ENVIRONMENTAL PROTECTION

River Water Quality

Classification 1990

NOVEMBER 1991 WQP/91/030 B L MILFORD

National Rivers Authority South West Region

GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

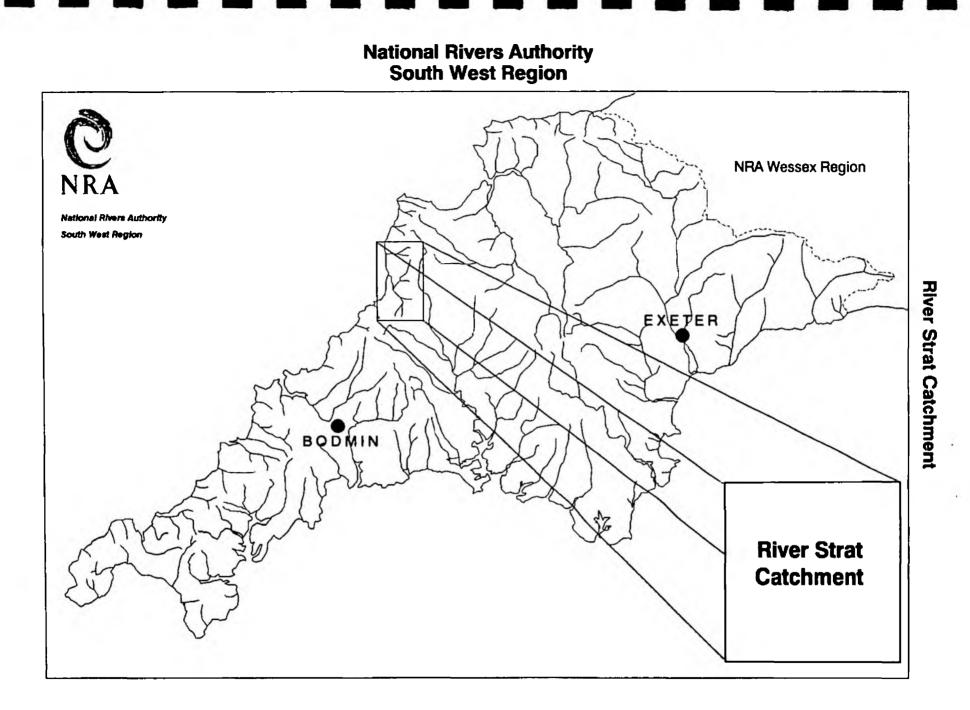
Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ


RIVER WATER QUALITY IN THE RIVER STRAT CATCHMENT

LIST OF CONTENTS

			Page No.
1	Introdu	iction	1
2	River S	Strat Catchment	1
3	Nationa	l Water Council's River Classification System	2
4	1990 Ri	iver Water Quality Survey	3
5	1990 Ri	ver Water Quality Classification	3
6	Non-con	mpliance with Quality Objectives	4
7	Causes	of Non-compliance	4
8	Glossa	cy of Terms	5
9	Referen	nces	5
10	Appendi	ices:	
	10.1	River Quality Objectives including Monitoring points	
	10.2	Basic Determinand Analytical Suite	
	10.3	National Water Council (NWC) River Classification System	
	10.4	NWC Criteria for Non-Metallic Determinands - Regional Variation	
	10.4.1	NWC Criteria for Metallic Determinands - Regional Variation	
	10.5	1990 River Water Quality Classification - tabular format	
	10.6	1990 River Water Quality Classification - map format	
	10.7	Calculated Determinand Statistics used for Quality Assessment	
	10.8	Compliant/Non-Compliant River Reaches	
	10.9	Number of Samples Results exceeding quality standards	
	10.10	Percentage Exceedance of Determinand Statistics from Quality Standard	
	10.11	Identification of Possible Causes of Non-Compliance with River Quality Objectives	

**

. . .

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Strat catchment.

2. RIVER STRAT CATCHMENT

The River Strat flows over a distance of 12.7 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at four locations on the main river; three of these sites were sampled at approximately monthly intervals. The site at Bush was sampled on fifteen occasions during 1990 because of no recent water quality data.

The Coombe Valley Stream and the Marsland Stream flow over a distance of 7.3 km and 5.5 km respectively from their source to the tidal limits, (Appendix 10.1) and were both monitored at one site at approximately monthly intervals.

