

Environmental Protection Report

River Teign Catchment River Water Quality Classification 1991

> April 1992 WQP/92/008 Author: B L Milford Water Quality Planner

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

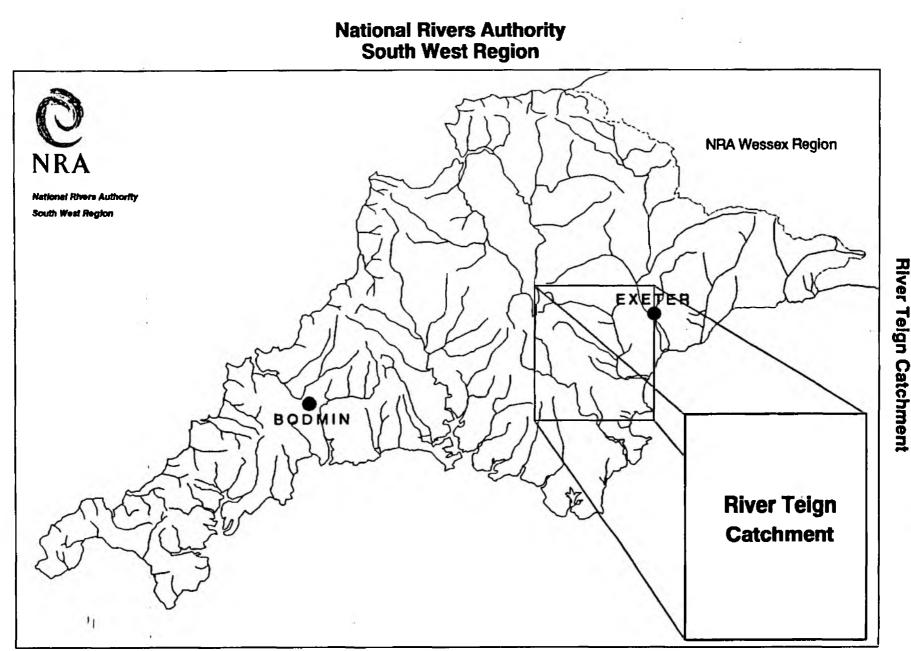
R Broome - Co-ordinator and Editor Freshwater Planning - Production of Maps C McCarthy - Administration and report compilation A Gurney - Statistical Schedule production

Thanks are extended to A. Burghes of Moonsoft, Exeter for computer support.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Officer, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ



RIVER WATER QUALITY IN THE RIVER TELCH CATCHMENT

١

LIST OF CONTENTS

Page No. 1 1 Introduction 2 River Teign Catchment 1 3 National Water Council's River Classification System 3 4 1991 River Water Quality Classification 3 5 Non-compliance with Quality Objectives 4 5 6 Glossary of Terms 5 7 References 8 Appendices: River Quality Objectives including Monitoring points 8.1 - map format Basic Determinand Analytical Suite 8.2 National Water Council (NWC) River Classification System 8.3 NWC Criteria for Non-Metallic Determinands - Regional 8.4 Variation NWC Criteria for Metallic Determinands - Regional 8.4.1 Variation 1991 River Water Quality Classification - tabular 8.5 format 1991 River Water Quality Classification - map format 8.6 Calculated Determinand Statistics used for Quality 8.7 Assessment - tabular format Compliant/Non-Compliant River Reaches - map format 8.8 Number of Samples Results exceeding quality standards 8.9 - tabular format 8.10 Percentage Exceedance of Determinand Statistics from Quality Standard - tabular format

÷.,

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirty-four catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a pre-determined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (7.1).

This report presents the river water quality classification for 1991 for monitored river reaches in the River Teign catchment.

2. RIVER TEIGN CATCHMENT

The River Teign flows over a distance of 50.8 km from its source to the tidal limit, (Appendix 8.1). Water quality was monitored at nine locations on the main river; eight sites were sampled at approximately monthly intervals and the site at Preston, which is a National Water Quality monitoring site, was sampled fortnightly.

The Blatchford Stream flows over a distance of 4.3 km from its source to the tidal limit, (Appendix 8.1) and was monitored at two locations at approximately monthly intervals.

The River Lemon flows over a distance of 15.3 km from its source to the tidal limit, (Appendix 8.1) and was monitored at three locations at approximately monthly intervals.

The Aller Brook flows over a distance of 7.9 km from its source to the tidal limit, (Appendix 8.1) and was monitored at four locations at approximately monthly intervals.

Throughout the Teign catchment twelve secondary tributaries and four tertiary tributaries of the River Teign were monitored. In addition Fernworthy and Trenchford Reservoirs were monitored at one location at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

The South Teign River, including Fernworthy Reservoir, flows over a distance of 6.3 km from its source to the confluence with the River Teign, (Appendix 8.1). Both the South Teign River and Fernworthy Reservoir were monitored at one location each at approximately monthly intervals. Fingle Brook (7 km), Sowton Brook (6.4 km), Bramble Brook (6.5 km), Reedy Brook (5.2 km), Scotley Brook (5.3 km), Kate Brook (3.8 km) and Liverton Brook (9.1 km) were all monitored at approximately monthly intervals at one location between their source and confluence with the River Teign, (Appendix 8.1).

Rookery Brook (4.9 km) and Ugbrooke Stream (8.4 km) were both monitored at approximately monthly intervals at two locations between their source and confluence with the River Teign, (Appendix 8.1).

Beadon Brook including Trenchford Reservoir, flows over a distance of 8.3 km from its source to the confluence with the River Teign, (Appendix 8.1) and was monitored at three locations at approximately monthly intervals.

