
ENVIRONMENTAL PROTECTION

River Water Quality Classification 1990

> NOVEMBER 1991 WQP/91/008 B L MILFORD

National Rivers Authority South West Region

GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

HO.

Information Services Unit

Please return or renew this item by the due date

Due Date

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

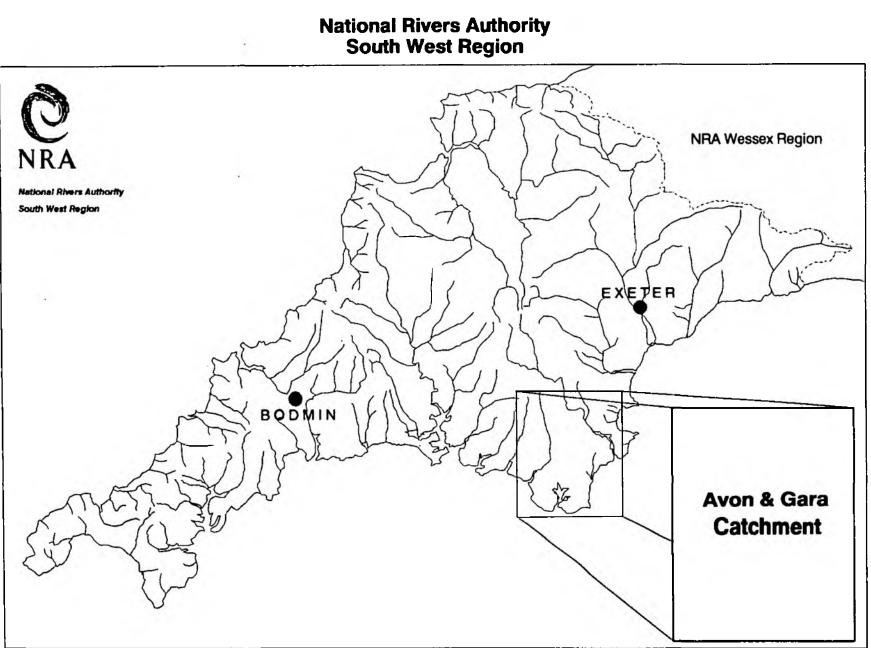
The following NRA sections also made valuable contributions:

Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:


Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ

RIVER WATER QUALITY IN THE RIVER AVON CATCHMENT

LIST OF CONTENTS

			rage n
1	Introdu	iction	1
2	River A	Non Catchment	1
3	Nationa	al Water Council's River Classification System	2
4	1990 Ri	ver Water Quality Survey	3
5	1990 Ri	ver Water Quality Classification	3
6	Non-con	mpliance with Quality Objectives	4
7	Causes	of Non-compliance	4
8	Glossa	ry of Terms	5
9	Referen	nces	5
10	Appendi	ices:	
	10.1	River Quality Objectives including Monitoring points	
	10.2	Basic Determinand Analytical Suite	
	10.3	National Water Council (NWC) River Classification System	
	10.4	NWC Criteria for Non-Metallic Determinands - Regional Variation	
	10.4.1	NWC Criteria for Metallic Determinands - Regional Variation	
	10.5	1990 River Water Quality Classification - tabular format	
	10.6	1990 River Water Quality Classification - map format	
	10.7	Calculated Determinand Statistics used for Quality Assessment	
	10.8	Compliant/Non-Compliant River Reaches	
	10.9	Number of Samples Results exceeding quality standards	
	10.10	Percentage Exceedance of Determinand Statistics from Quality Standard	
	10.11	Identification of Possible Causes of Non-Compliance with River Quality Objectives	

Avon & Gara Catchment

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Avon catchment.

2. RIVER AVON CATCHMENT

The River Avon flows over a distance of 33.5 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at seven locations on the main river; three of these sites were sampled at approximately monthly intervals. The site at Hatch, which is a National Water Quality monitoring point, was sampled fortnightly. Three sites at Shipley Bridge, A38 Bridge and Loddiswell were sampled on twenty occasions during 1990 because of no recent water quality data.

The River Gara flows over a distance of 14.2 km from its source to the tidal limit, (Appendix 10.1) and was monitored at seven sites at approximately monthly intervals.

Small Brook and West Alvington Stream flow over a distance of 8.4 km and 1.3 km respectively from their source to the tidal limit, (Appendix 10.1) and were both monitored at one location on twenty occasions in 1990 because of no recent water quality data.

Throughout the Avon catchment three secondary tributaries of the River Avon and one secondary tributary of the River Gara were monitored. In addition the Avon reservoir was monitored at one site at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

The Torr Brook, Glaze Brook and Bala Brook flow over a distance of 6.9 km, 6.1 km and 3.8 km respectively from their source to the confluence with the River Avon, (Appendix 10.1) and were monitored at one location each on twenty occasions in 1990 because of no recent water quality data.