Throughout the Strat catchment one secondary tributary, one tertiary tributary and one quarternary tributary of the River Strat were monitored. In addition Bude Canal, which flows over distance of 2.8 km, was monitored at two sites at approximately monthly intervals.

2.1 SECONDARY TRIBUTARY

The River Neet flows over a distance of 10.5 km from its source to the confluence with the River Strat, (Appendix 10.1) and was monitored at two locations at approximately monthly intervals. Monitoring points are located in the lower reaches.

2.2 TERTLARY TRIBUTARY

The Jacob Stream flows over a distance of 8.9 km from its source to the confluence with the River Neet, (Appendix 10.1) and was monitored at one location at approximately monthly intervals. Monitoring points are located in the lower reaches.

2.3 QUARTERNARY TRIBUTARY

The South Week Stream flows over a distance of 6.2 km from its source to the confluence with Jacob Stream, (Appendix 10.1) and was monitored at one location at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Strat catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

<u>Class</u>	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5. The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

I

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

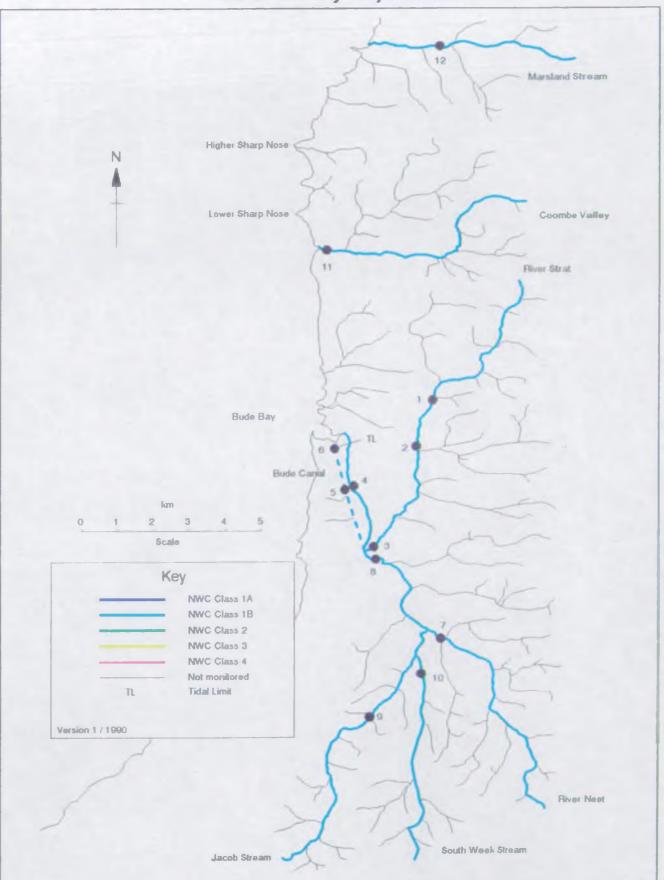
For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

8. GLOSSARY OF TERMS

I

RIVER REACH	A segment of water, upstream from sampling point to the next sampling point.
RIVER LENGTH	River distance in kilometres.
RIVER QUALITY OBJECTIVE	That NWC class, which protects the most sensitive use of the water.
95 percentiles	Maximum limits, which must be met for at least 95% of the time.
5 percentiles	Minimum limits, which must be met for at least 95% of the time.
	A standard test measuring the microbial uptake of oxygen - an estimate of organic pollution.
рн	A scale of acid to alkali.
UN-IONISED AMMONIA	Fraction of ammonia poisonous to fish, NH ³ .
SUSPENDED SOLIDS	Solids removed by filtration or centrifuge under specific conditions.
USER REFERENCE NUMBER	Reference number allocated to a sampling point.
INFERRED STRETCH	Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

+


÷.