The River Bovey flows over a distance of 26.7 km from its source to the confluence with the River Teign, (Appendix 8.1) and was monitored at four locations at approximately monthly intervals.

2.2 TERTIARY TRIBUTARIES

Blackaton Brook flows over a distance of 9 km from its source to the confluence with the North Teign River, (Appendix 8.1) and was monitored at one site at approximately monthly intervals.

Becka Brook flows over a distance of 6.3 km from its source to the confluence with the River Bovey, (Appendix 8.1) and was sampled at one location at approximately monthly intervals.

Wray Brook flows over a distance of 10.6 km from its source to the confluence with the River Bovey, (Appendix 8.1) and was sampled at two locations at approximately monthly intervals.

Sandygate Stream flows over a distance of 7.6 km from its source to the confluence with the Ugbrooke Stream, (Appendix 8.1) and was monitored at one location at approximately monthly intervals.

Kennick and Tottiford Reservoirs were both monitored at one location at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 8.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Resources Act Register, (7.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 River Quality Objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Teign catchment are identified in Appendix 8.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 8.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

<u>Class</u>	Description
1a	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 8.4 and 8.4.1.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 8.3) recommended for use by the NWC system.

4. 1991 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1989, 1990 and 1991 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 8.5.

The quality class for 1991 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1990) also based on three years combined data, for each river reach in Appendix 8.5.

The river water classification system used to classify each river length is identical to the system used both in 1985 and 1990 for the Department of the Environment's Quinquennial River Quality Surveys. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1991 are indicated in Appendices 8.4 and 8.4.1.

The river quality classes for 1991 of monitored river reaches in the catchment are shown in map form in Appendix 8.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 8.7.

5. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 8.8.

Appendix 8.9 indicates the number of samples analysed for each determinand over the period 1989 to 1991 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with the relevant quality standard (represented as a percentage), is indicated in Appendix 8.10.

6.

RIVER REACH

RIVER LENGTH

RIVER QUALITY OBJECTIVE

95 percentiles

5 percentiles

BIOLOGICAL OXYGEN DEMAND (5 day carbonaceous ATU)

pН

UN-IONISED AMMONIA

SUSPENDED SOLIDS

USER REFERENCE NUMBER

INFERRED STRETCH

A segment of water, upstream from sampling point to the next sampling point.

River distance in kilometres.

That NWC class, which protects the most sensitive use of the water.

Maximum limits, which must be met for at least 95% of the time.

Minimum limits, which must be met for at least 95% of the time.

A standard test measuring the microbial uptake of oxygen - an estimate of organic pollution.

A scale of acid to alkali.

Fraction of ammonia poisonous to fish, NH³.

Solids removed by filtration or centrifuge under specific conditions.

Reference number allocated to a sampling point.

Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

7. REFERENCES

Reference

- 7.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 7.2 Water Resources Act 1991 Section 190.
- 7.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

5

Teign Catchment River Quality Objectives Scotley Brook Reedy Brook Sowton Brook Fingle Brook Blackaton Brook 45 43, 46 42 Wray Brook Rookery Brook -41 40 Bramble Brook North Teign 36 30 34 South Teign Beadon Brock 37 8 33 æ River Bovey Kate Brook kom 29 0 1 2 4 5 3 Ugbrooke Stream Becka Brook Scale Liverton Brook Key Sandygate Stream 10. 16 NWC Class 1A 23 Hiver Teign 10 Blatchford St NWC Class 1B 10. River Lemon 19 NWC Class 2 20 NWC Class 3 NWC Class 4 15 Aller Brook Not monitored 14 Version 1 / 1991 NRA SOUTH WEST 12 ۰.

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 0Biochemical oxygen demand (5 day total ATU) as mg/1 0 Total organic carbon as mg/l C Nitrogen ammoniacal as mg/1 N Ammonia un-ionised as mg/1 NNitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/1 Total hardness as mg/l CaCO3 Chloride as mq/1 Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/l Na Potassium (total) as mg/1 K Magnesium (total) as mg/1 Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

		NAC B.	IVER QUALITY	CLASSIFICATION SYSTEM	•	
River Class		Quality criteria		Remarks	Curren	nt potential uses
		Class limiting criteria (95 perce	ntile)			
1A Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	{i) {ii}	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
18 Good Quality	(i) (ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/1 Ammonia not greater than 0.9 mg/1 Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/l Average ammonia probably not greater than 0.5 mg/l Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of t River Pollution Survey (RPS)		Water of less high quality than Class 1A but usable for substantially the same purposes
2 Fair Quality	(i) (ii) (iii) (iv)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical signs of pollution other than humic colouration and a little foaming below weirs	(i) (ii) (iii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries Moderate amenity value

APPENDIX

.

 (i) DD greater than 10% saturation
(ii) Not likely to be anaerobic
(iii) BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration

3 Poor

Quality

Quality

Similar to Class 3 of RPS

Similar to Class 4 of RPS

Waters which are polluted to an extent that fish are absent only sporadically present. Nay be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up

Waters which are grossly polluted and are likely to cause nuisance

Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times

DO greater than 10% saturation

Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing

Notes (a) Under extreme weather conditions (eg flood, drought, freeze-up), or when dominated by plant growth, or by aquatic plant decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results. (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **

(c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
(d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

Ammonia Conversion Factors

(mg $NH_{\ell}/1$ to mg N/1)

Class 1A 0.4 mg NH4/l = 0.31 mg N/l Class 1B 0.9 mg NH4/l = 0.70 mg N/l 0.5 mg NH4/l = 0.39 mg N/l

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria Class

1A

Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/1 O Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1

1B

Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/1 O Total ammonia not greater than 0.70 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1

- 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 O Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
- 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l O