The Slapton Stream flows over a distance of 6.1 km from its source to the confluence with the River Gara, (Appendix 10.1) and was monitored at one location on twenty occasions during 1990 because of no recent water quality data. Monitoring points are all located in the lower reaches.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Avon catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Class	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5. The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

8. GLOSSARY OF TERMS

RIVER REACHA segment of water, upstream from sampling point
to the next sampling point.RIVER LENGTHRiver distance in kilometres.RIVER QUALITY OBJECTIVEThat NWC class, which protects the most sensitive
use of the water.95 percentilesMaximum limits, which must be met for at least

95% of the time.

5 percentiles Minimum limits, which must be met for at least 95% of the time.

BIOLOGICAL OXYGEN DEMAND A standard test measuring the microbial uptake of (5 day carbonaceous ATU) oxygen - an estimate of organic pollution.

pH A scale of acid to alkali.

UN-IONISED AMMONIA Fraction of ammonia poisonous to fish, NH³.

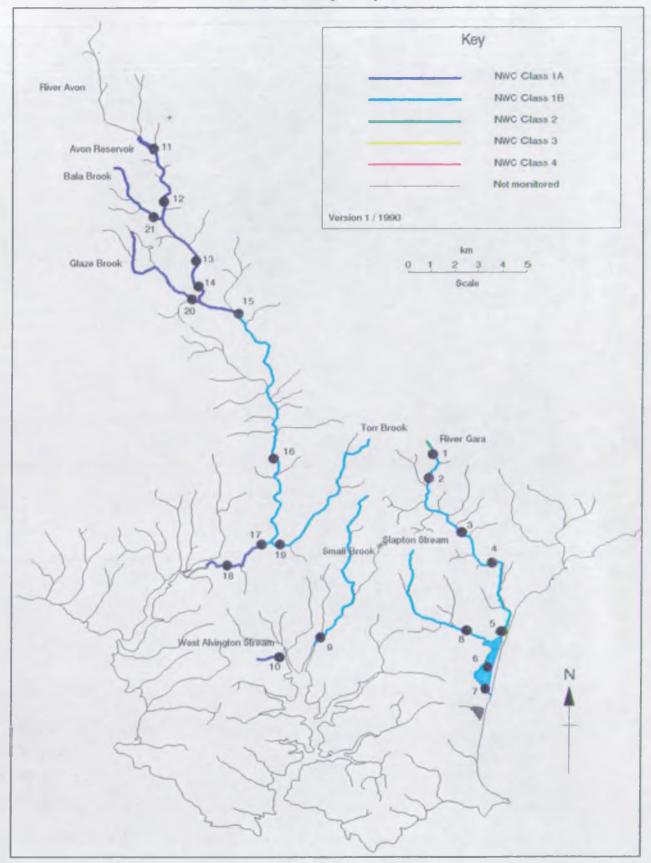
SUSPENDED SOLIDS Solids removed by filtration or centrifuge under specific conditions.

USER REFERENCE NUMBER Reference number allocated to a sampling point.

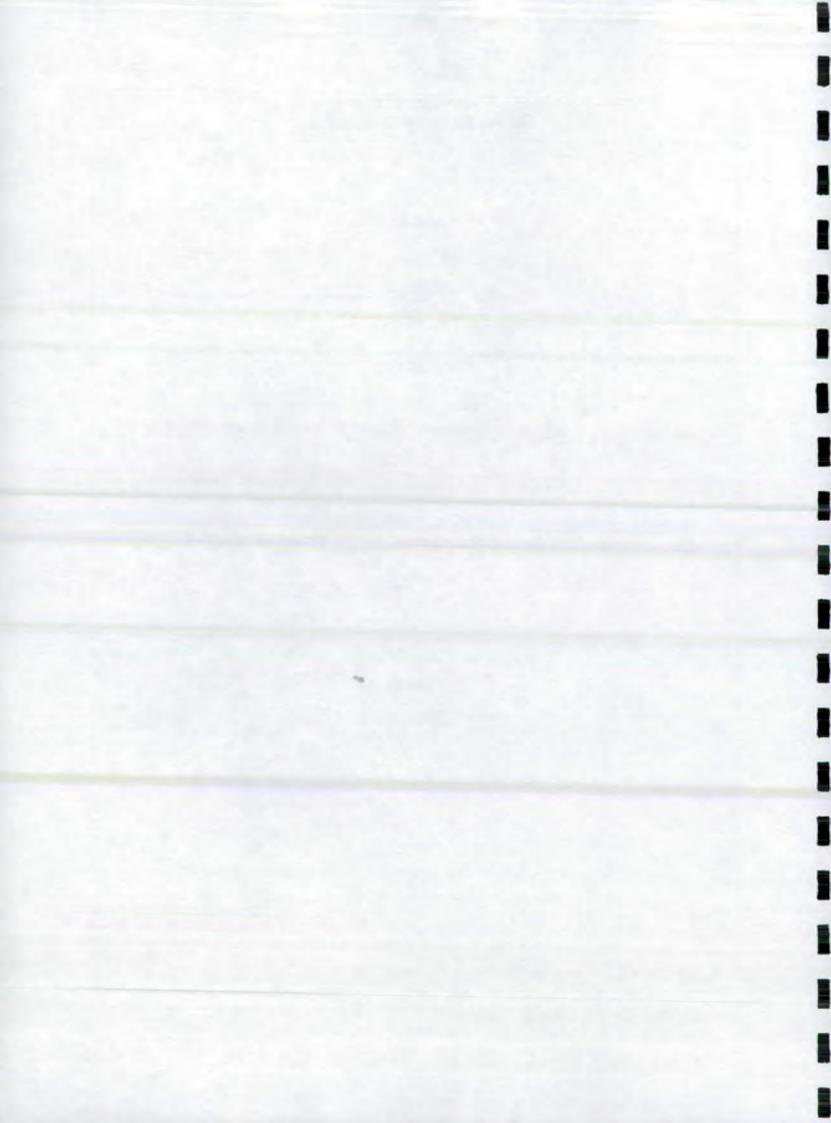
INFERRED STRETCH Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