9. REFERENCES

Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Strat & Neet Catchments River Quality Objectives

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/l N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/l Total hardness as mg/l CaCO3 Chloride as mq/l Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/l SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/l Na Potassium (total) as mg/l K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

NWC RIVER QUALITY CLASSIFICATION SYSTEM **River Class** Quality criteria Remarks Current potential uses Class limiting criteria (95 percentile) 1A Good (i)Dissolved oxygen saturation (i)Average BOD probably not (i)Water of high quality Quality greater than 80% greater than 1.5 mg/l suitable for potable supply (ii) Biochemical oxygen demand (ii)Visible evidence of pollution abstractions and for all not greater than 3 mg/1 should be absent abstractions (iii) Annonia not greater than Game or other high class (ii) 0.4 mg/3fisheries (iv) -Where the water is abstracted (iii) High amenity value for drinking water, it complies with requirements for A2* water (v) Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available) 1B Good $\{i\}$ DO greater than 60% saturation (i)Average BOD probably not

(ii)

(iv) –

(Y)

- Quality (ii) BOD not greater than 5 mg/l
 - (iii) Ammonia not greater than 0.9 mg/l (iv) Where water is abstracted for
 - drinking water, it complies with the requirements for A2* water
 - (v) Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)

- 2 Fair (i) DO greater than 40% saturation Quality (ii) BOD not greater than 9 mg/l
 - BOD not greater than 9 mg/l
 (iii) Where water is abstracted for drinking water it complies with the requirements for A3* water
 - (iv) Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)

يدعده بالعمدية فبراجا المراجع

 Average BOD probably not greater than 5 mg/l

greater than 2 mg/1

greater than 0.5 mg/1

(iii) Visible evidence of pollution

should be absent

eutrophication

Average annonia probably not

Waters of high quality which

cannot be placed in Class 1A

because of the high proportion

Class 1A and Class 1B together are essentially the Class 1 of the River Pollution Survey (RPS)

of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or

- (ii) Similar to Class 2 of RPS
- (iii) Water not showing physical
 - signs of pollution other than humic colouration and a little (foaming below weirs

Water of less high quality than Class 1A but usable for substantially the same purposes

APPENDIX 10

- (i) Waters suitable for potable supply after advanced treatment
- (ii) Supporting reasonably good coarse fisheries
- (iii) Moderate amenity value

ras humic colourat foaming below

Poor ality	(i) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/1.	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present.
		This may not apply if there is a high degree of re-aeration		May be used for low grade industrial abstraction purposes. Considerable potential for further use
		· ·		if cleaned up
4 Bad Guality		Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where
				the objective is simply to prevent nuisance developing
_				
tes (a	decay,	, rivers usually in Class 1, 2, and 3 may	ought, freeze-up), or when dominated by have BODs and dissolved oxygen levels,	or ammonia content outside the

stated levels for those Classes. When this occurs the cause should be stated along with analytical results.

(b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
 (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

Annonia Conversion Factors

 $(mg NH_1/1 \text{ to } mg N/1)$

Class	18	0,4	mg	$NH_4/1$	Ξ	0.31	ng	N/1
Class	18	0.9	ng	NH+/1	:	0.70	ng	N/1
		0.5	ng	NH4/1	Ξ	0.39	ng	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

- 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l 0Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/1 0 Total ammonia not greater than 0.70 mg/1 N Non-ionised ammonia not greater than 0.021 mg/l NTemperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/l 0Total ammonia not greater than 1.56 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 28 C . pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/1 O
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/1 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Dissolved oxygen	5 percentile
BOD (ATU)	95 percentile
Total ammonia	95 percentile
Non-ionised ammonia	95 percentile
Temperature	95 percentile
pH	5 percentile
-	95 percentile
Suspended solids	arithmetic mea

Determinand

centile centile

centile etic mean

Statistic

NWC RIVER CLASSIFICATION SYSTEM

I

ł

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

.