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH

Determinand

Suspended solids

5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile arithmetic mean

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
0 - 10	95 percentile	<= 5 > 5
10 - 50	95 percentile	<pre>< = 22 > 22</pre>
50 - 100	95 percentile	< = 40 > 40
100 - 300	95 percentile	< = 112 > 112

Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

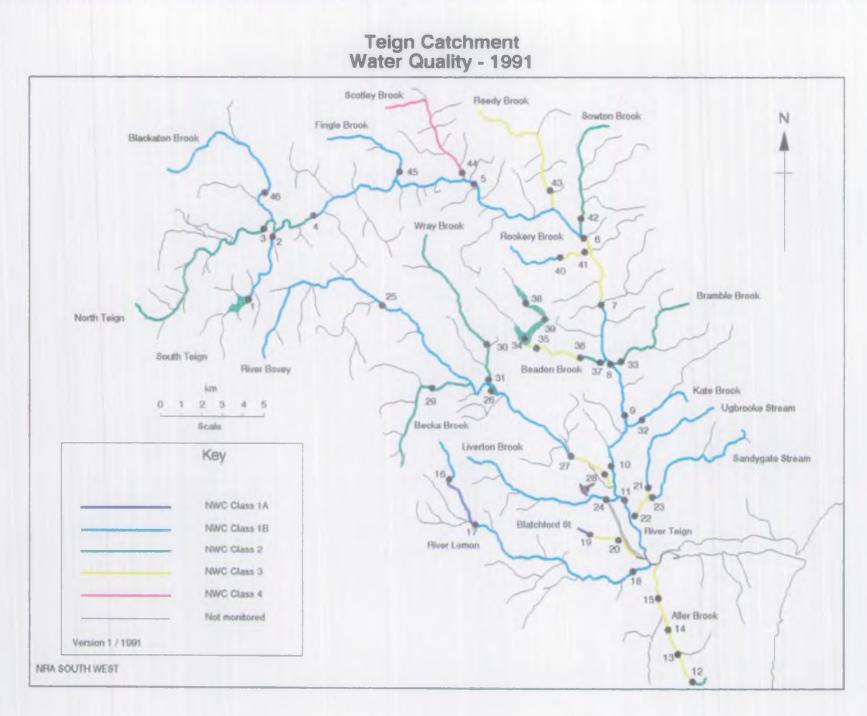
Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: TEIGN

991 Map	River	Reach upstream of	User	National		Distance	•	85	86 NMC	87 : IRNC	88 INNC	89 NHC	90 NWC	91
sition		i -	Reference	•	Length	from	Quality Objective	INC						
mper			Number 	Reference	(km)	source (km)	00]00100	CTERS	ICT#22		C1605	41993		
						[]								i –
	SOUTH TEIGN RIVER	INFLOW, FERNWORTHY RES. (UNMON. REACH)	-		1.5	1.5	1	1.	2	1.	A	IA	U	U
and the second se	SOUTH TEIGN RIVER	FERNWORTHY RESERVOIR		SX 6670 8415		2.1	1 17	18	2	1 1	17	18	1	2
	SOUTH TEIGN RIVER	LEIGH BRIDGE	R06C001	ISX 6831 8763	4.2	6.3	1 x	18	2	אַנון ו	1.	18	17	1:
	NORTH TEIGN RIVER	GIDLEIGH PARK HOTEL	R06C002	SX 6775 8791	10.7	10.7		14	2	11	1.4	2	2	2
- 1		RUSHFORD	R06C003	SX 7048 8823	4.1	j 14.8	1A	1.	2.	I IA	1 14	18	2	2
	TEIGN	CLIFFORD BRIDGE	R06C004	1SX 7809 8979	9.7	24.5	1A	1A	2	18	1	18	1A	1
		BRIDFORD BRIDGE	R06C005	ISX 8343 8723	7.7	32.2	אנ	1B	18	1B	18	18	1A	1
	TEIGN	SPARA BRIDGE	R06C037	SX 8435 8408	3.8	36.0	j 1A	18	2	2	24	1.	19	3
•	TEIGN	CROCOMBE BRIDGE	R06C006	ISX 8485 8115	3.5	j 39.5	j 1A	1B	2	2	1A	1.	1A	1 1
	TEIGN	CHUDLEIGH BRIDGE		SX 8575 7847	3.4	42.9	ע ן	1 1 1	18	 1 A	1.	18	18	1 1
	TEIGN	NEW BRIDGE		5X 8490 7652	2.7	j 45.6	j 1A	j 1∧ ∣	18	י אני ן	גג	1B	2	1
-	TEIGN	PRESTON		ISX 8550 7452	2.5	j 48.1	j 1. j	1.	I IA	1A	1	18	18	1
	TEIGN TEIGN	(NORMAL TIDAL LIMIT (INFERRED STRETCH)	1		2.7	50.8	1 1 A	17	17	17	1	18	1B	1
<u></u>		EDGINSWELL PUMPING STATION	R06A001	SX 8932 6625	1.2	1.2	2	-3-	3-	2		3	3	1-2
	ALLER BROOK	MANOR DRIVE KINGSKERSWELL		SX 8801 6735	1.9	j 3.1	2	2	3	18	10	18	1B	3
	ALLER BROOK	ALLER ORCHARD		SX 8755 6900	1.9	j 5.0	2	2	4	3	3	3	3	3
	ALLER BROOK	PERMINN NEWTON ABOT		SX 8705 7060	_	6.8	į 2	2	j 2	j 3	3	3	3	3
	ALLER BROOK	NORMAL TIDAL LIMIT (INFERRED STRETCH)	1		1.1	7.9	2	2	2	3	3	3	3	3
16	LENDN	BAGATOR MILL		SX 7690 7556	2.4	2.4	14	1.	IA	1	2	1	3	j Ti
	LEMON	BELOW CONFLUENCE WITH RIVER SIG		(SX 7790 7355	2.4	4.8	1	11	1 18	2	2	2		} 1
	LEMON	BRADLEY PLAYING FIELDS NEWTON ABBOT	R06B005	SX 8532 7099	9.4	14.2	1 A	1	1 1	18	18	18	2	! !
	LEMON	NORMAL TIDAL LIMIT (INFERRED STRETCH)	-		1.1	15.3	1 17	1 1A t	i 17	18 	18	18	2	1
19	BLATCHFORD STREAM	PERRY PARM		SX 8360 7287	0.9	0.9	1.	[i	i			18	
	BLATCHFORD STREAM	BLATCHFORD	R06B007	SX 8550 7301	2.3	3.2	18			ļ				13
	BLATCHPORD STREAM	NORMAL TIDAL LIMIT (INPERRED STRETCH)	1		1.1	4.3	1B	1	1	1	5	•	3	3
21	UGBROOKE STREAM	HIGHER SANDYGATE		SX 8672 7513	6.5	6.5	18	3	i	i —			2	
22	UGBROOKE STREAM	PRIOR TO RIVER TEIGN	R06B013	SX 8575 7375	1.8	8.3	2	3	1	!			3	1 3
	UGBROOKE STREAM	TEIGN CONFLUENCE (INFERRED STRETCH)			0.1	8.4	2	3	 	l 1				
23	SANDYGATE STREAM	NEW CROSS KINGSTEIGNTON	R06B010	SX 8679 7483	7.4	7.4	2			i——	1		2	
	SANDYGATE STREAM	UGBROOKE CONFLUENCE (INFERRED STRETCH)	ł		0.2	7.6	2		í	1			2	
24	LIVERTON BROOK	VENTIFORD BRIDGE	R06B050	SX 8475 7475	8.8	8.8	2.5			·	1		18	j 1 1
	LIVERTON BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)		1	0.3	9.1 	1 V						18 	j
25	BOVEY	BLACKALLER NORTH BOVEY		SX 7376 8375	9.6	9.6	1A		1		1	14	1 1B	
26	BOAEA	DRAKEFORD BRIDGE		ISX 7893 8015	8.1	17.7	I IA	1 1	1 1A	5 1A		18	118	1 1
	BOVEY	LITTLE BOVET		SX 8320 7672		24.2	1 1 X		18	1 1B			1 17	5
28 .	BOVEY	TWINYED PARM	R06D004	SX 8447 7605	1.6	25.8	<u>1</u> X		18		1B 18	1B 1	1 1A	1 3
	BOVEY	TEIGN CONFLUENCE (INFERRED STRETCH)	1		0.9	‡ 26.7	1 A	1 1	18	18	עד	TD I	1 72	1 3

