ENVIRONMENTAL PROTECTION

National Rivers Authority South West Region

River Teign Catchment

River Water Quality

Classification 1990

NOVEMBER 1991 WQP/91/006 B L MILFORD

> GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

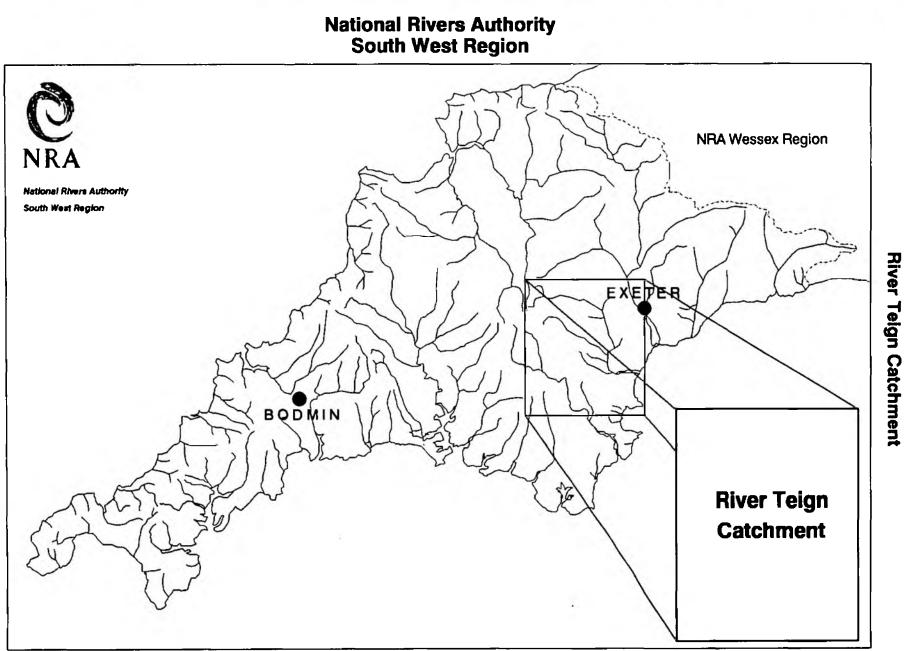
Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ


RIVER WATER QUALITY IN THE RIVER TEIGN CATCHMENT

LIST OF CONTENTS

4

			Page No.
1	Introdu	nction	1
2	River 1	Teign Catchment	1
3	Nationa	al Water Council's River Classification System	3
4	1990 Ri	iver Water Quality Survey	4
5	1990 R	iver Water Quality Classification	4
6	Non-cor	mpliance with Quality Objectives	5
7	Causes	of Non-compliance	5
8	Glossa	ry of Terms	6
9	Refere	nces	6
10	Append:	ices:	
	10.1	River Quality Objectives including Monitoring points	
	10.2	Basic Determinand Analytical Suite	
	10.3	National Water Council (NWC) River Classification System	
	10.4	NWC Criteria for Non-Metallic Determinands - Regional Variation	
	10.4.1	NWC Criteria for Metallic Determinands - Regional Variation	
	10.5	1990 River Water Quality Classification - tabular format	
	10.6	1990 River Water Quality Classification - map format	
	10.7	Calculated Determinand Statistics used for Quality Assessment	
	10.8	Compliant/Non-Compliant River Reaches	
	10.9	Number of Samples Results exceeding quality standards	
	10.10	Percentage Exceedance of Determinand Statistics from Quality Standard	
	10.11	Identification of Possible Causes of Non-Compliance	

10.11 Identification of Possible Causes of Non-Compliance with River Quality Objectives

.....

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Teign catchment.

2. RIVER TEIGN CATCHMENT

The River Teign flows over a distance of 50.8 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at eight locations on the main river; seven sites were sampled at approximately monthly intervals and the site at Preston, which is a National Water Quality monitoring site, was sampled fortnightly.

Blatchford Stream flows over a distance of 4.3 km from its source to the tidal limit, (Appendix 10.1) and was monitored at two locations at approximately monthly intervals.

The River Lemon flows over a distance of 15.3 km from its source to the tidal limit, (Appendix 10.1) and was monitored at three locations at approximately monthly intervals.

The Aller Brook flows over a distance of 7.9 km from its source to the tidal limit, (Appendix 10.1) and was monitored at four locations at approximatley monthly intervals.

Throughout the Teign catchment twelve secondary tributaries and four tertiary tributaries of the River Teign were monitored. In addition Trenchford Reservoir was monitored at one location at approximately monthly intervals.

1

2.1 SECONDARY TRIBUTARIES

The South Teign River, including Fernworthy Reservoir, flows over a distance of 6.3 km from its source to the confluence with the River Teign, (Appendix 10.1). Both the South Teign River and Fernworthy Reservoir were monitored at one location each at approximately monthly intervals.

Fingle Brook (7 km), Sowton Brook (6.4 km), Bramble Brook (6.5 km), Reedy Brook (5.2 km), Scotley Brook (5.3 km), Kate Brook (3.8 km) and Liverton Brook (9.1 km) were all monitored at approximately monthly intervals at one location between their source and confluence with the River Teign, (Appendix 10.1).

Rookery Brook (4.9 km) and Ugbrooke Stream (8.4 km) were both monitored at approximately monthly intervals at three locations between their source and confluence with the River Teign, (Appendix 10.1).

Beadon Brook flows over a distance of 8.3 km from its source to the confluence with the River Teign, (Appendix 10.1) and was monitored at three locations at approximately monthly intervals.

The River Bovey flows over a distance of 26.7 km from its source to the confluence with the River Teign, (Appendix 10.1) and was monitored at four locations at approximately monthly intervals.

2.2 TERTIARY TRIBUTARIES

Blackaton Brook flows over a distance of 9 km from its source to the confluence with the North Teign River, (Appendix 10.1) and was monitored at one site at approximately monthly intervals.

Becka Brook flows over a distance of 6.3 km from its source to the confluence with the River Bovey, (Appendix 10.1) and was sampled at one location on twenty occasions during 1990 because of no recent water quality data.

Wray Brook flows over a distance of 10.6 km from its source to the confluence with the River Bovey, (Appendix 10.1) and was sampled at two locations at approximately monthly intervals.

Sandygate Stream flows over a distance of 7.6 km from its source to the confluence with the Ugbrooke Stream, (Appendix 10.1) and was monitored at three locations at approximately monthly intervals.

Kennick and Tottiford Reservoirs were both monitored at one location at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Teign catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

<u>Class</u>	Description
la	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

3

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

4

The adoption of the revised criteria for suspended solids in Class 2 waters would have affected the classification of Aller Brook at Aller Orchard and Penninn, Newton Abbott.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

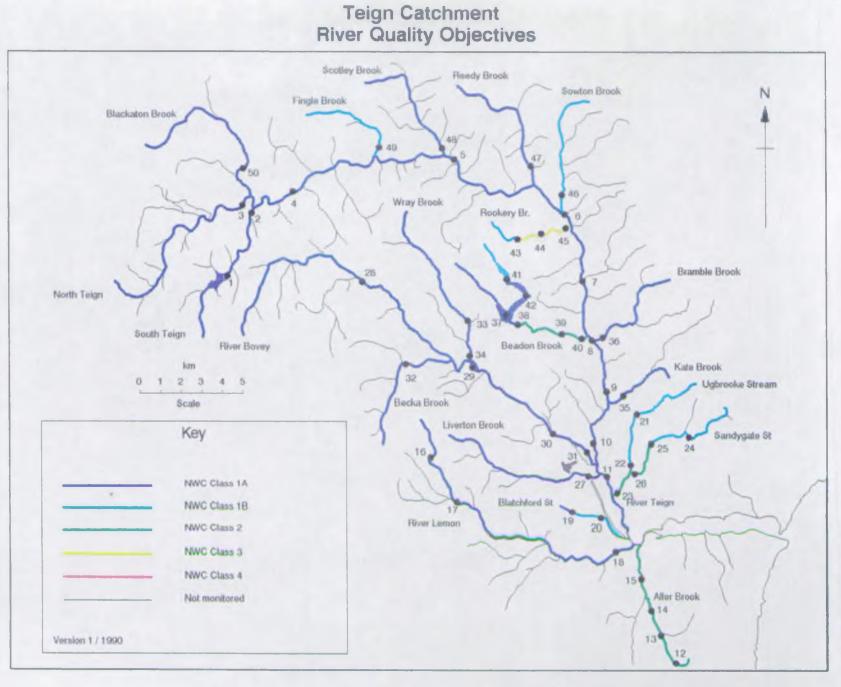
Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