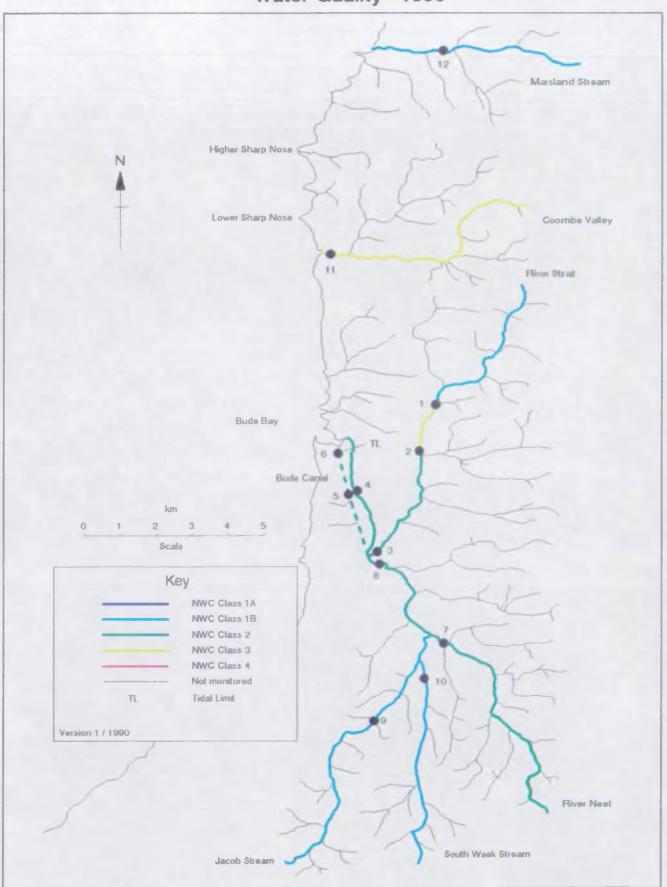
SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class l Class 2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 5 > 5 < = 22 > 22 < = 40 > 40 < = 112 > 112</pre>

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

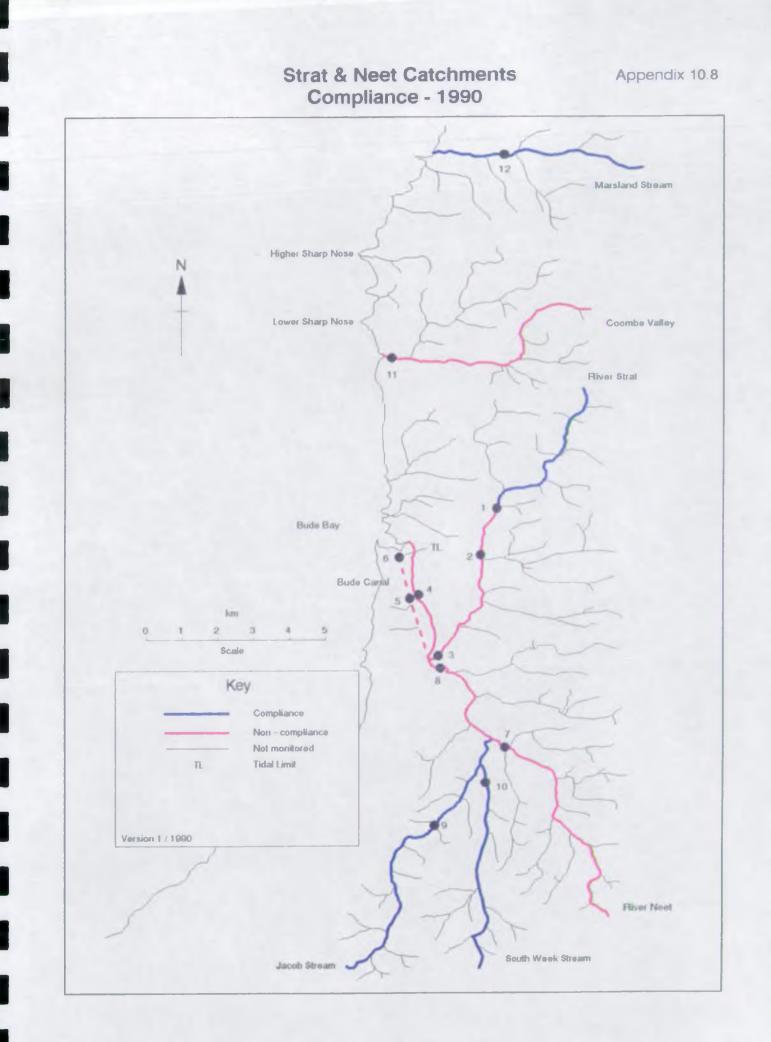
TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn									
		Class 1 Class 2 Class 3									
0 - 10	95 percentile	<pre>< = 30 < = 300 > 300</pre>									
10 - 50 50 - 100	95 percentile 95 percentile	<pre>< = 200 < = 700 > 700 < = 300 < = 1000 > 1000</pre>									
100 - 300	95 percentile	<pre>< = 500 < = 2000 > 2000</pre>									


NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: STRAT (30)

1990 Map	River	Reach upstream of	User	National		Distance		85	86	87	88	89	90
Position	1		Reference	Grid	Length	from	Quality	INC	NWC	NWC	NWC	NHC	
Number	1		Number 	Reference	(kuna)	source (km)	Objective 	Class 	Class 	Class 	Class 	Class	Class
1	1					·		1	 	 	1	1	1
	184	i		•		i I		i I	l I	ĺ	1	Í	Í (
1	STRAT	BUSH	R27A015	SS 2316 0768	4.8	4.8	18	2	18	3	3	3	1B
2	STRAT	STRATTON	R27A001	SS 2296 0632	1.5	6.3	18	2	19	3	3	13	j 3
3	STRAT	HELE BRIDGE	R27A002	SS 2157 0370	3.6	9.9	1B	2	2	2	2	2	2
	STRAT	RODDS BRIDGE	R27A003	SS 2110 0481	1.3	11.2	1B	2	3	j 4	j 4 –	j 4	j 2 '
	STRAT	NORMAL TIDAL LIMIT (INFERRED STRETCH)	1		1.5	12.7	1.8	2	3	4	4	4	2
<u> </u>	BUDE CANAL	RODDS BRIDGE	R27A009	SS 2110 0481	1.0	1.0	18	2	2	2	18	3	2
6	BUDE CANAL	FALCON BRIDGE	R27A010	SS 2071 0615	1.4	2.4	18	2	2	3	3	3	2
	BUDE CANAL	NORMAL TIDAL LIMIT (INFERRED STRETCH)			0.4	2.8	18	2	2	3	3	3	2
	NEET	LANGFORD BRIDGE		SS 2353 0095		6.3	18	2	2	2	2	2	2
8	NEET	HELE BRIDGE	R27A008	SS 2155 0335		10.1	18	2	3	3	3	3	2
	NEET	STRAT CONFLUENCE (INFERRED STRETCH)	1		0.4	10.5	18	2	3	3	3	3	2
	JACOB STREAM	NENMILL BRIDGE	R27A006	SX 2158 9882	5.6	5.6	18	18	18	18	19	18	1B
	JACOB STREAM	NEET CONFLUENCE (INFERRED STRETCH)			3,3	8.9	1B	19	18	18	1B 	18	1B
10	SOUTH WEEK STREAM	KITSHAN BRIDGE	R27A005	SS 2312 0022	5.6	5.6		2	18	18	18	18	18
	SOUTH WEEK STREAM	JACOB STREAM CONFL. (INFERRED STRETCH)		ļ	0.6	6.2	1B	2	18	18	1B	19	18
	COOMBE VALLEY STREAM	DUCKPOOL COTTAGE	R27A011	SS 2035 1170		7.0	1B	<u> </u>	- <u>1</u> B			3	3
	COOMBE VALLEY STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)		ļ	0.3	7.3	1B (1B	1B			3	3
	MARSLAND STREAM	GOOSEHAM MILL	R27A016	SS 2364 1716	3.5	3.5	18	18	—-¦		j j		1B
I	MARSLAND STREAM	NORMAL TIDAL LINIT (INFERRED STRETCH)			2.0	5.5	18	1B		1	1	1 1	18

Appendix 10.5


Strat & Neet Catchments Water Quality - 1990

-

NUTLINAL RIVERS ALTHORITY - SOLIH WET REGION 1990 RIVER WHER QUALITY CLASSIFICATION CALCULATED DETERMINAND STRTISTICS USED FOR QUALITY ASSESSMENT CRICHENT: STRAT (30)