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: TEIGN

1


1

1991 Map Position Rumber	•	Reach upstream of	User Reference Number	
] 			
ii			·[
•	BECKA BROOK BECKA BROOK	GIFT SHOP POOTBRIDGE BOVEY CONFLUENCE (INFERRED STRETCH)	R06D012	<mark>5x 7604 8010</mark>
	WRAY BROOK	CASELY COURT		SX 7858 8225
	WRAY BROOK	KINOMLE	R06D011	ISX 7888 8024
 	WRAY BROOK	BOVEY CONFLUENCE (INFERRED STRETCH)		
32	KATE BROOK	CRUDLEIGH	R06C055	SX 8595 7853
l l	KATE BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)		ļ
	BRAMBLE BROOK	PRIOR TO RIVER TEIGN	R06C011	SX 8491 8124
2	BRANBLE BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)	1	
	BEADON BROOK	INFLOW, TRENCHPORD RES. (UNMON. REACH)	·¦	
	BEADON BROOK	TRENCHFORD RESERVOIR	· · · ·	ISX 8064 8288
	BEADON BROOK	TOTTIFORD HOUSE		SX 8084 8228
•	BEADON BROOK	HYNER BRIDGE		SX 8368 8170
	BEADON BROOK	PRIOR TO RIVER TEIGN	R06C040	5X 8428 8170
	BEADON BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)		
	KENNICK STREAM	INFLOW, KENNICK RES. (UNMON. STRETCH)	·/	í
	KENNICK STREAM	KERNICK RESERVOIR	R06C048	ISX 8068 8388
	KENNICK STREAM	INFLOW, TOTTIFORD RES. (UNMON. STRETCH)		
, 39	KENNICK STREAM	TOTTIFORD RESERVOIR	R06CD49 l	SX 8106 8271
	ROOKERY BROOK	ABOVE BARTTES MINE		SX 8300 8632
	ROOKERY BROOK	PRIOR TO RIVER TELON	R06C014	SX 8376 8671
	ROOKERT BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)	1	
42	SOWTON BROOK	SONTON BRIDGE	R06C015	SX 8338 8745
	SONTON BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)	į	
	REEDT BROOK	REEDY BRIDGE	R06C054	 SX 8199 8930
	REEDT BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)		1
	SCOTLEY BROOK	CLIFFORD BARTON	R06C057	SX 7772 9008
	FINGLE BROOK	FINGLE BRIDGE	R06C053	SX 7433 9000
	FINGLE BROOK	TEIGN CONFLUENCE (INFERRED STRETCH)		1
46	BLACKATON BROOK	CHAPPLE	R06C052	SX 6782 8900
	BLACKATON BROOK	NORTH TEIGN CONFL. (INFERRED STRETCH)	i	t
í	1 .	i	i	i –

