIES |
| 3         | AXE              | OATHILL FARM WAYFORD    | R02C003   | 3.8  | FARMING ACTIVITIES                                             |
| 4         | AXE              | * FORDE BRIDGE          | R02C004   | 6.3  | FARM DISCHARGE                                                 |
| 5         | AXE              | BROOM                   | R02C005   | 7.0  |                                                                |
| 7         | AXE              | BOW BRIDGE              | R02C007   | 3.3  | ĺ                                                              |
| 9         | AXE              | WHITFORD BRIDGE         | R02B001   | 3.8  | 1                                                              |
| 10        | AXE              | AXE BRIDGE              | R02B002   | 4.0  | SEWAGE TREATMENT WORKS                                         |
| 11        | COLY             | * WOODBRIDGE            |           | 4.3  | FARMING ACTIVITIES                                             |
|           | COLY             | BRINKLEY BRIDGE         | R02B004   | 2.8  |                                                                |
|           | COLY             | HEATHAYNE PARM          | R02B005   |      | FARMING ACTIVITIES                                             |
|           | COLY             | COLYFORD                | R02B005   |      | DROUGHT, UP-STREAM ABSTRACTIONS                                |
| 14        |                  |                         |           | 3.3  |                                                                |
| 15        | UMBORNE BROOK    | TRIFFORDS FARM          | R028007   | 7.8  | DROUGHT, UP-STREAM ABSTRACTIONS                                |
| 17        | OFPWELL BROOK    | WEST COLWELL            | R02B009   | 2.0  | SEWAGE TREATMENT WORKS                                         |
| 21        | YARTY            | BECKFORD BRIDGE         |           | 4.9  |                                                                |
| 22        | YARTY            | A35 BRIDGE GAMMONS HILL | R02D006   | 4.4  | 1                                                              |
|           | ĺ                |                         | i i       |      | · · · · · · · · · · · · · · · · · · ·                          |
| 24        | CORRY BROOK      | * PRIOR TO RIVER YARTY  | R02D002   | 6.8  | FARMING ACTIVITIES                                             |
| 25        | KIT BROOK        | NARFORDS                |           | 3.3  |                                                                |
|           | KIT BROOK        | AXE FARM                | R02C012   |      | <br> FARMING ACTIVITIES, LAND RUN-OFF                          |
| 26        | KIT BROOK        |                         | RUZCULS   | 5.0  |                                                                |
| 27        | BLACKWATER RIVER | BUDDLEWALL              | R02C008   | 6.8  | FARM ACTIVITIES                                                |
| 30        | WHATLEY STREAM   | * ANDERHAM              | R02C015   | 5.3  | SEWAGE TREATMENT WORKS                                         |
| 31        | SYNDERFORD       | BEERE FARM              | I         |      | FARMING ACTIVITIES, POLLUTION (ONE OFF INCIDENT)               |
| 31        |                  | DEERE FARM              | KUZCUI4   | v.9  | TRACTING ACTIVITIES, POLLATION (ONE OFF INCLUENT)              |
| 32        | TEMPLE BROOK     | * OATHILL BRIDGE        | R02C018   | 4.3  | FARM DISCHARGE                                                 |
| 34        | DRIMPTON STREAM  | NETHERHAY               | R02C009   | 5.1  | DROUGHT, UP-STREAM ABSTRACTIONS                                |
|           | WHETLEY STREAM   | POTWELL FARM            | I         |      | FARMING ACTIVITIES                                             |