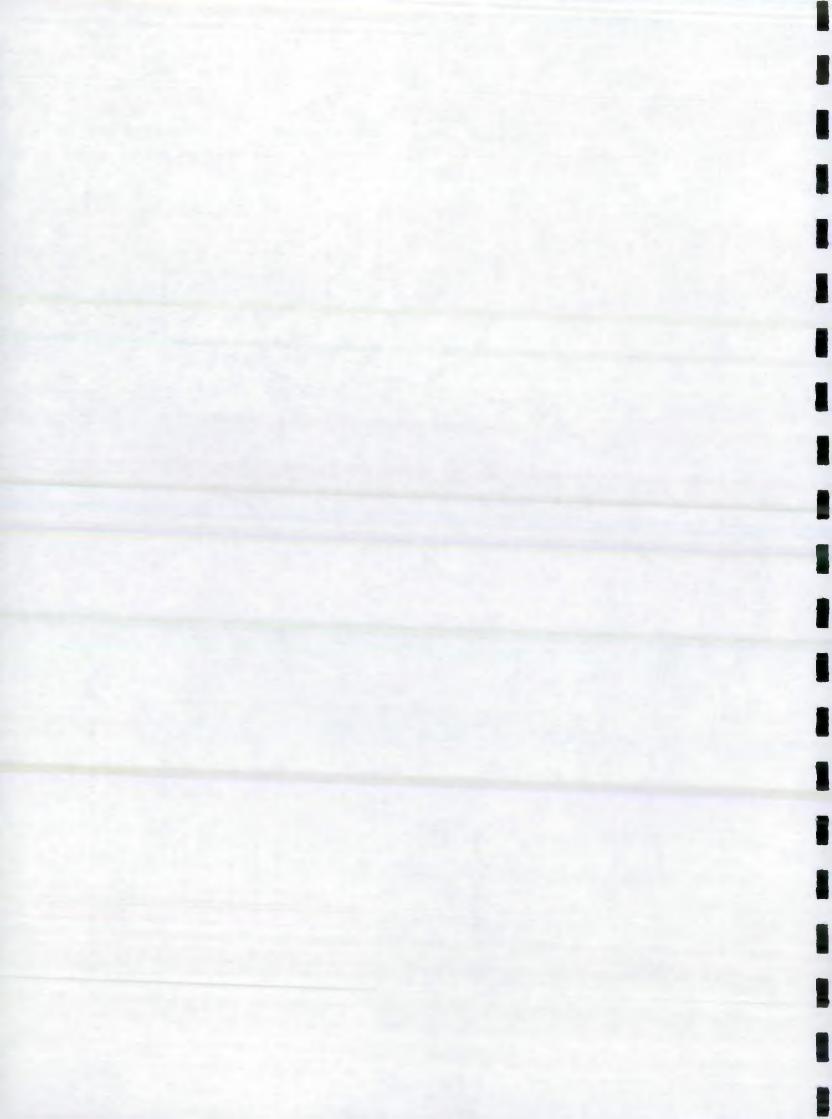
7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

8. GLOSSARY OF TERMS


RIVER REACH	A segment of water, upstream from sampling point to the next sampling point.
RIVER LENGTH	River distance in kilometres.
RIVER QUALITY OBJECTIVE	That NWC class, which protects the most sensitive use of the water.
95 percentiles	Maximum limits, which must be met for at least 95% of the time.
5 percentiles	Minimum limits, which must be met for at least 95% of the time.
	A standard test measuring the microbial uptake of oxygen - an estimate of organic pollution.
рН	A scale of acid to alkali.
UN-IONISED AMMONIA	Fraction of ammonia poisonous to fish, NH ³ .
SUSPENDED SOLIDS	Solids removed by filtration or centrifuge under specific conditions.
USER REFERENCE NUMBER	Reference number allocated to a sampling point.
INFERRED STRETCH	Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

9. REFERENCES


Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

6

APPENDIX 10.1

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

I

I

I

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 0Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/l C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/l N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/l Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/l P Silicate reactive dissolved as mg/l SiO2 Sulphate (dissolved) as mg/l SO4 Sodium (total) as mg/l Na Potassium (total) as mg/l K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

APPENDIX 10.3

-

humic colouration and a little (iii) Moderate amenity value

foaming below weirs

NWC RIVER QUALITY CLASSIFICATION SYSTEM									
River Class	River Class Quality criteria			Renarks	Current potential uses				
		Class limiting criteria (95 percent	ile)						
1A Good Quality	<pre>{i} {ii} (iii) {iii) {iv) {v</pre>	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value			
18 Good Quality	(i) (ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/l Ammonia not greater than 0.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/1 Average ammonia probably not greater than 0.5 mg/1 Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of River Pollution Survey (RPS)		Water of less high quality than Class 1A but usable for substantially the same purposes			
2 Fair Quality	(i) (ii) (iii)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with the requirements for A3* water	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical signs of pollution other than	(i) (ii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries			

the requirements for A3* water (iv) Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available}

DO greater than 10% saturation (i)Quality **(ii)** Not likely to be anaerobic

3 Poor

(iii) BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration

Similar to Class 3 of RPS

Similar to Class 4 of RPS

Waters which are polluted to an extent that fish are absent only sporadically present. May be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up

Waters which are grossly polluted and are likely to cause nuisance

Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times

DO greater than 10% saturation

Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing

- Notes (a) Under extreme weather conditions (eg flood, drought, freeze-up), or when dominated by plant growth, or by aquatic plant decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results. (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
 - (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated. (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.
- EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Mater intended for Abstraction of Drinking Water in the Member State.

Ammonia Conversion Factors

(mg NH₄/) to mg N/))

Class	18	0.4	ng	$NH_4/1$:	0.31	Яg	N/1	
Class	1B	0.9	ng	NHc/)	=	0.70	ng	N/1	
		ΛΓ		MH. 71	-	0 20		\$171	

- $0.5 \text{ mg NH}_4/1 = 0.39 \text{ mg N}/1$

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

- 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l 0 Total ammonia not greater than 0.31 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/1 0 Total ammonia not greater than 0.70 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 0 Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l O

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Determinand	
Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH	
Suspended solids	