Reach	Distance	River	85	86	87	88	89	90	91
Length	from	Quality	INNC	INC	NHC .	INHC	INC	INNC	INC
(ka)	source	Objective	Class	Class	Class	Class	Class	Class	Class
	(km.)	j		i	Ì	İ	i	i	i i
		i		i	ì	í	i	i	i i
		1	i	i	i	i	i	i	i i
					i	i	í		
<u> </u>		;		\	;	¦	¦		
4.2	4.2	14	14	¦	¦	·	¦	18	2
2.1	6.3	14	Ĩ	;	;	- Q -	;	18	2
* • •									-
7.5	7.5	14	14	!	;	¦	\	-7-	-2-
2.7	10.2	1	Î ÎN	1	!	•		18	2
0.4	10.4	<u> </u>	1		!	!	ļ	1 18	2
0.4	1 10.0	, <u>1</u>	14	1	!	!	1	1 10	
<u> </u>		!	!	!	!	!	!	18	18
3.6	3.6					1	!		
0.2	3.8	<u> 1</u>	}	!	!		!	1B	18
<u> </u>	!		!			!	!	!	!!
6.4	6.4	14	17	1	TA	1	1		
0.1	6.5	<u> 1</u> A	1 1 A	1 .	1.	1	1 17	18	2
	l	!	!	!	!		!	<u> </u>	
3.0	3.0	<u> 17</u>	18	3	i – 1	13	1	י די ו	
0.8	3.8	1A	18	į 3	j 3	j 3	j 3	2	2
0.2	4.0	1A	18	3	į 3	3	3	3	3
3.4	7.4	2	j 3	13	j J	3	j 3	1 14	3
0.8	j 8.2	2	3	3	j 3	1 3	3	18	2
0.1	j 8.3	i 2	i 3	i 3	i 3	i 3	i 3	Í 18	i 2 i
	i	i –	i	í 🚽	i		1	i	i i
1.5	1.5	18	í	i	<u> </u>		i	1 0	j U
1.3	2.8	1B	i	i	i	i	i	Ì 18	i 2 i
0.1	2.9	18	i	ì	1	i 👘	i i	ίυ	i v i
1.1	4.0	1B	i	i	i	i	i		i 2 i
				1	1	1	1	, <u> </u>	
3.9	3.9	3	¦ 	- <u>1B</u> -	18	1	<u></u>	<u> </u>	18
0.9	4.0	3	14	i 3	i 3	1 3	i ĵ	1 3	3
0.1	4.9	3		1 3	13	1 3	3	1 3	3
~.4					1		1		
6.1	6.1	18	18	18	18	18	2	2	
0.3	6.4	18	1 1B	1 13	118	1 1B		2	
0.3	0.4			1 10			1 4		
-1.7	4.7	<u>1</u> .	!	!	¦	!	!		
			!	!	!	!	!		
0.5	5.2	1 1		ļ	ļ	ļ	!	3	3
	!		!	!	!]	!	!	!!
5.3	5.3	<u></u>	l I					3	4
	I	l	l	_	I	!	!	!	ا <u>ا</u>
7.0	7.0	18				1	1	1 2	18
0.0	7.0	1B	ł	1	ł	ł	1	2	18
	1	I	I		1	I	1	I	1
7.3	7.5	1	1			·		18	18
1.5	j 9.0	i 1A	i	i.	i	İ	i	j 1B	j 19 j
	i	1	i .	i	i	i .	i	i	i i
	· <u> </u>		·		·	·		·	·

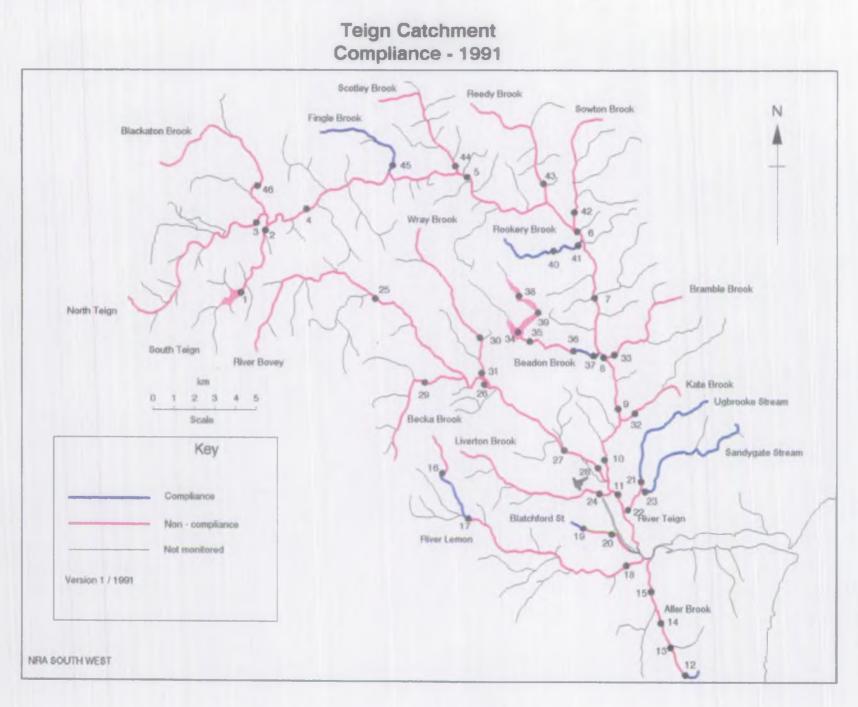
Appendix 8.5

....