9. REFERENCES

Reference


9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.

9.2 Water Act 1989 Section 117


9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Appendix 10.1

Avon Catchment River Quality Objectives

I

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mq/1 OBiochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/l C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/l N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/l Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/l P Silicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/l SO4 Sodium (total) as mg/l Na Potassium (total) as mg/l K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

APPENDIX 10.3

--

NWC RIVER QUALITY CLASSIFICATION SYSTEM

· · · ·

River Class		Quality criteria		Remarks	Curren	t potential uses
		Class limiting criteria (95 percenti	le)			
1A Good Quality	(iv)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water	(i) (ii)	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
	(v)	Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)				
1B Good Quality	(i) (ii)	DO greater than 60% saturation	(i)	Average BOD probably not		Water of less high quality
u uaiit j	(iii)	BOD not greater than 5 mg/1 Ammonia not greater than 0.9 mg/1	(ii)	greater than 2 mg/l Average ammonia probably not greater than 0.5 mg/l		than Class 1A but usable fo substantially the same purposes
	(iv)	Where water is abstracted for drinking water, it complies with		Visible evidence of pollution should be absent		hai haaca
	(v)	the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(iv)	Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication	t	
			(v)	Class 1A and Class 1B together are essentially the Class 1 of 1 River Pollution Survey (RPS)	the	
2 Fair Quality	(i) (ii)	DO greater than 40% saturation BOD not greater than 9 mg/l	(i)	Average BOD probably not greater than 5 mg/l	(i)	Waters suitable for potable supply after advanced
	(iii)	Where water is abstracted for drinking water it complies with	(ii) (iii)	•••	(ii)	treatment Supporting reasonably good
	(iv)	the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)		signs of pollution other than humic colouration and a little foaming below weirs	(iii)	coarse fisheries Moderate amenity value

			1. C. A.	÷.
Poor ality	(i) (ii (ii) Not likely to be anaerobic	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present. May be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up
4 Bad		Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing
tes	dec sta (b) The	ler extreme weather conditions (eg flood, d ay, rivers usually in Class 1, 2, and 3 ma ted levels for those Classes. When this o BOD determinations refer to 5 day carbona most instances the chemical classification	y have BODs and dissolved oxygen levels, ccurs the cause should be stated along w ceous BOD (ATU). Ammonia figures are ex	or ammonia content outside the ith analytical results. pressed as NH4. **

(c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
(d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Hember State.

Annonia Conversion Factors

(mg NH₄/1 to mg N/1)

Class	1A	0.4 mg	NBa/A	:	0.31	ng	N/1
Class	18	0.9 mg	NHa/1	:	0.70	ng	N/1
		0.5 mg	NBa/1	=	0.39	ng	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

Quality Criteria River

Class

- **1**A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l O Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
- **1**B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/1 0 Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 0 Total ammonia not greater than 1.56 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l O

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Determinand	Statistic
Dissolved oxygen	5 percentile
BOD (ATU) Total ammonia	95 percentile 95 percentile
Non-ionised ammonia Temperature	95 percentile 95 percentile
рн	5 percentile
Suspended solids	95 percentile arithmetic mean

1

...........

i

.....

4

.