5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile arithmetic mean

Statistic

NWC RIVER CLASSIFICATION SYSTEM

I

Z

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

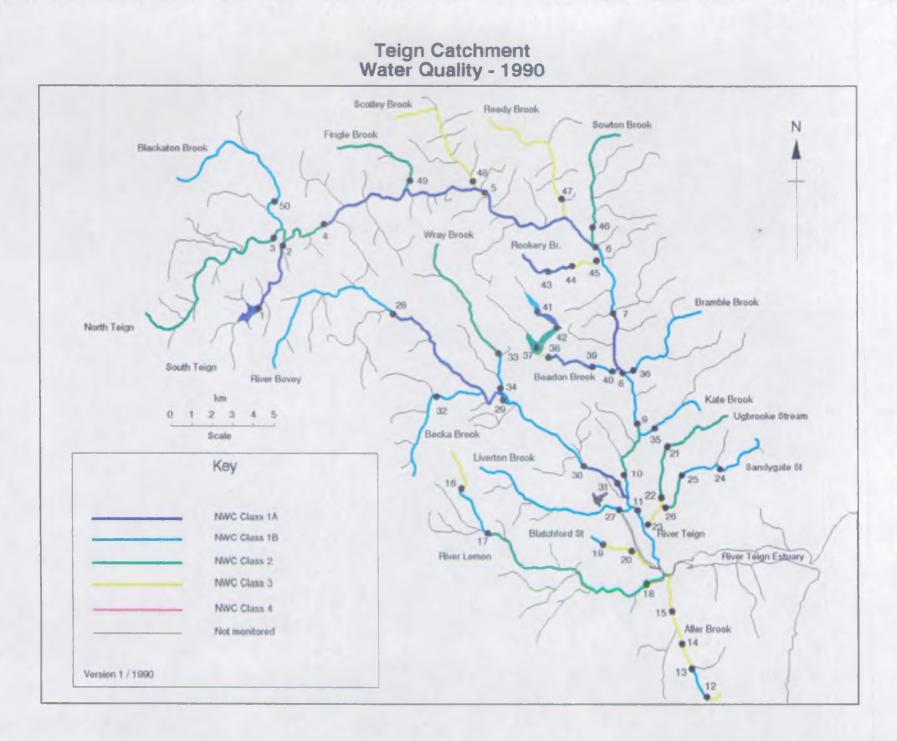
TOTAL ZINC

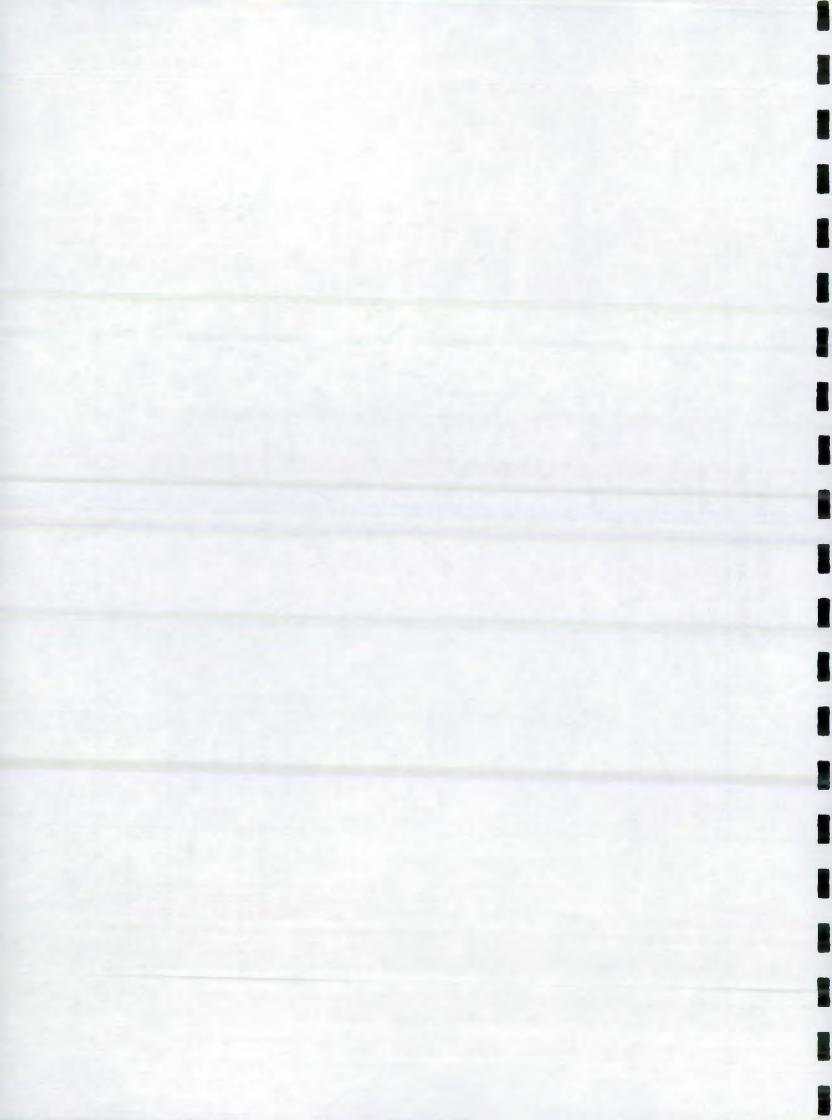
Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000

NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT : TEIGN (06)

L

1990 Map		Reach upstream of	User	National
Position	l		Reference	•
Number			Number	Referenc
				ļ
	SOUTH TEIGN RIVER	INFLOW, FERNWORTHY RES. (UNMON. REACH)		 5x 6670 84
	SOUTH TEIGN RIVER	FERNWORTHY RESERVOIR	•	ISX 6831 87
2	South Teign River 	LEIGH BRIDGE	KOPCADE	 \$X 0831 01
3	NORTH TEIGN RIVER	GIDLEIGH PARK HOTEL	R06C002	SX 6775 87
4	TEIGN	RUSHFORD	R06C003	SX 7048 88
5	TEIGN	CLIFFORD BRIDGE	R06C004	SX 7809 89
6	TEIGN	BRIDFORD BRIDGE	R06C005	SX 8343 87
7	TEIGN	SPARA BRIDGE	R06C037	SX 8435 84
8	TEIGN	CROCOMBE BRIDGE	R06C006	5X 8485 8 1
9	TEIGN	CHUDLEIGH BRIDGE	R06C007	SX 8575 70
10	TEIGN	NEW BRIDGE	R06C008	SX 8490 76
	TEIGN	PRESTON	R06B001	SX 8550 74
	TEIGN	NORMAL TIDAL LIMIT (INPERRED STRETCH)	İ	
12	ALLER BROOK	EDGINSWELL PUMPING STATION	R06A001	SX 8932 66
13	ALLER BROOK	MANOR DRIVE KINGSKERSWELL	R06A002	SX 8801 67
•• -	ALLER BROOK	ALLER ORCHARD	R06A003	SX 8755 69
	ALLER BROOK	PENNINN NEWTON ABBOT		SX 8705 70
	ALLER BROOK	NORMAL TIDAL LIMIT (INFERRED STRETCH)		
16	LEMON	BAGATOR MILL	R06B003	SX 7690 75
17	LEMON	BELOW CONFLUENCE WITH RIVER SIG		SX 7790 73
18	LENON	BRADLEY PLAYING FIELDS NEWTON ABBOT	R06B005	SX 8532 70
	LENON	NORMAL TIDAL LIMIT (INFERRED STRETCH)		
	BLATCHPORD STREAM	PERRY FARM	•	SX 8360 72
	BLATCHFORD STREAM	BLATCHFORD	R06B007	SX 8550 73
	BLATCHFORD STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)		
	UGBROOKE STREAM	GAPPAH		SX 8661 7
	UGBROOKE STREAM	HIGHER SANDYGATE		SX 8672 7
	UGBROOKE STREAM	PRIOR TO RIVER TEIGN	R06B013	SX 8575 73
	UGBROOKE STREAM	TEIGN CONFLUENCE (INFERRED STRETCH)		
	SANDYGATE STREAM	PRIOR TO COLLEY BROOK		SX 8917 76
	SANDYGATE STREAM	COOMBE HOLDRIDGE		SX 8732 75
	SANDYGATE STREAM	NEW CROSS KINGSTEIGRTON	R06B010	SX 8679 74
	SANDYGATE STREAM	UGBROOKE CONFLUENCE (INFERRED STRETCH)		}
	LIVERTON BROOK	VENTIFORD BRIDGE	R068050	SX 8475 74
	LIVERTON BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)		
28	BOVEY	BLACKALLER NORTH BOVEY	R060001	SX 7376 83
	BOVEY	DRAKEFORD BRIDGE		SX 7893 80
30	BOVEY	LITTLE BOVEY	R06D003	SX 8320 76

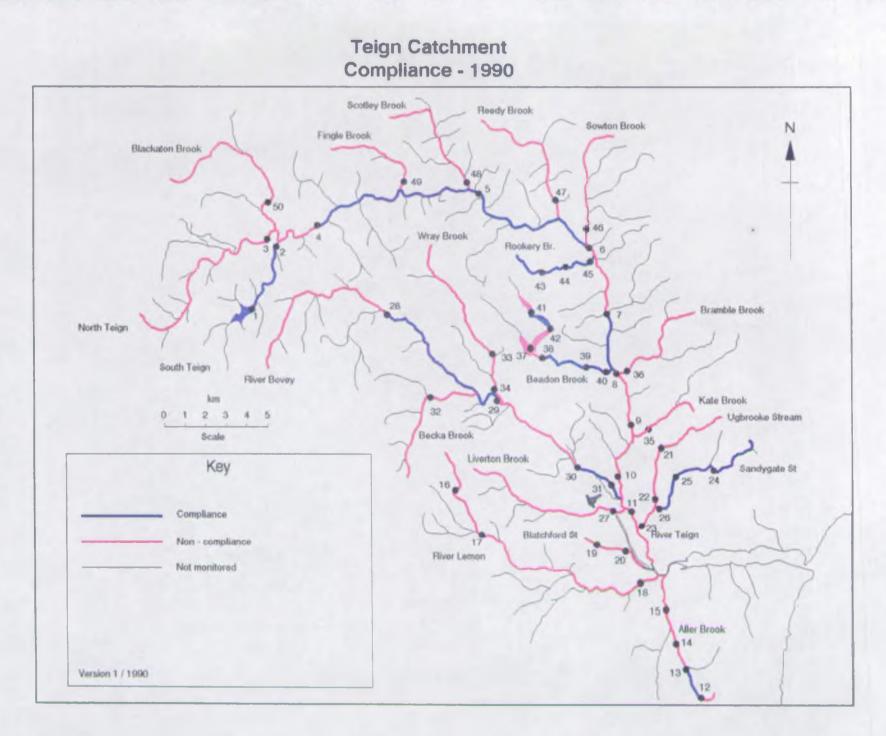

		-						
Reach	Distance	•	85	86	87	88	89	90
Length		Quality	•	NWC		•	NWC	NWC
(km)	•	Objective	Class	Class	[Class	Class	Class	Class
	(km}		1	t	1	1		
	1	l	I	1	l	1		
			1	1	l			
	I	l	ا	I		ii		
1.5	1.5	<u> </u>	<u>1</u>	2	LA	18	1A	
0.6	2.1	1 λ	14	2	1 1 1	1 A		1A
4.2	6.3	1A	1 1	2	I IA	18	1	1A
	I	l	I					
10.7	10.7	14	<u> </u>	2	1.	18	2	2
4.1	14.8	14	17	2	18	17	18	2
9.7	24.5	18	LA	2	18	1	•	
7.7	32.2	18	18	1B	18	19		
3.8	36.0	18	18	2	2	1	1.	18
3.5	39.5	1	1B	2	2	1	1	
3.4	42.9	18	17	1B	1.	1		
2.7	45.6	1.1.	14	1B		1		
2.5	48.1	1	1.	1.	1.	1.		
2.7	50.8	11	1 17	LA	1.	AL	18	18
1.2		2	3		-2	3	3	
1.2	1.2 3.1	2	2	3	19	18	18	1B
	5.0	2	2	4	3	3	3	3
1.9			r -		3	3	3	3
1.8	6.8	2	2		3		3	3
1.1	7.9	2			3	3		
2.4	2.4		1	- 14	2	2	-2	
2.4	4.8	1	ĨĂ	1.	2	2	2	19
9.4	14.2	1	14	14	1B	1B	18	2
1.1	15.3	1 A	Í 1A	i 1 .	1B	18	1B	2
	i		i i	i i		i i		Ì
0.9	0.9	1.4	i					18
2.3	3.2	1B		l 1				3
1.1	4.3	1B						3
	I		!					
4.2	4.2	18	3					
2.3 1.8	6.5 8.3	1B 2	3					2
0.1	0.3 8.4	2	3					3 1
0.1	0.1	4	, ,					-
3.4	3.4	16						18
2.6	6.0	18	i	i i		i i		18
1.4	7.4	2	i	i		i i	i i	2
0.2	7.6	2	i	i I		1	l i	2
	i	i	I	1	10 million (1997)			Iİ
8.8	8.8	1.4	I —				I	IB
0.3	9.1	18	ł					18
· ·	!		!	[
9.6	9.6	1.			LA		1.	18
8.1	17.7	1.		1A		1.	18	1
6.5	24.2	18	17	18	18	18	18	18