INVICIANL RIVERS AUFERTITY - SOUGH WEST REGION 1991 RIVER WIDER QUALITY CLASSIFICATION CNICILIAIDED DEDEMINAND STREISTICS USED FOR QUALITY ASSESSMENT CRUCHENT: TELEN

.

1


River	Reach upstream of	User	nu	!					d Statis		a tor Ö			1						1			
,		Ref.]	•	!					(8.)	!	-	1		 	Ameria		alida	1	Casever	 	1 Zinc
I		Number			Lower Skile	• •	upper 95kile		ersture 95kile		(%) 5941e				95tile		95110			•	951110		9511
					24110		996110		YHLLE	1.14653	JALLE		5.541.00		334100		3.742.00				, , , , , , , , , , , , , , , , , , , 		
		 		 		ļ						 		<u> </u>	A (0)	<u> </u>				 	5.0	1 18	6.9
SOUTH TELION RIVER	FERNICRIAY RESERVICER	[R06C051		• - ·	5.3	ј IA I IA	7.2	1A 1A	18.9 16.2	2 1B	59.8 64.4	1A 1A	1.6 1.9	1A 1A	0.091 0.022	1 IA 1 IA	0.010	14	5.9 3.2	i IA	7.1	1 1	31.6
SUTH TELEN RIVER	leich bruce 	R06C001 	א נן		5.8		7.5		10.4		04.4		1.5		0.022		V.010		J.4				
NIRTH TELON RIVER	GILLEICH PARK HOTEL	R06C002	14	AL I	5.2	1 17	7.2	AL	16.8	14	88.8	1	1.8	1 14	0.032	<u> 1</u> A	0.010	, IV	1.6	1 2	6.4	AL I	26.4
DEUEN	REFERD	R06C003	AI	I IV	6.0	1 1	7.4	1A	16.0	2	55.8	119	4.4	1A	0.112	1A	0.010	• L	2.6	AL 1	5.0	I W	12.0
	CLIFFORD BRIDES	18060004	 1	I IV	6.6	1 I A	7.5	אנן	17.7	I IB	73.9	14	2.0	1	0.054	A L	0.010	14	2.7	1 -	-	-	
1530 E N	BRIDFCHO BRIDE	17060005	1A	1A	6.7	1 11	7.5	1A	19.2	18	79.8	IA	2.7	I IV	0.131	1 79	0.010	14	4.4	1 17	5.7	I IA	20.0
TETEN	SEARA HRIDLE	JR06c037	אנן		6.7	1 77	7.4	I IV	17.3	3	38.0	1 72	2.2	A	0.072	I IA	0.010	1	4.0	1 77	9.8	1 14	95.0
TELON	CROCCIMEE BRIDDE	14060006	17	1A	6.8	I A	7.8	I IV	16.7	119	67.5	1 A	2.8	I IV	0.044	11	0.010	الا	3.3	1 1	6.0	1 14	95.1
DEIGN	CHUCKENCH BRIDGE	18060007	•	•	6.6	1 IV	7.8	11	17.2	1 13	77.1	118	3.1	1 14	0.070	1 14	0.010	1	7.3	I IA	8.6		106.
TELLEN	INEW BRODDER	10060008		•	7.0	1 JA	7.8	11	18.1	1 18	73.6		2.9	I IV	0.067	AL I	0.010	1	6.9	I IA	11.4	I IA	<u> </u>
TELIN	FRESTON	[F068001	1 x 	1/	7.0	1A	7.8	1A 	17.0	I A	80.1	118	3.4	1 17	0.090	1.	0.010	14	17.4	1 17	14.0	1A. 	60.4
ALLER BROOK	EDENSHELL PUPPIG STREEM	R064001	2	11	7.4	1 14	8.2	AL	17.0	2	49.0	2	7.9	j ib	0,489	<u>AL</u>	0.010	A	16.8	<u>; -</u>	-	- 1	-
ALLER ERCOK	PANCE DRIVE KINGERERSNELL	IBOEVOOS	•	•	7.7	1 14	8.3	I IA	16.5	1 14	80.1	18	3.3	1A	0.187	1 18	0.010	3	26.1	1 1	50.0	I IA	50. 0
ALLER BROOK	ALLER ORGENED	(FOGAÇO3	•	17	7.6	I IV	8.2	I IA	16.9	118	66.1	2	7.1	3	2.940	3	0.060	3	33.4	- !	-	-	-
ALLER BROOK	PENNINN NEWICH MEEDT	[R06A004	2	אנן	7.8	1 1	8.2	1 17	17.0	18 	75.1	2	8.2	2	1.174	3	0.030	3	46.9	1 1	-	-	-