1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

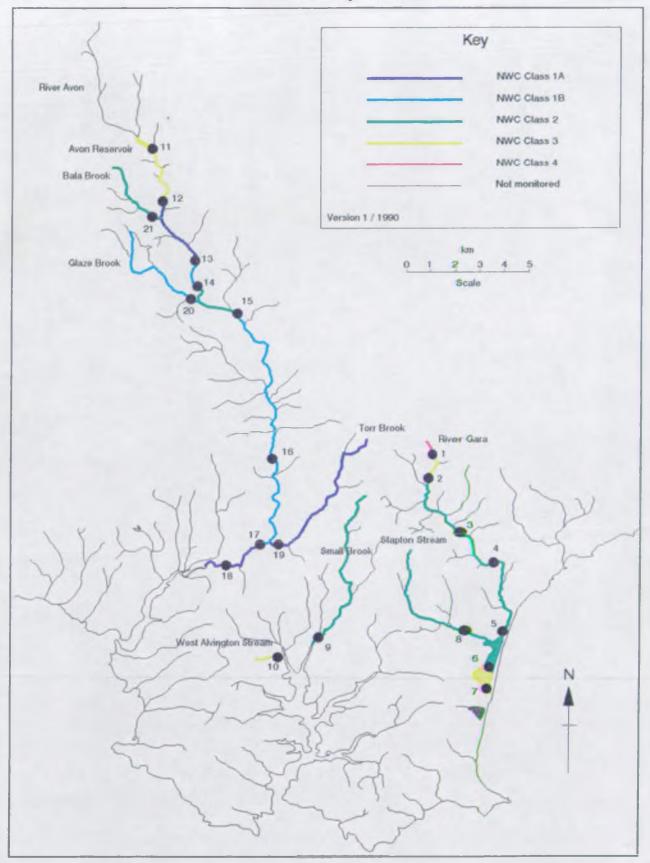
Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
0 - 10	95 percentile	<= 5 > 5
10 - 50	95 percentile	<pre>< = 22 > 22</pre>
50 - 100	95 percentile	< = 40 > 40
100 - 300	95 percentile	< = 112 > 112

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn									
		Class 1 Class 2 Class 3									
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>									

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT : GARA & AVON (08)


1990 Map	River	Reach upstream of	User	National	Reach	Distance	•	85	86	87	88	89	90
Position	•	i -	Reference		Length	from	Quality			•			INC
Number			Number	Reference	(km)	•	Objective	Class	Class	Class	Class	Class	Class
		İ	l	1 1	1	(km)	1	ſ		i I	ļ	<u> </u>	
		İ	I	I		1	1						
		i	1	I	l	1	1					ļ	ļ
		İ	I	I		l	l		l!			<u> </u>	<u> </u>
1	THE GARA	COLLATON	R08A001	SX 7967 5265		0.1	2	18	10	18	2	2	4
2	THE GARA	WOODFORD	•	SX 7986 5103	•	2.0	18	19	1B	18	11	1A	3
3	THE GARA	FORDER		SX 8110 4897		5.1	18	1	14	1.	2	2	2
4	THE GARA	HIGHER NORTH MILL	•	SX 8252 4765	•	7.5	18	18	1	1.	2	18	2
5	THE GARA	SLAPTON BRIDGE	R08A006	SX 8282 4435		11.6	18	3	3	3	3	3	2
6	THE GARA	SLAPTON LEY		SX 8230 4335	•	12.7	10	2	3	3	3	3	2
7	THE GARA	TORCROSS	R08A007	SX 8222 4207		14.0	18	2	3	3	3	3	1 3
	THE GARA	MEAN HIGH WATER (INFERRED STRETCH)	1		0.2	14.2	18	2	3	3	3	3	3
	l		I	l		<u> </u>	ļ					!	!!
8	SLAPTON STREAM	DEER BRIDGE	R08A012	SX 8131 4455		5.1	18					ļ	2
	SLAPTON STREAM	GARA (SLAPTON LEY) CONFL. (INF. STRETCH)	1		1.0	6.1	18					ļ	2
			I	<u> </u>								!	!!
9	SMALL BROOK	BONCOMBE	R08A013	SX 7503 4438		8.1	1B	18				!	2
ĺ	SMALL BROOK	NORMAL TIDAL LIMIT (INFERRED STRETCH)	ļ		0.3	8.4	18	18				!	2
l	l	_l	l	l		!						!	!
10	WEST ALVINGTON STREAM	TICKETWOOD	R08A014	SX 7342 4361	1.3	1.3	<u> </u>	1B				ļ	3
l	I		!	I								!	!
	AVON	INFLOW, AVON RES. (UNMONITORRED STRETCH)			5.5	5.5	1	1.	14	18			13
11	AVON	AVON RESERVOIR	•	SX 6780 6540		6.6	1 1	18	1	1.	1A 1A	1A 1A	3
12	AVON	SHIPLEY BRIDGE		SX 6810 6290		9.5	1 11	1.	1.	1			
	NON	LYDIA BRIDGE		SX 6956 6070		12.5	I TY	L L	1	1	1 1 1	1 14	1 1 1
14	AAON	A38 BRIDGE, SOUTH BRENT		ISX 6978 5925		14.3	1 1 A		18	18			1 18
	AVON	HORSEBROOK		SX 7126 5845		16.3	1 λ	1.		18	18 2		(2) (10)
-	AVON	GARA BRIDGE		ISX 7290 5347		22.9	16	L TY	2	2			1 10
-	AVON	LODDISWELL		SX 7272 4822		29.4		18	1	18	18 18	1	10 18
	AVON	HATCH	I ROSBOO2	SX 7145 4725		31.4 33.5	1A 1A	1A 1A	1A 1A	18 18	1B	1A 1A	
	AAON	NORMAL TIDAL LIMIT (INFERRED STRETCH)	!	!	2.1	33.5		TV		10	1 10	1 10	
			0001015	SX 7334 4832	6.5	6.5	19					!	
19	TORR BROOK	LODDISWELL	I KOOVOID	138 1334 PCCI AC]	0.4	6.9	1 19						
	TORR BROOK	AVON CONFLUENCE (INFERRED STRETCH)	1		U.4	1 0.7							
	GLAZE BROOK	HIGHER TURTLEY	B088009	SX 6979 5878	6.0	6.0	<u>IA</u>					i	18
	•	AVON CONFLUENCE (INFERRED STRETCH)	1 1000003		0.1	6.1	i ii					i	1 18
	GLAZE BROOK	I CORTOGACE (TRLEMED STRETCH)	1	• • • • • • • • • • • • • • • • • • •	V .L	1			i		i	i	i
- 21	BALA BROOK	ZEAL	R088011	SX 6792 6244	3.6	3.6		1.			ii	i	2
	IBALA BROOK	AVON CONFLUENCE (INFERRED STRETCH)	1		0.2	3.8		IA	i	i	i	i	1 1
		Inter con bedret (Interne areasen)	1	i		1	i	/	i	i	i	i	i