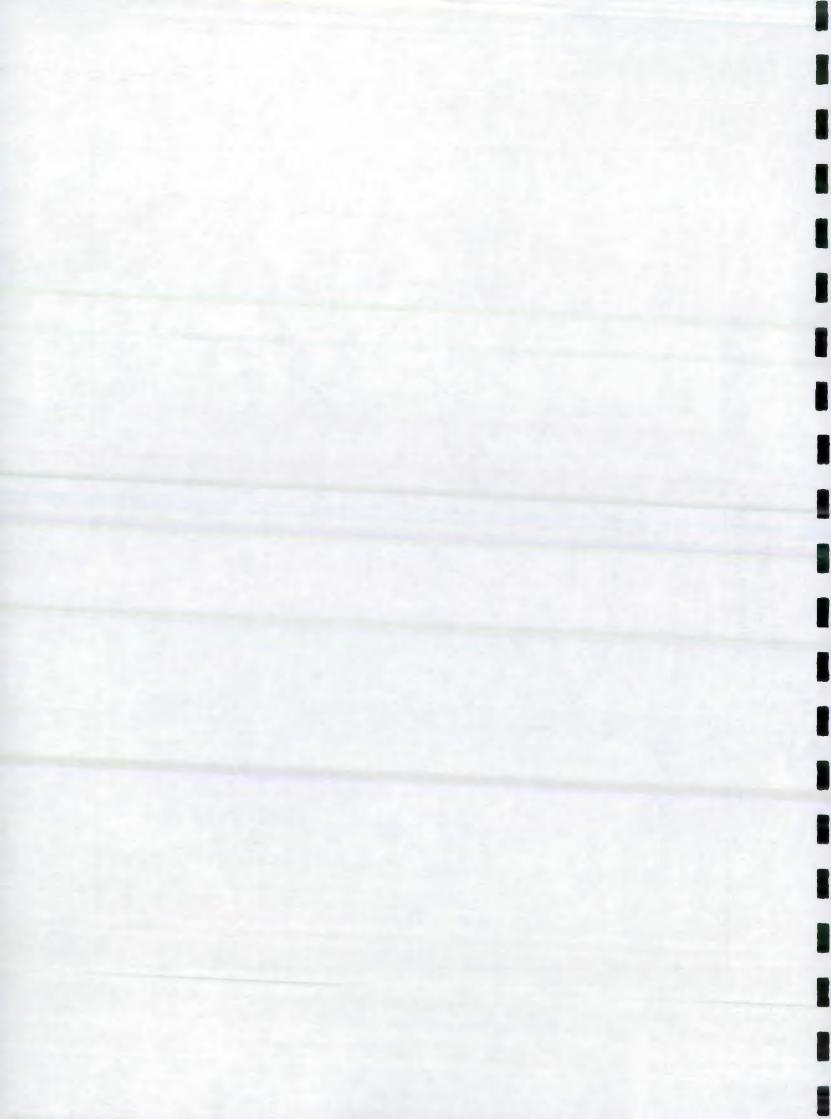

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT : TEIGN (06)

1990 Map	River	Reach upstream of	User	National
Position			Reference	
Number	Ĺ		Number	
, ,	1			
	 	 TWINYEO FARM	 R06D004	 SX 8447 7605
	BOAR	TEIGN CONFLUENCE (INFERRED STRETCH)		i i ii
	BECKA BROOK	NEW BRIDGE	R06D010	SX 7580 8006
1	BECKA BROOK	BOVEY CONFLUENCE (INFERRED STRETCH)		
33	WRAY BROOK	CASELY COURT		SX 7858 8225
	WRAY BROOK	KNOWLE	R06D011	SX 7888 8024
j ,	wray brook	BOVEY CONFLUENCE (INFERRED STRETCH)		1 1
35	KATE BROOK		R06C055	SX 8595 7853
•	KATE BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)	Ì	1 !
36	BRAMBLE BROOK	PRIOR TO RIVER TEIGN	-1 R06C011	SX 8491 8124
•	BRANBLE BROOK	TEIGH CONFLUENCE (INFERRED STRETCH)		
¦	BEADON BROOK	INFLOW, TRENCHPORD RES. (UNMON. REACH)	-¦	¦;
•	BEADON BROOK	TRENCHPORD RESERVOIR	R06C050	SX 8064 8288
•	BEADON BROOK	TOTTIFORD HOUSE		SX 8084 8228
	BEADON BROOK	HYNER BRIDGE	•	SX 8368 8170
•	BEADON BROOK	PRIOR TO RIVER TEIGN	•	SX 8428 8170
	BEADON BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)	İ	1
;	KENNICK STREAM	INFLOW, KENNICK RES. (UNMON. STRETCH)		¦;
	KENNICK STREAM	KENNICK RESERVOIR	•	SX 8068 8388
•	KENNICK STREAM	INFLOW, TOTTIFORD RES. (UNMON. STRETCH)	•	1
42	KENNICK STREAM	TOTTIFORD RESERVOIR	R06C049	SX 8106 8271
43	ROOKERY BROOK	POOLE		SX 8173 8610
	ROOKERY BROOK	ABOVE BARTTES MINE	•	SX 6300 8632
45	ROOKERY BROOK	PRIOR TO RIVER TEIGN	R06C014	ISX 8376 8671
	ROOKERY BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)	13	1
46	SOWTON BROOK	SONTON BRIDGE	R06C015	SX 8338 8745
*	SOWTON BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)		
47	REEDY BROOK	REEDY BRIDGE		SX 8199 8930
Ì	REEDY BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)		1
48	SCOTLEY BROOK	CLIFFORD BARTON	R06C057	15X 7772 9008
49	FINGLE BROOK	FINGLE BRIDGE	-1 R06C053	5X 7433 9000
i i	FINGLE BROOK	TEIGN CONFLUENCE (INPERRED STRETCH)	Ì	i
50	BLACKATON BROOK	CHAPPLE		SX 6782 8900
	BLACKATON BROOK	NORTH TEIGN CONFL. (INFERRED STRETCH)	, - I	1

••

Reach	Distance		65	86	87	88	89	90
Length	from	Quality	•	•	NHC	NWC	RMC	E RIMC
(km.)		Objective	Class	Class	[Class	Class	Class	[Class
	[(km.)	í – – – – – – – – – – – – – – – – – – –	1	(1 1	1	1	1 1
	I			l			1	1
	I	ł	l	1			1	1 1
	I	l	I	<u>ا</u>	II		I	
1.6	25.8	1	<u> </u>	18	10	18	18	IA
0.9	26.7	אז	1A	18	19	1B	18	1
	I		I	I	II	·	1	
3.9	3.9	17	<u> </u>					18
2.4	6.3	1A	1A		1		ł .	18
	I	l	l					II
7.5	7.5	1.	14	· · · · ·		1		2
2.7	10.2	14	1 1.	1			1 1	18
0.4	10.6	1 1 1	1A.	ł			i	1B
	I	l		<u>ا</u> ا	l!	<u> </u>	l	li
3.6	3.6			1				18
0.2	3.8	1 λ	1	1			1	18
	1		!	I		I	I_ [Iİ
6.4	6.4	1.	1.			14	14	18
0.1	6.5	1 1 1	1 1 A	1 IA	I IA	1.	1 1 A	18
	J	J		1	i 1		j i	i i
3.0	3.0		10	3	3	3	3	
0.8	3.8	1.	1B	j 3	3	3	3	j 2 j
0.2	4.0	1.	1B	3	3	3	3	3
3.4	7.4	2	3	j 3	3	3	3	i i a i
0.8	8.2	2	i 3	i 3	i 3 i	3	3	i 18 i
0.1	8.3	2	3	3	3	3	i 3	18
		_					i -	
1.5	1.5	18					i ——	i — — i
1.3	2.8	1B		i			i I	i 18 j
0.1	2.9	і 1B	i	i				i
1.1	4.0	1B	i	í			í ·	i ar i
	i		i	i	i		i	
2.4	2.4	18	3	3	2	18	LA	LA
1.5	3.9	3	i 3	- 1B	18	1.	14	i in i
0.9	4.8	3	i i	3	3	3	3	3 1
0.1	4.9	3	i 4	33	i 3	3	i 3	3
		-						
6.1	6.1	18	18	18	1 <u></u>	1B	2	- <u>-</u>
0.3	6.4			•		_	• -	
0.3	0.4	18	18	18	1B	1B	2	2
<u> </u>	!	<u> </u>	!	!	!	!	[]	!
4.7	1 4.7	1.						3
0.5	5.2	17		•	Ļ			3
	<u> </u>						<u> </u>	II
5.3	5.3	1A		1			1	<u>3</u>
	I	l	[]	ا	·			I
7.0	1 7.0	18	1	1	<u> </u>			2
0.0	7.0	18	1	1				2
	I	l	l	1	1	I	t	
7.5	7.5	LA	I	I <u> </u>	I <u> </u>	1		18
1.5	9.0	1	Ì	ł	ł	1	1	18
							1	