LEMON	BRANCE MILL	12068003	1	i ia	6.6	<u>i n</u>	7.6	1 14	14.5	I B	62.2	<u> 1</u>	2.0	<u> 1</u>	0.047	Î ÎA	0.010	Å	2.5	<u>i la</u>	6.4	I IA	9.6
LEMON	BELOW CONFILIENCE WOOH REVER STO	19068004		•	6.6	<u>1</u> 7	7.6	A I	15.0	A	63.2	1	2.7	 	0.060	14	0.010	1	3.3	1 17	12.7	I IA	6.2
LEMON	BRALLEY PLAYING FIELDS NEWION AREOT	(R068005	11	I IX	7.5	1 1	8.2	1A	16.9	l 18	66.1	IA	2.5	1	0.147	1	0.010	14	6.8	I IV	<u>ц.</u> 7	I IA	14.0
BLATCHFORD STREAM	PERKY PARM	10000000	TA		7.3	<u> 1</u>	8.1	1	15.0	1	85.0	AL I	2.2	1	0.078	1	0.010	- IA	15.5	<u>i in</u>	7.0	i la	8.0
BLACCHORD STREAM	BLAICHECHO	(RO6B007	118	אנן	7.6)	8.0	אנן	15.5	118	ଗ.୨	1	2.8	1 14	0.115	1 1A 	0.010	3	30.5	1 22	40.0	1 14	6.
UCERCORE SIDERM	HIGHER SANDAGADE	10068012	10	1	7.6	<u>' 1</u> -	8.2	1	17.3	1	80.5	1 19	3.8	118	0.642	<u> 1</u>	0.010	1A.	9.7	<u> 1</u>	10.5	<u> </u>	11.0
UCHROCINE STREAM	PRIOR TO RIVER DEDIN	ROGE013	2	A L	7.3	I IV	8.2	1	17.6	, 1 7	86.0	AL	2.7	11	0.233	1 14	0.010	3	114.6	2	50.0	1 14	110.
SNEWFOR SDRAM	NEW CROSS KINGSTILLIGNION	19068010	2	<u></u>	7.7	<u> 1</u>	8.2	14	16.3	19	68.8	118	3.8	<u> 1</u>	0.112	<u>, 17</u>	0.010	ja.	15.0	Ϊ IA	3.0	1	20.5
LEVERION BROOK	VENTIFORD BRIDGE	18068050	1.	<u>_17</u>	7.5	مد (7.8	14	16.7	118	75.6	1.	2.4	<u> </u>	0.109	1	0.010	٦X.	6.6	À IÀ	6.9	A	75.6
BOVEY	ELACAULER NORTH BOART	1006D001	-		6.6		7.4		14.5		79.1		3.5	IA	0.044	1	0.010	14	5.8	╎╌╴	-		-
BOWEY	DRANEPCHD BRIDGE	1R060002			6.7	1 14	7.5	14	15.1	ม่ม	89.0	1 18	4.1	i ia	0.059	1 14	0.010	JA.	4.8	i ~	-	i -	-
BOWER	LITTLE BOVEY	R060003			6.7	1 12	7.4	1 14	17.2	11	80.7	1 10	4.6	i IA	0.095	i IA	0.010	1	15.6	i 1A	11.3	i 1A	° Q.7
BOMEY	THIRD FARM	ROGDOO4		•	6.8	AL I	7.5	JA.	17.5	19	78.5	10	4.8	Į IĀ	0.304	Ā	0.010	3	27.3	A	14.0	Т.	52.1
BECKA BROOK	GIT SHOP FORTHRUIS	12060012	AL	11	6.6	<u>AL</u>	7.6	14	14.9	18	73.0	2	7.0	Î ÎA	0.050	1 A	0.010	- IA	8.5	-	-	-	-
NWY BROOK		TROGDOOS	1		6.9		7.5		16.0	14	80.8		5.7	18	0.341	A	0.010	14	9.7	 	6.5	-	13.7
HRAT BROOK	ROLE	(R060011)		•	7.0		7.5		16.3	1 10	78.8	1 2	5.2		0.267		0.010	1A	8.0	ι _μ	8.2	μ.	16.0
<u>i.</u>	i	<u>i</u> i	i	i		<u>j </u>		<u></u>		<u> </u>		<u> </u>											
PROE BROOK	GRUCLEICH	R06C055	1	<u> 1</u>	7.9	1 17	0.4	1	16.7	14	81.6	118	3.3	1 18	0,195	λί Ι	0.010	18	8.5	I IV	5.0	14	19.1
BRWELE BROOK	PRICE TO RIVER TELEN	1060011		-	7.5	1 1	8.1	14	16.0	2	52.5	<u> </u>	2.8	<u>, v</u>	0.025	ميديو ال	0.010	10	11.4	1	5.0	14	16.8