.

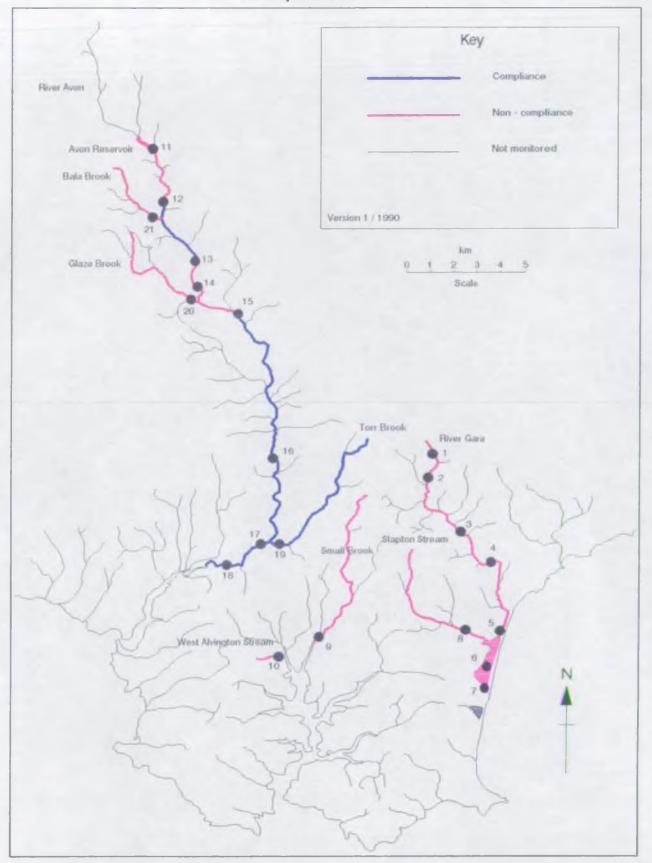
Appendix 10.5

Appendix 10.6

Avon Catchment Water Quality - 1990

NYTICHN, RIVERS AUBERTY - SOURI WEST REGION 1990 RIVER WREER GUNLITY CLASSIFIC/RIDH CMCLURED DETENDINGED SIDETSFICS USED FOR GUNLITY ASSESSMENT CRICHERT : GRA AND ANCH (08)