NATIONAL RIVERS AUDIORITY - SOUTH WEST RELICIN 1990 RIVER WRIER QUALITY CLASSIFICATION CALULATED DETERMINAND SUBJECTS USED FOR QUALITY ASSESSMENT CATCHMENT : TEICN (06)


River	Reach upstress of	User	90			Calcul	ated Det	andrea	d Statis	tics us	ed for Q	ality	Assessme	nt				_					
		Ref.	NHC	I		1		1		1		1		1		ŧ.		1		1			
	1	Number	Class	• -	LOWER		Upper		erature		(%)	•		•		•	. Annia		olids	•	Copper		l Zinc
	1	1	1	(Class	: Shile	Class	95tile	Class	; 95kile	Class	5kile	المع	s 95kile		: 95 tile	Class	95kile	Class	Macin.	Class	s 95kila	Class	95kile
		1	!			i i				ļ		ļ		ļ		!				1			
			1	1		1														-		1.	
SOUTH TELON RIVER	FERMININ' RESERVOIR	R060051	- IA		5.3	AL	6.9		19.0	1	86.0	<u> 1</u> A	2.0	1 IA	0.080	-	-	14	22.3	-	-	-	-
SOUTH TELEN REVER	LENCH BRUDGE	R06C001	•	•	6.0	j IA	7.1	1 1A	16.8	İ 1A	82.0	AL I	2.1	<u>i</u> 1a	0.029	1 1A	0.010	, 1A	3.2	I IA	10.4	1A	67.2
		1	í	i		i		1		i		i		i		i i		i		i –	- C		
NORTH TEXAN RIVER	GIDLEDGH HWRK HODEL	JF06C002	1 2	<u> </u> 1A	5.6	14	6.8) IA	17.5	14	88.6	1	2.1	I IA	0.039	11	0.010	18	1.5	<u> </u> 2	10.6	18	27.6
151139	RISHCRO	JR06C003	•	1A	5.9	14	7.0) 1A	16.5	1A	83.2	2	7.7	1A	0.100	1A	0.010	1 1	2.4	I IA	5.0	18	12.0
STATISTICS AND AND AND AND AND AND AND AND AND AND	CLIFFORD BRIDE	R06CD04	AL	1 18	6.6	1A	7.4	1A	18.1	1A	82.3	1A	2.6	1A	0.067	1 7	0.010	17	3.0	- 1	-	-	-
THE	BRIDFORD BRIDGE	R06C005	1A	1 a	6.6	1A	7.4	1A	18.3	1A	86.6	I IV	3.0	1A	0.052	1A	0.010	1 18	3.4	I IV	7.8	11	20.0
TELLEN	SEMRA ERUDEE	R06C037	,	1A	6.7	1A	7.4	1A	17.2	118	74.6	I IX	2.6	1 IA	0.061	1 7	0.010	1	4.3	I IA	9.4	18	91.0
TERRY	CROCIMEE BRIDGE	18060006	•	1A	6.8	1A	7.4	11	16.6	14	85.2	1A	2.6	14	0.051	1 14	0.010	1	4.0	AL I	6.1	18	95.1
TEXTEN	CHINERICH BRIDGE	R06C007		1A	6.6	14	8.0	17	18.3	118	75.3	I IA	2.5	1∧	0.070	1A	0.010	18	6.4	1 14	8.6	18	106.6
TELEN	NEW ERIDGE	R06C008	•	I IX	7.0	1A	7.8	1A	17.9	2	56.8	1A	2.2	1 17	0.080	I IV	0.010	I IV	5.8	I IA	11.4	1X	111.0
TELLE V	PRESICN	R068001	18	I IA	6.9	1 14	7.7	1A	17.0	11	80.4	118	3.2	I IV	0.107	1 1	0.010	1A	19.0	1	14.0	14	78.9
ALLER BROOK	EDGINEMELL PUMPING SIRCILM	1R06A001		 	7.6	1	8.1		17.0	2	48.5	3	13.9	¦	1.700	╎─┯	0.029	L	8.9			_	_
ALLER BROOK	INNER DRIVE KINGERERSNELL	1000002	•	I IA	7.6	14	8.3	11	16.5	11	61.0	118	3.3	118	0.550	i 1Ā	0.010	I IA	16.9	AL J	7.0	1A	25.0
ALLER BROOK	ALLER ORDERED	[R06A003		AL I	7.7	14	8.2	1 1	17.0	118	66.0	1 3	14.0	3	2.981	1 3	0.060	3	30.9	1 -	-	-	19
ALLER BROOK	PENNIN NEWDA ABOT	1R06A004	•		7.8	1 1A	8.2	11	17.1	118	76.0	1 2	7.3	2	1.221	i 3	0.030	i j	41.8	-	_	1.1	-
		1		1 5			0.4	1 50	2/12	1	10.0			-	*****			i	2.0				
LEMON	BIGRICR MILL	R068003	3	AL I	6.5	<u> 1</u> A	7.0	AL	14.5	<u> 3</u>	30.9	<u>i la</u>	1.7	1 14	0.059	1 1	0.010	1.	3.0	<u>j 1</u> a	8.8	14	12.8
LENGN	HELOW CONFILENCE WITH RIVER SIG	JR068004	118	1 1A	6.6	j 1A	7.4	1 A	15.0	128	79.9	11	2.0	j IX	0.060	1 1	0.010	1 1	3.7	[1 A	11.1	1A	46.3
LEMON	HRACLEY PLAYING PIELDS NEWTON ABBOT	IROGE005	12	j 1.a	7.3	j 1A	8.3	אנן	17.0	j 2	55.5	11	2.6	j IA	0.160	1 1	0.010	1 A	7.0	j IA	12.6	14	18.5
		i	i	i		i		i		i		i		1		i		1		1			
BLATCHPORD STREAM	PERC PARM	R068006	I IB	<u> </u>	7.2	1A	8.2	1A	15.0	1B	79.5	1A	2.4	1A	0.146	1 12	0.010		22.8	AL	6.9	18	19.4
HLATCHFORD STREAM	BLATCHEORD	R068007	3	18	7.6	1A	8.3	1A	15.5	1 B	67.0	AL	2.8	AL	0.110	1	0.010	3	35.6	AL	50.0	İA	50.0
		1		i i 1a	75		8.4]A	18.4	 18	67.5		7.5	118	0.460	1	0.019		14.6		5.0	1.	13.1
Uzercone Stremm Uzercone Stremm	KGAPENH	R068011 R068012	•	1 12	7.5 7.6	1A 1A	8.2	אנן	16.9	1 18	77.8	1 2	5.5	1 2	0.480	1 1	0.010	1A	18.5		10.3	1	32.3
UCHROOME SUREAM	(Higher Sancespile (Price to river tellan	[R06B012	5	1 1 1	7.3		8.0	1 12	17.3		88.5		2.5	1 1	0.215	1	0.010	1 3	122.5	1 2	50.0	1	107.6
		1 Iteans	1	1			0.0		17.5	1	w		2.3		0.22	1	0.040	1		-			20710
SANDAGREE STREAM	FRIDER TO COLLEY BROOK	ROGEDOS	118	1	7.6	1 14	8.2	<u> 1</u>	15.9	118	67.0	1 14	2.6	<u> 1</u> A	0.162	1 10	0.010	1.	6.2	<u> 1</u> A	12.2	18	13.2
SANDIGHTE STREAM	COMME HOLDRIDGE	IR068009	j 19	I IA	7.8	j 1 A	8.5	AL	15.4	j 1B	79.1	j 1A	2.3	j 1A	0.096	AL	0.010	1 A	7.7	j IA	5.0	I۸.	1 3. 0
SNUGRE STREM	INEW CROSS KINDSTRUCTION	jR06E010	j 2	j 1a	7.7	j 1A	8.2	j 1A	16.4	j 2	44.6	j 2	5.1	1A	0.1 19	IA.	0.010	AL I	8.5	1 A	5.0	14	21.9
	<u>_</u>	<u> </u>	!	<u> </u>		<u> </u>		<u> </u>		<u> </u>		<u> </u>		<u> </u>		<u> </u>		<u> </u>		<u> </u>			
LIVERIUN ERCCK	VEXTICED BRIDE	R068050	118	1A	7.5	AL I	7.8	1A	17.0	1 1B	73.2	I IV	2.4	AL I	0.127	1.	0.010	1). ו	7.1	18	6.9	1.	75.6
BOVEY	HLACKALLER NORTH BOVEY	R060001	1 19	 	6.6	1	7.3	 1A	15.4	18	75.8	14	2.3		0.040		0.010	1	4.8	¦			
BOVEY	DRANGEPORD BRIDE	IR06D002		•	6.7	1 1A	7.2	I IA	15.9	I IA	89.3	1 1	2.8		0.065	I IN	0.010	11	5.1	i -	_	-	-
BOVEL	LITTLE BONEY	R06D003		•	6.7		7.4		17.2	11	86.4	1 18	3.4	11	0.061	i in	0.010	I IA	7.4	1 1 A	7.0	14	21.2
BOVEL	TWINED FARM	R060004	•	•	6.8	I IA	7.4	I IA	18.1	I IA	81.7	I IA	2.6	I IA	0.120	I IA	0.010	I IA	12.9	14	7.3	18	20.0
		<u>i</u>	<u>i</u>	Ĺ		<u>i</u>		I		<u>i</u>		<u>i</u>		<u>i</u>		i		İ		<u> </u>			
BECKA BROOK	NEW BRIDGE	ROGD010	1B	1A 	6.3	AL	7.1	1A 	16.0	18	65.1	1A 	2.5	1A 	0.185	1.a. 	0.010	<u>1</u> .	5.2	<u>1</u> A 	6.9	LA	<u> </u>
WRAY ERCOK	CASETA CORL	8060008	2	IA IA	7.0	IA	7.4	I A	16.9	18	79.2	113	4.4	<u> </u> 2	0.743	i la	0.010	i la	10.0	I A	6.9	LA	ד.נו
	INDIALE	18060011	-	j 1A	7.0	j la	7.4	j la	16.9	<u> </u> 1A	80.3	j 1B	3.9	j 1B	0.319	Į 1A	0.010	I IA	8.9	1A	8.8	ŁA	19.0
wray Ercck wray Ercck 	•		-					•						-				•					