River	Reach upstream of	User	90	1	a	alculate	ed Dete	nadinan	d Statis	tics us	ed for Q	mulity	Assesses	nt.									
!	l.		NHC	I	1		1	1		I		1		1		1				1		1	
		Nutber	Class	• •		្រុម បុក្ក			erature	•	(\$)	•	(2007)	Total	Amonia	Union.	. Ameria	(S.S	olids	Total	Opper	Tota	al Zinc
				Class Shi	ין מנ	Class 95	Skile	Class	95kile		5 Stile	(Class	95kile	(Class	s 95kile	Class	s 95kila	Class	s Moon	Class	95kile		s 95%Lle
										ļ		1				1.1		1		1		1	
1														1				ļ		1		۱. J	
SIRAT	BUSH	R27A015	1B	1A 7.	3	1A I	8.5	18	18.9	18	85.1	18	4.2	1 1	0.253	1	0.010	1	6.8	1 18	17.0	I IA	10.0
SING	SIRVITICN	R27A001	3	<u>1</u> λ 7.	3	18	8.6	2	21.6	118	77.9	1 3	9.4	j 18	0.650	1	0.010	j 3	29.9	IA	9.0	1 14	24.0
SURAT	HELE HRIDGE	R272002	2	1A 7.	2	1A	8.3	1A	20.7	108	74.1	j 2	7.1	j 2	1.162	j 1A	0.010	j IN	18.5	j IA	6.0	j 1a	26.0
SURAL	RODE BRIDE	R2724003	2	JA 7.	4 j	1A.	8.2	2	24.4	2	44.4	2	6.5	2	0.799	1	0.010	11	16.3	I IV	14.0	Į IA	24.0
BUDE CRIMAL	RCEDS ERIDOR	JEZZ2009	2	<u>الم 7</u> .	2	1A	7.9	2	22.5	2	59.7	18	3.7	2	1.039	AL	0.010	<u> </u>	9.6	1	6.9	1	16.0
BUCE CANNAL	FALCIN ERIDE	[R27A010]	2	1 X 7.	2	IA	8.B	2	24.6	13	60.5	2	5.2	118	0.315	Į 1A	0.010	j 1A	18.0	AL	9.4	Į Ъ	13.0
NEEP	LANGROED BRIDGE	1222007	2	1A 6.	9 	1A	8.2	18	18.6	2	53.1	18	4.8	118	0.594	1	0.010	1	9.0	2	112.4	1	37.9
NET	HELE HRIDCE	RZ7A008	2	1א 7.	1	1A	8.9	2	23.8	118	67.3	118	4.6	118	0.558	j 1A	0.010	ц ту	9.8	11	6.9	, IV	13.8
37008 503827M	NEWILL BRIDE	R27A005	18	1A 6.	<u>-</u> -	la	7.7	1A.	17.5	118	74.1	 1B	3.3	<u>אר</u>	0.196	1	0.010	1	7.8	1	9.0	1	11.0
SCULH WEEK STINERM	KITSHPM BRIDGE	R27005	18	1A 6.	9	1A.	7.9	1A	20.5	118	67.9	118	3.4	AL	0.251	14	0.010	18	9.6	<u> </u>	11.0	1	14.0
COOMINE VALLEY STREAM	DUCKROL CUTINGE	RZ70011	3	1A 7.	3	3	9.5	2	22.7	18	86.2	18	4.8	138	0.520	1.	0.016	18	13.3	1	8.4	1	13.0
MARSLAND STREAM	COSEIRM MILL	R274016	18	2A 7.	2	1A	8.0	18	16.0	1A	85.0	18	4.4	11	0.060	1	0.010	1	5.2	1	3.0	4	10.0

NATIONAL RIVERS ADDERITY — SOUTH WEST RELIGN 1990 RIVER WHER QUALITY CLASSIFICATION NUMER OF SAMPLES (N) AND NUMER OF SAMPLES EXCEPTING QUALITY SUMUMO (?) CRICHMENT: SURAT (30)