River	Reach upstress of	User	90	•		alaul	abad Dab		d Statis	tics us	ed for g	ytile	Accession	nt									
		Ref.	SHC	•		1				I								•				!	
	1	Nurber			LONGE		Upper				(%)		• •	•	Junc ia	•			olids		Capper		al Zinc
	1	1			: Stile	Class	95tile	C.ee	95 11 0		9 tile	Case	95110	Class	95kile		9 5%1 e	Clease	Man	Cues	95kile		s 95kile
				1				l				1											
		_[Ĺ	<u> </u>		<u>i </u>		Ĺ		<u>i</u>		Ĺ		<u>į </u>		<u> </u>		Ĺ		<u>i</u>			
THE GARA	COLLADOR	POSPOO1	-	X	6.3	1 18	7.4	AL I	17.4	3	39.3	1 1	49.3	1 3	6.597	1	0.020	<u> </u>	13.3	! -	-	-	-
THE CHEN.	NCODFORD	(FOENOO2		L IV	7.2	11	7.9	1 12	17.9	118	73.5	1 3	12.2	113	0.408	1	0.010	1	14.8	! -	-	! -	-
THE GARA	PORDER	FOSHOO3	•	11	7.3	11	8.0	<u> </u> 1	17.7	118	76.2	1 2	7.2	2	0.968	11	0.010	i n	14.4	1			
te gra	HUGHER NORTH MILL	(ROENOO)		IX	7.6	1 17	8.1	I IA	17.7	118	75.2	2	5.4	1 14	0.164	I IX	0.010	1	10.9	1X	11.7	1	118.9
THE GHRA	SLAPICH BUILDE	FO6A00 6		1	7.2	7	8.0	1 18	20.8	1 2	40.2	2	6.2	I IN	0.075	11	0.010	1	2.8	!			-
THE CHIA	SLAPICN LEY	ROGADLE	•	<u> </u> 1	7.0	1 77	8.7	1 17	16.5	1 2	51.0	1 2	7.9	11	0.190	1 17	0.010	1 18	16.3	1 14	14.0	I IA	97.0
THE GRAA	TORCROSS	FOEA007	13	, 1	7.6	3	9.4	אנן	20.5	3	37.5	2	7.8	109	0.590	3	0.022	1 18	15.1	14	10.0		35.5
SLAPICH STREAM	DEER BRIDDE	R08/012	2	A	7.2	1	6.0	AL	16.0	18	70.0	2	7.6	<u>אר </u>	0.058	<u>AL</u>	0.010		9.7	-		-	•
SPINIZ BROOK	BONCOME	1064013	2	٦A.	7.5	<u> </u>	8.2	1	19.8	2	57.2	2	8.9	14	0.138	A L	0.010	AL	17.2	-	10 1. 0	-	
MEST ADVINITION STREAM		R084014	3	AL	7.6	1.	8.1	AL	17.9	18	70.4	3	10.6	AL	0.208	1	0.010	3	30.2	-	2	-	
AJCN	AUN RESERVOIR	12068010	3	3	4.6	<u> </u>	6.2	AL	17.5	14	84.0	<u>1</u>	1.9	<u> 1</u>	0.090	1.	0.010	<u> </u>	3.7	<u>, y</u>	5.0	AL	15.0
LAUCIN	STOREY BODE	ROSE007	ij 3 ∣	j 3	4.7	1 18	6.4	11	17.0	11	68.0	1A	1.8	1A	0.120	1 IA	0.010	[1A	1.5	1 1	5.0	N	9.0
AVEN	TACHA BRIDGE	19059001	j IN	j 1a	6.2	j 1A	7.1	11	16.0	j 1A -	87.1	1 IA	1.9	1A	0.040	I IV	0.010	1 1	2.8	1 -	-	-	-
AVCN	AND BOILDE, SOUTH BRENT	ROSBOOS	j 1B	1 1 A	6.3	j JA	7.5	j JA	16.9	118	66.0	1 IA	2.3	į 1A.	0.108	j X	0.010	j 1 A	2.1	1 14	6.0	1A	14.9
AUCH	HERSEHRCCK	ROBBOO2	i 2	i 1a	6.8	j 1A	7.8	j la	16.2	12	48.0	j 1A	2.3	1 14	0.054	1 14	0.010	I I A	3.6	1 IA	5.0	IA	24.0
AUN	GARA BRIDGE	12052003	118	j 1A	6.9	ί Jλ	7.9	j 1a.	16.4	j 18	76.5	118	3.1	j 1A	0.087	1 1	0.010	j IX	4.6	AL	6.4	į IA	15.6
AUN	TODESNELL	19068004	•	Í 1A	7.3	i IA	7.8	גע ן	17.0	j 18	70.0	j IA	3.0	j 1A	0.070	j IA	0.010	j IA	4.4	i -	-	1 -	-
AVEN	HOCH	ROSECCE		•	7.2	IN.	7.8	JA.	17.0	ТĀ.	81.5	N I	3.0	1	0.125	j 1A	0.010	14	10.0	11	5.5	j 1A	22.0
TORR BROCK	I COURSNELL	 RO6A015	 	<u></u>	7.4	1	8.1	1.4	16.0	1.	87.0	1	2.1	1	0.110	1.	0.010	1	11.6	1.	5.0	11	9.0
GLAZE ERCOK	HUGHER TURNEY	I	18	ן גר ו	6.8	 	7.5	[_]A	17.0	 	83.0		2.9	18	0.510	1	0.010		2.2		5.0		9.0
			i	i	•	<u> </u>		<u> </u>		<u> </u>		i		<u>i</u>		<u>i </u>		<u> </u>		į		<u> </u>	
enla ercck	72AL	R068011	2	1	5.1	<u> </u> _]	7.1		16.0	I IA	87.0	1 14	1.5	1A	0.020	1A	0.010	I IX	2.7	2	8.0	I IA	13.0


.