.

NRTINNL RIVERS AUDIORITY - SOUCH WEST REGION 1990 RIVER WHER QUALITY CLASSIFICATION CNLOLATED DETERMINING STRUISTICS USED FOR QUALITY ASSESSMENT CRICHMENT : TEICH (06)

River	Reach upstream of	User	90	Ï		Calcul	ated Deb	eminer	nd Statis	tics us	ed for Q	unity.	A6906atu	nt									
		Ref.	NHC									1		ł				1		1.4.18		1	
	1	Nuter	[Class	pH1	own	p∺	Upper	राज्यपू	enture	00	(\$)	BOD	(ATU)	Total	Ammia	Union.	Ameria	S.S	olids	Total	Compet	Tota	al Zinc
1	I	I	!	Class	Sule	Class	95kile	Class	95kile	Class	Stile	Class	95kile	(Class	s 95kile	Class	95tile	Class	Mean	Class	95kile		s 95kile
						!								ļ		!		ļ		1		!	
			l L	1				1						1				l I		l İ		۱ •	•
KROE BROOK	CHELETCH	R06C055	1B	18	7.8	14	8.5	1.	17.9	118	79.2	138	3.1	1.	0.280	AL	0.010	14	6.3	12	5.0	14	19.1
ERMELE ERCCK	HUCR TO RIVER TELEN	R06C011	18	1.8	7.5	1A	8.1	1A	15.4	<u></u>	82.5	13	3.4	14	0.037	1.	0.010	1.	7.7	1.	5.0	1.	16.7
BEADON BROOK	TRACIFORD RESERVOIR	R060050	2	1A	6.2	14	6.7	1A	19.0	2	54.0	 1a	2.1	1A	0.120	1.	0.010	1.	2.7	├ <u></u>	-	<u> </u>	-
SEADON BROOK	TOTTIFORD HOUSE	F060009	3	j 3	4.7	11	8.0	j 1a	18.0	118	79.0	j 1A	2.6	j 1.a.	0.212	j 3	0.028	1 1 1	12.1	i -	-	i -	-
EROON BROOK	HANER BRIDGE	R06C010	İ 1A	j 1	6.5	14	7.1	j 1A.	15.7	1A	86.6	11	2.1	I IA	0.034	j 1 A	0.010	1 1 1	3.8	i -	-	i -	-
BEADON BROOK	PRICE TO RIVER TELES	F06C040	113	AL	6.8	AL I	7.8	1 A	16.2	118	77.3	1A.	2.3	1	0.032	1 1 A	0.010	11	4.1	į –	-	-	-
RENALCK STREAM	RENALCE RESERVOIR	1060048	LB	1A	6.4	AL IA	7.2	 1A	20.0	18	64.0	118	3.1	AL	0.050	<u> </u>]	0.010	1	2.7	-	-		-
REPRICK STREPH	TOTTIFORD RESERVOIR	3060049	11	AL I	6.4	14	7.0	1A	20.0	L IV	81.0	1A	2.1	1A 	0.140	1A 	0.010	1A 	1.9	-	-	-	 -
ROORERY BROOK	FOOLE	R060012	1	1A	6.7	1A	7.1	1A	14.5	17	84.9	1A	2.0	1	0.151	1	0.010	1	4.9	<u> </u> 1	5.0	14	15.7
ROOMERY BROOK	LABOUR ENGINES MINE	1060013	1A.	1A	6.9	1 A	7.4	I IA	15.6	j IA -	82.0	1A	2.2	j DA	0.141	18	0.010	1 1 4	5.7	1 1	11.0	(1A	144.5
RARERY HROCK	HRICE TO RIVER TELEN	R060014	3	1A	6.5	1A	7.0	1	15.1	I IA	83.7	19	3.1	1A	0.130	17	0.010	1	6.3	A	33.2	3	4020.0
ischich Ercok	Schridter Brüchge	12060015	2	17	7.0	AL	7.8	 1A	18.3	2	44.6	1	2.1		0.165	1.	0.010	1A	5.3	I IA	5.0	1.	21.2
REELE BROOK	REELY BRIDGE	18060054	3	1A	6.9	14	7.8	1	15.0	3	19.0	2	5.4	1.	0.170	1	0.010	<u>, 17</u>	9.5	i –	-	-	- · -
SCUTLEY BROOK	CLIPHORD BARDON	1060057	3	1.1	6.9	AL	7.7	 1A	15.0	3	32.0	18	3.3	1.	0.230	1	0.010	14	9.2	-	-		-
FINGLE BROOK	PINCLE HRIDGE	1060053	2	18	6.9	1	7.8	٦ ۸	15.4	14	81.0	2	8.7		0.396	11	0.010	1	7.4	-	•	; -	-
(BLACINGION BROOK	CHNEELE	1060052	1 <u>1</u> 11	 1A	6.6	1A	7.0	 1A	15.5	18	75.1	1.	2.9	1.8	0.537	AL	0.010	1.	3.9	 1A	6.9	<u> 1</u>	18.8

NGLIONI, RIVERS AUBORITY - SOURI MEST REGION 1990 RIVER WOER QUALITY CLASSIFICATION RUMER OF SIMPLES (N) AND RUMER OF SIMPLES EXCEEDING QUALITY STINIAND (P) CRICHMENT : TELEN (06)