River	Reach upstream of	User	tH r	Mer	pH U	thet	Temper	ature	00	(\$)	BOD (ATU)	Total A	ecnia	Union.	Amania	S.90	lids	Total	Crifber_	Total	. Zirx
		Ref. Number	N	r	. Ri	F	N	P	19	F	 N	P	N	r	 N	r	N	F	N	F	N	P
51590		[[R27A015]	21		21		21		 21	-	21		1 21	-	21		- 21		16	-	16	<u> </u>
STRAT	STRUTCH	R27A001	26	-	25	-	26	1	25	-	26	2	j 26	-	25	- 1	26	4	19	- (19	-
SURAT	HELE BRIDE	F2724002	26	-	26	-	26	-	25	-	26	1	j 26	1	26	- 1	26	3	j 20	- 1	20	-
SIRAT	ROLDS BRIDGE	R27A003	26	-	26	-	25	2	25	3	26	2	26	1	26	-	26	3	19	-	19	-
BLEE CNINL	RCLDS HRIDGE	R272009	26	-	26	-	26	2	25	1	25	_	25	1	26		26	_	20	-	20	-
BLIDE CRAPIL	PALCON HRIDGE	RZ7A010	29	-	29	1	29	5	29	1	29	2	29	-	29	-	29	6	23	-	23	-
(Dat)	LANGRORD BRIDDE		26	-	26	_	25	-	26	2	26	1	25	1	26	-	26	1	20	1	20	-
TCC	HELE HRIDGE	[R27A008]	26	-	25	1	26	2	26	-	26	-	26	-	26	-	26	2	20	-	20	-
JACOB STREAM	NEWILL BRIDE	R272A006	26	-	26	-	28	-	25	-	26	-	25	-	26	-	26	1	20	-	20	-
SCLITH WEEK STREAM	KUSHWA BRIDGE	2272005	26	-	26	-	25	-	26	-	25	-	26	-	25	-	26	2	19	-	19	-
COUME VALLEY STREPH	DUCKPOIL COTTAGE	R27A011	27		27	2	27	4	27	-	27	1	27	-	26		21	2	23	-	23	-
MARSLAND SERVICE	COOSEERIN MILL	R272016	21	-	21	-	20	-	19		2	_	21	÷	18	-	21	1	10	-	10.	-

NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: STRAT (30)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD)			
ł	1	Ref.		1					1	1		1
Ì	1	Rumber	pH Lower	pH Upper	Temperature	DO (%)	BOD (ATU)	Total	Un-ionised	Suspended	Total	Total
		!		1	ļ į		ļ į	Ammonia	Amponia	Solids	Copper	Zinc
										-	[
STRAT	BUSH	R27A015			 		-	-	¦	-		-
STRAT	STRATTON	R27A001			i – i	-	88	-	i -	20	-	i -
STRAT	HELE BRIDGE	R27A002		10 H OI	i – i	-	j 43 j	66	i -		-	i -
STRAT	RODDS BRIDGE	R27A003		-	13	26	29	14	-	-	-	-
BUDE CARAL	RODDS BRIDGE	R27A009	-	nen.	<u> </u>			48				
BUDE CANAL	PALCON BRIDGE	R27A010	1	10 - 0	14	-	3	-		-	-	19 C
NEET	LANGFORD BRIDGE	R27A007	-		¦	12			¦	-	181	i
NEET	HELE BRIDGE	R27A008	-	-	11	-	-	-	-	-	-	
JACOB STREAM	NEWMILL BRIDGE	R27A006	÷	-	-	-	-	-	-		-	
SOUTH WEEK STREAM	KITSHAM BRIDGE	R27A005		-				-			_	-
COOMBE VALLEY STREAM	DUCKPOOL COTTAGE	R27A011	- -	6	6	-	्स्	1.0			-	-
MARSLAND STREAM	GOOSEHAM MILL	R27A016	-	-	-		THE SECTION	-			-	

NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH ROO CATCHMENT: STRAT (30)

1990 Map River		Reach upstream of	User	Reach	Possible causes of non-compliance
Position	1		Reference	Length	1
Number	1		Number	(km)	i i
1			1 1		I I
!!!			! !		
2	STRAT	STRATTON	827A001	1.5	LAND RUN-OFF, DROUGHT, URBANISATION, FARMING ACTIVITIES
3	STRAT	HELE BRIDGE	R27A002	3.6	LAND RUN-OFF, FARMING ACTIVITIES, CATCHMENT GEOLOGY
4	STRAT	RODDS BRIDGE	R27A003	1.3	LAND RUN-OPF, UP-STREAM ABSTRACTIONS
5	BUDE CANAL	RODDS BRIDGE	R27A009	1.0	POLLUTION (ORE OFF), ABSTRACTION, EUTROPHICATION, DROUGHT
6	BUDE CANAL	FALCON BRIDGE	R27A010		EUTROPHICATION, CANALISATION, URBANISATION, DROUGHT
	NEET	LANGFORD BRIDGE	R27A007	6.3	DROUGHT, CATCHMENT GEOLOGY
•	NEET	HELE BRIDGE	R27A008	_	DROUGHT
	COONDE VALLEY STREAM	DUCKPOOL COTTAGE	R27A011	7.0	
				7.0	