Appendix 10.7

Appendix 10.8

Avon Catchment Compliance - 1990

Ï

NATIONAL RIVERS AND RETTY - SOUTH WEST NEEDEN 1990 RIVER WORK QUALITY CLASSIFICATION RUMER OF SAMPLES (N) AND RUMER OF SAMPLES DETERING QUALITY SUMMARD (P) ORCHERT : GRA & ARCH (08)

River	Peach upstream of	Uber Ref.	pH (Change	j prit	tçer 🗌	Temper	rature	00	(8)	BODO	REU)	Itetal /	America	Union.	Autoria	(S.S	lids	Total	Copper	Total	l Zinc
	İ	Susber	N		N	7	N	Ŧ	N	P	N	r	N	7	i m	2		r	N N		i m	7
	1				!		1		!		!		ļ		!		ł		1		!	
					1				1		 1						1		1		[]	
		ii			İ		<u>i</u>		<u>i</u>		i		<u>i</u>				<u>i</u>		<u>i</u>		Ĺ	
THE CREA	COLLADON	[ROSMO01]	24	-	24	-	24	-	24	1	24	3	24	4	1 23	-	24	5	0	-	0	-
THE GRA	MCCCHCHC	1064002	25	-	15	-	25	-	25	-	ם ו	2) 25	-	25	-	25	3	0	-	1 0	-
The Gra	FCHEER	[E004903]	25	-	5	-	25	-	1 25	-	1 25	3	25	2	25	-	1 2	3	l a	-	1 0	-
The Gran	HUGHER RORTH MOLL	[R06x004]	30	-	30	-	30	-	30	-	30	1	30	-	28	-	30	3	30	-	(30	-
THE GRAN	SLAPTON BRIDGE	ROBADOS	24	-	24	-	23	-	23	7	j 24	1	24	-	23	-	24	-	0		1 0	-
THE CHINA	SLAPTCH LLY	ROBN011	12	-	12	-	l II	-	l II	1	12	3	1 12		l II	-	1 12	2	12	-	12	-
THE CHAN	10RCR065	11062007	29	-	29	2	29	-	29	2	29	7	29	-	27	1	29	5	29	-	29	-
SLAPTON SUSEN		ROBACIL2	- 21	-	<u> </u>		19		19		<u> </u>		<u> </u> 1		. <u>1</u> 8-	-	<u>-</u> n	- 2	╎─┐─		[
			-		i –		Ĩ		i			-					ί -	-	i -		-	
Sout Book	BONIZIER	[FOEA01.3]	20	-	20	-	20	-	20	1	20	1	20	-	19		20	2				-
MEST ALFINITEN STREM		(1106A014)	20	-	20	_	20	-	20	2	20	1	20		19	-	20	4	10			-
Necal	ANON PERSONA	10082010	12	4	12	_	12	-	12	-	12	-	1 12	-	<u>'</u> <u>u</u>	-	1 12	-	ं प्र	-	1 12	
heas		3068007	19	2	19	-	19	-	19		19	-	19	-	14	-	(19	-	1 19	-	1 19	-`
heres	INTER BUILTE	ROBECO1	26	-	1 26	-	26	-	26	-	26	-	26	→	23	-	26	-	0	-	10	-
ARCH .	1,338 BRIDLE, SOUTH BRENE	(ROGEOGE)	20	-	20	_	20	-	20	1	20	-	20	-	j 18	-	j 20		20	-	j 20	-
LANCEN	HEREBROOK	R068002	32	-	32	-	31	-	1 31	2	32	-	1 32	-	j 26	-	32	1	12	-	į 12	- ·
JAKON .	GIAN SHOULD	[R06E003]	25	-	1 25	_	25	~	25	-	5	-	1 25		24	-	25	-	j Z	-	i z	-
, JANCHI	LOUISMELL.	[#00BB004]	20	-	j 20	-	20	-	20	-	20		1 20	-	1 19	-	j 20	-	j o	-	jo	-
HACH	HEACE	12068005	49	-	49	-	j 50	-	į 49	2	i #9	1	49	-	6	-	•	3	49		6	-
TOPR HECOK		ROBAGIS	-19-		10	<u> </u>	-13-		1 19		19		1 19		19	-	19		1 19		1	
l		ii			<u> </u>		<u></u>		<u></u>		<u> </u>	1	<u>i </u>		<u>i </u>	1	<u>i </u>					
GENEE BROOK	HUBER TURNEY	(ROBEDO 9)	19	-	19	-	1 19	-	19	-	19	-	19	1	15		119	-	1 19	-	1 19	
ISNA INCOK	2204	ROMMOLL	18	-	10	4 9 0	1.8	1	10	•	17	-	1.8	•	1 12	-	1.0	-	10	1	a i	-
					L		l				10-1	_							1		1	

.