River 	Reach upstream of	Unar Part.	EH I	<u>om</u> t	phi 	fbat	Texpe 	rature	1 00	(\$)	800 	(ATU) —	Total 	Amonia	(Union. 1	Amonia	S.90	lids	Total	Cottoer.	Tota 	1 Zinc
		Number	N	۲	N 	F	14	r	15 	r	N 	۲	N 	F	N 	F	(R	Ŧ		F	E M	F
					ĺ				Ì		1		l l						1			
SOLIN TEDAN RIVER	(PERFORMENT RESERVOER	 P06C051	ш		<u> </u>		1 12	-	 11	-	<u> </u> 11		<u> u</u>		8		<u> </u>	1	1_12	-	12	-
SLUB TELON RIVER	LEDIN PRODE	FD6C001	30	-	30	-	1 31	-	30	1	30	-	30	-	20	-	30	1	1 21	-	31	-
NUMBER OF STREET	KADDLEDAH BARK HOUEL	17060002	30	_	30	-	<u> 11</u>		30	-	30	_	30	_	22		30	-	i u	1	<u> </u>	-
	(FLEH#CFD)	(R06CD03)	20	-	20	-	20	-	20	-	20	1	20	-	1 20	-	20	-	20	-	20	-
1.417	CLIFTCHO BUILDE	P06C004	25	-	1 25	-) 25	-	25	-	1 25	-	1 3	-	23	-	25		0	-	0	-
11.410	BRIDFORD BRIDGE	R06C005	36	-	36	-	36	-	36	-	36	1	36	-	30	-	36	-	36	-	36	-
11.012	SERVER ERIDEE	[R06C037]	38	-	38	-	38	-	30	2	37	1	37	-	32	-	30	-	38	1	36	-
as an e		FOECODE	38	-	38	-	30	-	38	1	30	-	30	-	31	-	30	-	30	-	30	-
TABLE I	CHECKED HERDER	10600071	23	-	23	-	21.	-	21	2	21	-	21	-	1 21	-	23	1	21	-	1 2	-
23.491 E	NEW BRITCH	FO6CD08	23	-	23	-	21	-	1 21	1	21,	-	1 21	-	21	-	23	1	1 21	-	ומ	-
TRACE	Persona	R068001	68	-	68		្រត	-	66	2	66	3	66	-	65	-	68	IJ	68	1	68	-
ALLER BROOK	EXCENSIVELL RUMPING SURVEYON	ROGH001	39		39		38		38	1	39	2	39	2	30	1	39	3			0	-
ALLER HICCH	(MINUR DRIVE KONGERENNELL	17062002	39	-	39	-	1 39	-	j 39	-	j 39	-	j 39	-	j 37	-	39	7	1 39	-	39	-
ALLER BROOK	ALLER ORCHARD	R06A003	39	-	j 39	-	j 39	-	j 39	-	j 39	5	j 38	6	j 39	12	j 39	14	10	-	i 0	-
ALLER BROOK	PERSON NEWCON ABELT	1706/004	38	-	38	-	j 30	-	j 38	-	30	1	j 38	1	38	2	30	14	0	-	0	-
LINCH	BRACCER MOLL		20		20-		1 20		20	1	 		20		1 16		20		20	-	20	
	BELON CONTLIENCE WEEK RIVER SIG	[R068004]	26	_	26	-	26	-	25	1	25	-	25	-	1 26	_	26	-	25	-	3	-
	BRALLEY PLAYING FIELDS NEWDON AREOT	[R068005]	34	-	34	-	34	-	34	2	34	1	34	-	32	-	34	1	a l	-	33	-
BLACHTORD SUREM	Stater Part	FOGEDOG	20		20		20		20	- <u>i</u>	1 19		20		20	-	20		20	-	20	-
ELECTED STEPH	ELACORCED	 ROGEO07	20	-	į 20	-	19	-	19	-	19	-	1 19	-	19	-	20	10	j 19	-	1 19	-
UCHRICORE STOREM	CAPTINI	18068011	22	-	22	-	22	_	22		22	2	22	-	1 21	-	22	2	22	-	22	_
Utercore Strem	HUTHER SPECIAL COL	[R068012]	22	-	22	-	22	-	22	-	22	1	22	2	22	-	22	3	1 2	-	22	-
UCERCONE STINENN	PRILER TO REVER TELEN	ROGB013	24	-	24	-	24	-	24	-	24	-	24	-	24	-	(24) 	n	22	-	22	-
SNORGE SDRM	FREDE TO COLLEY BROOK	10062008	23		23	-	22	-	21		23		23	-	22	-	23	1	23	-	23	-
Shokare Soren	COMPLE HELERODER	(RO6B009	23	-	23		1 2		22	-	23	-	23	-	23	-	1 23	1	23	-	1 23	-
SWORRDE STREW		19068010	22	-	22	-	22	-	22	T	1 22		1 22	-	22	-	22	1	22	-	22	-
LIVERIUN BROOK	VZCIFORO BRIDZ	[R068050]	21		<u> </u>	-	20	-	20	2	<u> </u>	-	<u> </u>	-	20	-	21	1	<u>n</u>	-	21	
80463	BLACIALLER NORTH BOVEY		24	-	24		24	<u> </u>	24	1	24		24		23		24	1	0		0	-
BOVEY	CRIMERCRO ERIDGE	R060002	24	-	24	-	24	-	24	-	24	1	24	-	į 19	-	24	1	i o	-	jo	-
BOWEY	LITTLE BONEY	19060003	38	-	j 38	-	j 37		i 37	-	1 37	3	1 37	-	1 35	-	38	3	37	-	37	_
BOVEY	MART CEDEDAT	FD62004	39	-	39	-	38	-	37	1	37	1	37	-	36	-	39	5	37	-	37	÷.
HELIA INCON	NINY ORIDIZE	100000101	- 22	-	22	-	22	-	22	2	22	-	2		<u>ן</u> א	-	22	1	22	-	22	-
WRAY FROM	ONSELV COURT	ROSCOOL	21			<u> </u>	21						21		<u> </u>		l					-
NINY BUILT	MUNK	MACULL	1	-	1 21		1 21		21	-	1 2	î	1 <u>1</u>		21		1 21	4	1 11	1.1		
			21	-	1 44	-	1 41	-	1 44	-	1 21	1	1 21		1 21	-		1	1 21	-	21	_

NOCIONAL RIVERS ALCHORITY - SOLIH WEST REGION 1990 RIVER WRIER GLALETY CLASSIFICATION RUMBER OF SMPLES (N) AND RUMBER OF SMPLES EXCEEDING GLALETY SIDNOARD (P) CRICHMENT : TEIRN (06)

River	Punch upstress of	User	pH L	CHIRK	L THI	fiber	Temper	ature		(\$)	BOD	ATU)	Total A	erenia	Union.	Amonia	S.9	lids	Total	Opper	Total	Zinc
	1	Bef.			1		ł		1		I .		1		1	1	1		ł		1	
		Nurber 	19	F	11	F	11	F	19 	۲	[N]	P	11	r	1	F (N	P	157	7	10	F
					} [) Į 		 1				1				[} F		 	
NUE BOOK	OLILICH	F060055	21	-	21		20	-	20	1	1 21	1	1 21	de la	19	-	21	1	21		21	-
BANELS BROX	(HRICR TO RIVER TELLAN	1060011	ð	•	25	-	25		125	-	25	1	1 25	-	ं छ	-	8	3	25	-	25	-
BEACON BROOK	TRENCHORD RESERVOOR	R060050	12	19 0 -1	12		12	-	<u> </u>	1	12	<+0	1 12	-	<u> </u>	-	12	-	1 12	-	12	
BENCEN BROOK	TOPTOPORD HOUSE	[R06CD09]	37	3	37	1	37	-	37	3	37	-	37	-	1 35	1 j	37	2	1 37	-	37	-
BENCH BROOK	(Harer Brodz	R06C010	37	-	37	-	37	-	37	-	37	-	j 37	-	j 30	- 1	37	1	j 36	-	36	-
HENCIN HECOK	FRUCER TEC REVER TEELEN 	[RD6CD40]	36	-	36	1	36	-	136	1	36	-	36	7	20	-	36	1	36	-	36	-
PERSON STREET	HERRICK RESERVER	ROGCO48	12	-	12	- 2 -1	ί ц	-	<u>'</u>	-	12	-	1 12	-	10	1.÷/	12	-	1 12	-	12	-
REPORTED STREEM	INTERIOR RESERVOIR	[RD6C049]	12	-	12	-	12	-	112	-	12	-	1 12	-	ļΠ	-	12	-	12	-	1 12	-
ROOMERT BROOK	ROLE	19060012	37	-	37	-	37	-	37	1	37	-	37	-	28		37	1	37	-	37	-
ROCKERY BROOK	ABOVE BHRTES MINE	[R06C013]	37	-	37	-	37	-	37	-	1 37	-	37	141	1 33	- 1	37	-	37	-	37	_
RURIT TRUK	HEIDE TO REVER TELICH	R06C014	37	-	37	-	37	-	37	-	37	-	j 37	-	36	-	37	•	37	-	37	-
SCHIEF BROOK	SCHERKINGE	8060015	25	-	25	-	1 25		25	5	1 25	-	25	•	19	-	Z	-	25	-	25	-
REELE BROOK	PERCE BRIDGE	 R06C054	17	-	17	-	17	-	1 17	6	17	1	17	-	17	-	17	2	17		17	-
STORIET BOOK	CLIPTORD BINITION	19060057	IJ	-	13		13		<u>u</u>	6	<u> </u>	2	13	-	<u> </u>	-	<u> </u>	2	<u> 13</u> -	-	<u> </u>	-
PINGLE BROOK	FINELE BRIDE	R060053	20	-	20	-	20	-	20		20	1	20	-	19	1.5	20		20	-	20	-
LARREN BOOK	alter	(<u>17060052</u>)	20	-	20	_	20		20	2	20	-	20	1	20	-	20	-	20	-	20	-

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT : TEIGN (06)

River	Reach upstream of	User	
		Ref.	
		Number	pH Love
	1.2		
SOUTH TEIGN RIVER	PERNMORTHY RESERVOIR	R06C051	_
SOUTH TEIGN RIVER	LEIGH BRIDGE	R06C001	-
NORTH TEIGN RIVER	GIDLEIGH PARK HOTEL	R06C002	
TEIGN	RUSHFORD	R06C003	-
TEIGN	CLIFFORD BRIDGE	R06C004	-
TEIGN	BRIDFORD BRIDGE	R06C005	-
TEIGN	SPARA BRIDGE	[R06C037]	-
TEIGN	CROCOMBE BRIDGE	R06C006	-
TEIGN	CHUDLEIGH BRIDGE	R06C007	-
TEIGN	NEW BRIDGE	R06C008	-
TEIGN	PRESTON	R06B001	-
ALLER BROOK	EDGINSWELL PUMPING STATION	R06A001	
ALLER BROOK	MANOR DRIVE KINGSKERSWELL	R06A002	-
ALLER BROOK	ALLER ORCHARD	R06A003	-
ALLER BROOK	PENNINN NEWTON ABBOT	R06A004	-
LEMON	BAGATOR MILL	R06B003	
LENON	•	R06B004	-
LEMON	BRADLEY PLAYING FIELDS NEWTON ABB	• •	-
BLATCHFORD STREAM	PERRY PARM	R068006	
BLATCHPORD STREAM	BLATCHFORD	R06B007	-
UGBROOKE STREAM	GAPPAH	R06B011	
UGBROOKE STREAM	HIGHER SANDYGATE	R06B012	-
UGBROOKE STREAM	PRIOR TO RIVER TEIGN	R06B013	-
SANDYGATE STREAM	PRIOR TO COLLEY BROOK	R06B008	_
SANDYGATE STREAM	COOMBE HOLDRIDGE	R06B009	-
SANDYGATE STREAM	NEW CROSS KINGSTEIGNTON	R06B010	-
LIVERTON BROOK	VENTIFORD BRIDGE	 R06B050	
BOVEY	BLACKALLER NORTH BOVEY	 R06D001	
BOVEY	-	R06D002	_
		R06D002	-
Bovey Bovey	TWINYEO PARM	R06D003	-
BÉCKA BROOK	NEW BRIDGE	R06D010	
WRAY BROOK	I	R06D008	
WRAY BROOK	•	R06D011	_
TAL DROOK	I CONTRACTOR	Ingonanti	-