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT : GARA & AVON (08)

River	(Reach upstream of	User	1	PERCENTAGE	EXCEEDENCE OF	P STATISTIC	FROM QUALIT	Y STANDARI				
	ł	Ref.		I								
		Number	pH Lower	pH Upper	Temperature 	DO (%)	BOD (ATU)	Total Ammonia	Un-ionised Ammonia	Suspended Solids	Total Copper	Total Zinc
												2.2
THE GARA	COLLATON	1R08A001		-	-¦	2	448	323	¦	-	-	-
THE GARA	WOODFORD	R08A002	i –	- 1	-	-	j 144 j	-	i -	i - 1		- 1
THE GARA	FORDER	R08A003		-		-	44	38		i –	-	-
	HIGHER NORTH MILL	R08A004		-	i –	-	i si	-	-	- 1	1.4.1	i –
THE GARA	SLAPTON BRIDGE	R08A006		-		33	23	-	i -	-1	-	-
THE GARA	•	R08A011		-	-	15	58	-	i –	-	-	-
THE GARA	SLAPTON LEY	R08A007		4	· · · · ·	38	1 55 1	-	5	-		-
THE GARA	TORCROSS	KUOKUU /										
SLAPTON STREAM	DEER BRIDGE	ROBA012	-				52		-	-	-	-
SMALL BROOK	BOWCOMBE	R08A013	-	-	100	5	77	-		-		
WEST ALVINGTON STREAM	TICKETWOOD	 [R08A014]				12	253		-	21	-	
	!				!							
AVON	AVON RESERVOIR	R08B010		-	-	-		-		-	Sec. 200	_
AVON	SHIPLEY BRIDGE	R08B007		-	-	-	-	-		-		. –
AVON	LYDIA BRIDGE	R08B001	•	-	-	-		-	-	-		-
AVON	A3B BRIDGE, SOUTH BRENT	R08B008		-	-	18	-	-	-	-		-
AVON	HORSEBROOK	R08B002		-	-	40	-	-	! -	-		
AVON	GARA BRIDGE	1R08B003		-		-	-	-		-	-	-
AVON	LODDISWELL	R08B004			10 m 2 m	_	-			-		10
avon	HATCH	R08B005			-		-	7				
TORR BROOK	LODDISWELL	R08A015		-		-	-		-	-	-	
					_			65			-	-
GLAZE BROOK	HIGHER TURTLEY	R08B009		-		-		60				
BALA BROOK	ZEAL	R088011	-	-	C÷ 1			-	-	-	60	-

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT : GARA & AVON (08)

* = WORK ALREADY IN HAND

	1	1	Reference
Number		1 }	Number
	1		Í
1	THE GARA	COLLATON	
2	THE GARA	WOODFORD	1 R08A002
3	THE GARA	FORDER	R08A003
4	THE GARA	HIGHER NORTH MILL	R08A004
5	THE GARA	SLAPTON BRIDGE	R08A006
6	THE GARA	SLAPTON LEY	R08A011
7	THE GARA	TORCROSS	R08A007
	SLAPTON STREAM	DEER BRIDGE	R08A012
9 -	SMALL BROOK	BOWCOMBE	R08A013
10	WEST ALVINGTON STREAM	TICKETWOOD	ROBA014
11	AVON	AVON RESERVOIR	R088010
12	AVON	SHIPLEY BRIDGE	R088007
14	AVON	A38 BRIDGE, SOUTH BRENT	R08B008
15	AVON	HORSEBROOK	R08B002
20	GLAZE BROOK	HIGHER TURTLEY	R088009
21	BALA BROOK	* ZEAL	R08B011

Reach	Possible causes of non-compliance	
Length	1	
(km.)	1	
	1	
	1 4	
0.1	FARMING ACTIVITIES, DROUGHT	
1.9	DROUGHT, SPATES	
3.1	FARMING ACTIVITIES, LAND RUN-OFF	
Z.4	DROUGHT, SPATES	
	DROUGHT, SPATES	
1.1	EUTROPHICATION, BLUE-GREEN ALGAE	
1.3	EUTROPHICATION, DROUGHT, SEWAGE TREATMENT WORKS, IMPOUNDMENT UP-STREAM	
5.1	FARMING ACTIVITIES	
8.1	FARMING ACTIVITIES, POOR SAMPLING POINTS, SEPTIC TANKS	
1.3	URBANISATION, POOR SAMPLING POINT	
- 1.1	MOORLAND ORIGINS, IMPOUNDMENT, CATCHMENT GEOLOGY	
2.9	MOORLAND ORIGINS, CATCHMENT GEOLOGY	
1.8	SEWAGE TREATMENT WORKS	
2.0	FARMING, UNKNOWN POINT SOURCE, SPATES	
6.0	SEPTIC TANK	
3.6	MOORLAND, WATER TREATMENT WORKS, CATCHMENT GEÖLÖGY	

•