1.1

H Upper	Temperature 	DO (%)	BOD (ATU)	Total Ammonia	Un-ionised Ammonia 	Suspended Solids	Total Copper	Total Zinc
				6	 !	 	and a	
-	-	-	-	1	-	-		-
-	·} ·	-	-	-			112	
	1 · · · ·		158	-	-	-	-	070
-	I – I	-	-	-	-	-	-	-
-	-		- 1	-	-	-	-	! -
		7	-	-	-	-	-	0.000
-	-		-	-	-	-	-	-
-	-	6	-	-	-		-	
	-	29	< + C		-	-	-	-
-	-		6	-	-	-	-	-
-		-	54	9	38	-	-	
-	-	-		-	-	-	-	-
	-	-	56	91	186	23	-	-
-	-	-	-		45	67	-	-
-		61			-		-	· · - ·
-	-	-		-			-	-
-	-	31		-		-		-
-		1		-		-	-	
	4	-	-	-	-	43	-	-
-			50	-				
-	1 . A	-	10	20		-	-	-
-	-	-	- 1	-	-	390	-	-
-		-		-	-			-
-	- 1	-		-	-			-
-	i - i	-	-	-	-		-	-
<u> </u>		9		-				
1.1	ii				ii	i		
-		5	i - I	-	-	-	-	-
	- I	-	-	-		-		-
-	- 1	-	13	-	-	-	-	0.00
	-	-			-	-	-	-
		19		-	-		-	-
-		1	- 	140				
-			29	3				-

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT : TEIGN (06)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD	I			
		Ref.		1					I	1	l	
		Number 	pH Lower	pH Upper 	Temperature 	DO (%)	BOD (ATU) 	Total Ammonia	Un-ionised Ammonia 	Suspended Solids	Total Copper 	Total Zinc
KATE BROOK						<u> </u>		<u> </u>	 [
		I I				1		-	-	-	-	
BRAMBLE BROOK	PRIOR TO RIVER TEIGN	R06C011	-	-	-		14	000	i -	-	- -	-
BEADON BROOK	TRENCHFORD RESERVOIR	R06C050	-			32				i		
BEADON BROOK	TOTTIFORD HOUSE	R06C009	5	-	i – i	1	- 1	-	33	-	i -	-
BEADON BROOK	HYNER BRIDGE	R06C010		1	i - i	_	-	-	-	-	i –	i -
BEADON BROOK	PRIOR TO RIVER TEIGN	R06C040	-	-	-	-	- 1	-	-	-	i -	-
KENNICK STREAM	KENNICK RESERVOIR	R06C048				-						-
KENNICK STREAM	TOTTIFORD RESERVOIR	R06C049	-	-	- -	-	-	-	-	-	-	-
ROOKERY BROOK	POOLE	R06C012	<u> </u>		<u> </u>	<u> </u>			¦			
ROOKERY BROOK	ABOVE BARYTES MINE	R06C013			i - i	-	i _ i	_	i –	i –	i –	
ROOKERY BROOK	PRIOR TO RIVER TEIGN	R06C014		-		-	i - i	-	-	-	i –	-
SOWTON BROOK	SOWTON BRIDGE	R06C015	-	-	-	26	-		-	-	-	-
REEDY BROOK	REEDY BRIDGE	R06C054	-	-	-	76	80	-			<u></u>	-
SCOTLEY BROOK	CLIFFORD BARTON	R06C057	-	-	-	60	10					-
PINGLE BROOK	PINGLE BRIDGE	R06C053	-	-	-		74		-	-		-
BLACKATON BROOK	CHAPPLE	R06C052	-	-				73			-	-

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH ROO CATCHMENT : TEIGN (06)

* = WORK ALREADY IN HAND

1990 Map	River	Reach upstream of	User	Reach	Possible causes of non-compliance
Position			Reference	Length	1
Number			Number	(km.)	
1 1		Ì	j i	ĺ	1
			I I		•
į I			ł l		
I		I_ <u></u>	I		
	NORTH TEIGN RIVER	GIDLEIGH PARK HOTEL	R06C002 1	10.7	CATCHMENT GEOLOGY, UP-STREAMS ABSTRACTIONS, MOORLAND
	TEIGN	RUSHFORD	R06C003		SEWAGE TREATMENT WORKS, UP-STREAM ABSTRACTIONS
	TEIGN	SPARA BRIDGE	R06C037		DROUGHT
	TEIGN	CHUDLEIGH BRIDGE	R06C007	3.4	
-	TEIGN	NEW BRIDGE	R06C008		SEWAGE TREATMENT WORKS, LOW VELOCITY
	TEIGN	PRESTON	R06B001		INDUSTRIAL DISCHARGE
1					
12	ALLER BROOK	EDGINSWELL PUMPING STATION	R06A001	1.2	URBANISATION, CULVERTING, SEWAGE TREATMENT WORKS, LOW FLOWS
14	ALLER BROOK	ALLER ORCHARD	R06A003	1.9	URBANISATION, SEWAGE TREATEMENT WORKS, DEVELOPMENT AT BARTON
15	ALLER BROOK	PENNINN NEWTON ABBOT	R06A004	1.8	URBANISATION, CULVERTING
16	LEMON	BAGATOR MILL	R06B003	2.4	
	LEMON	BELOW CONFLUENCE WITH RIVER SI	• • • • •		DROUGHT
	LEMON	BRADLEY PLAYING FIELDS NEWTON	R06B005		URBANISATION, CULVERTING
			MODODO		
19	BLATCHFORD STREAM	PERRY FARM	R06B006	0.9	
20	BLATCHFORD STREAM	BLATCHFORD	R06B007	2.3	CHINA CLAY DISCHARGE
i i			i		
21	UGBROOKE STREAM	GAPPAR	R06B011	4.2	
22	UGBROOKE STREAM	HIGHER SANDYGATE	R068012	2.3	CHINA CLAY DISCHARGE
23	UGBROOKE STREAM	* PRIOR TO RIVER TEIGN	R068013	1.8	CHINA CLAY DISCHARGE
]				l <u> </u>	
27	LIVERTON BROOK	VENTIFORD BRIDGE	R06B050	8.8	PISH PARM EFFLUENT
28	BOVEY	BLACKALLER NORTH BOVEY	R06D001	9.6	SEWAGE TREATMENT NORKS
i 30 i	BOVEY	LITTLE BOVEY	R06D003	6.5	
i i			i	İ	j
32	BECKA BROOK	NEW BRIDGE	R06D010	3.9	ROAD RUN-OFF, DROUGHT
33	WRAY BROOK	CASELY COURT	R06D008		
		• • • • • • • • • • • • • • • • • • • •	•		SEPTIC TANKS, DROUGHT
34	WRAY BROOK	KNOWLE	R06D011	2.7	SEWAGE TREATEMENT WORKS
35	KATE BROOK	CHUDLBIGH	R06C055	3.6	FISH FARM DISCHARGE
ii			İ	İ	· · · · · · · · · · · · · · · · · · ·
36	BRAMBLE BROOK	PRIOR TO RIVER TEIGN	R06C011	6.4	DROUGHT
!			<u> </u>	<u> </u>	
•	BEADON BROOK	TRENCHPORD RESERVOIR	RO6C050	0.8	
38	BEADON BROOK	TOTTIFORD HOUSE	R06C009	0.2	INPOUNDMENT, UP-STREAM ABSTRACTIONS
46	SOWTON BROOK	SOWTON BRIDGE	R06C015	- 61	
10	DOWTON DROOM	i SOMION BRIDGE	KOPCAT2	6.1 	DROUGHT, UP-STREAM ABSTRACTIONS
47	REEDY BROOK	REEDY BRIDGE	R06C054	4.7	DROUGHT

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT : TEIGN (06)

* = WORK ALREADY IN HAND

1990 Map Position Number		Reach upstream of	User Reference Number	Length	Possible causes of non-compliance
48	SCOTLEY BROOK	CLIFFORD BARTON	R06C057	5.3	DROUGHT, ENGINEERING WORKS, CATCHMENT GEOLOGY
49	PINGLE BROOK	FINGLE BRIDGE	R06C053	7.0	SEWAGE TREATMENT WORKS, ENGINEERING WORKS, CATCHMENT GEOLOGY
50	BLACKATON BROOK	CHAPPLE	R06C052	7.5	PRIVATE DISCHARGES