NACIONAL RIVERS AUTORITY — SOUTH WEST RELICH 1991 RIVER WATER QUALITY CLASSIFICATION CALLARED LETERMINNING STRTISTICS USED FOR QUALITY ASSESSMENT CRICHMENT: TELLIN

1

River	Reach upstream of	User	RO			Oslaul	ated Deb	ecoloria	nd Statis	tics us	ad for Q	unlity	Assessme	nt.									
		Ref. Number 	 	 CLass	ioner Skile	• •	upper 95kile	• •	perature s 95kile)(%) ; 5%ile	•	• •		Auxinia s 95kile		. Amoria 5 95kilo	•	Solids s Maan		i Opper 195kile		al Zinc s 95kile
BEADIN BROCK	TRENCHPORD RESERVOIR	i R060050)]]]]A	6.1	1A	7.6	 1A	19.0	2	55.2	 1A	2.3	 1A	0.157	 1A	0.010	 1	3.3	14	8.8	1 14	33.3
BENDON BROOK	TOTELPORD HOUSE	18060009	I IA	3	4.9	Į IA –	6.0	AI	18.0	18	74.2	I IA	2.0	1 IA	0.212	3	0.032	A L	10.1	{ 1A	5.2	1 14	22.4
SENION BROOK	HINER BRIDGE	F06C010	2	1 X	6.5	1A	7.5	j 1∧.	15.7	† 1A	. 86.4	I IA	1.8	1A	0.030	A	0.010	 1 A	3.1	1 14	33.0	1 3	1274.0
BENDON BROOK	FRICE TO RIVER TELEN	[R06C040	2	1	6.8	1 7	8.0	1A 	16.2	18 	61.6	I IV	2.2	1	0.032	A	0.010	I IV	3.4	1	12.0	2	700.7
RENNICK SUREAM	REPARCE RESERVOIR	FO6CD48	<u> </u> 18	1	6.4	<u>1</u>	7.8	<u> </u>	20.8	2	51.3	1	2.9	11	0.112	1A.	0.010	<u> </u>	3.1	i JA	5.8	<u> 1</u>	9.2
KENNICK STREAM	TOTTIFORD RESERVOIR	1060049	118	1	6.4	i 1A	7.8	j 1A.	20.8	2	42.6	I IA	2.9	1 1 A	0.135	AL	0.010	1	2.7	1 1	10.5	X	27.8
ROKERY BROOK	ABOVE BARYTES MINE	R06C013	3	1	6.8	1	7.5	- IA	15.6	1.8	69.4	1A	3.0	17	0.081	1	0.010	<u>, v</u>	8.8	1	11.1	i IN	122.9
ROUNDRY BROOK	PRICE TO RIVER TELEN	R05C014	3	14	6.5	17	7.2	1 1 .	15.2	18	77.4	j 19	3.3	A L	0.073	A L	0.010	, YY	9.5	j IV	36.8	į 3	4020.0
SOMEON ERCCK	SCHICN BRIDGE	1060015	119	14	7.1	11	7.7	A	17.5	2	45.2	18	3.1	118	0.326	1.	0.010	Í IA	7.5	1	5.0	AL	25.2
REEDY BROOK	REELER BRUDGE	17060054	7	1.	6.9	<u>1</u>	7.8	<u>גר</u>	14.5	<u> </u> 3	21.0	118	4.1	<u>, v</u>	0.135	11	0.010	72	<u>[1.5</u>	2	43.7	1	46.0
SODILLEY HROCK	CLIPPCRD BARTON	1060057	-	18	6.8	AL	7.7	1.4	16.2	3	38.0	4	74.5	1	0.224	14	0.010	14	9.4	2	50.0	, w	50.0
PINALE BROOK	FINELE BRIDE	1906-0053	ш	14	6.7	1.	7.8	- 14	14.8	1	81.0	ia	4.8	<u></u>	0.229	1.	0.010		7.4	1	6.0	1	9 9.6
BLACIPICAN BROOK	GRIFLE	 R06C052	אנן	18	6.4	14	7.3	<u> </u>	15.2	18	72.6	<u> </u>	2.9	18	0.381	17	0.010	14	3.0	<u>1</u>	6.9	1	18.8

.

NALIONAL RIVERS AUHORITY - SOUTH WEST REGION

1991 RIVER WHER QUALITY CLASSIFICATION

NUMER OF SAMPLES (N) AND NUMER OF SAMPLES EXCEEDING QUALITY SUMMARD (F)

CRICHMENT: TELCN

River	Reach upstream of	User	EH I	LCWBT	ј рні I	fiber	Temper	ature		(\$)	BOD (,	AU)	Total A	monia	Union.	Antonia	[S.So	lige	Total 	Citter	Tota) 	l Zint
		Raber	N	F	N 	r	N	•	N	*	N	•	8	1	R	'	R	P	N	7	N	7
SOUTH TEICN RIVER	FERNERINY RESERVOIR	R060051	68		68		 89		i 	4	 	-	68		 		68	1	42		42	
CUTH TELCN REVER		[R06C001]	36	-	36	-	37	-	15	2	35	-	36	-	22	•	36	1	37	-	ज्ञ	•
NORTH TELEN RIVER	CITILITICH PARK HITEL	106002	36	_	36	-	1 37	-	35	-	36		36	-	22	-	36	-	37	- 1	37	-
CHURN .	RUSHFORD	F06C003	32	-	32	-	32	-	31	1	1 32	1	1 32	-	30	-	32	-	20	-	20	-
12110	CLIFFORD BRIDGE	R06C004	31	-	ע ו	-	1 31	-	30	1	31	-	37	-	1 25	-	37	-	0	-	0	-
Partie V	BRIDFORD BRIDGE	F06C005	37	-	37	-	37	-	37	1	37	-	1 37	1	28		37	1	1 37	-	1 37	-
FILEN	SERVA BRIDGE	R06c037	37	-	37	-	37		37	3	37	-	37	-	1 27	-	37	-	1 37	1	37	-
CPUCEN	CROCIMEE BRIDGE	R06C006	37	-	1 37	-	37	-	j 36	2	j 37	1	j 37	-	I 🗶	-	37	-	1 37	-	1 37	-
THE R.	CHELETCH HEIDE	R06CD07	34	-	j 34	-	ј 34	-	j 33	2	34	1	j 34	-	j 32	-	34	2	21	-	21	
DICN	NEW HRIDE	F06C008	34	-	3	-	įя	-	33	1	34	1	į 34	-	jЭ	-	į 34	2	1 2	-	1 21	•
IEICAV	PRESION	R068001	81	-	181	•	82	-	81.	3	j 80	5	j 81.	-	178	-	1 61.	14	83	2	83 	•
LLER BROOK	EDGINSWELL FUMPING SIRTICN	17064001	40	_	40	-	39	-	39	1	39	1	40	-	<u>u</u>	-	40	-	6	-	6	•
uler brook	MANOR DRIVE KINGERERSMELL	F064002	40	-	40	-	40	-	40	-	40	-	40		1 37	-	40	9	33	-	B	•
LLER BROOK	Aller Orchand	FO6A003	40	-	40	-	40	-	40	-	39	1	39	6	39	9	40	17	0	-	0	
NLER BROOK	PENNINN NEWICH AFECT	R062004	40	-	40 -	-	40		40 		40	1	40	1	39	2	(40 /	19	0	-	0	
LEMON	BACHOOR MOLL	FOGE003	32		32	_	1 32		1 31	1	1 22		32	-	25	-	32			-	22	-
LEMON	HELOW CONFLIENCE WITH RIVER SIG	R068004		-	32	-	32	-	1 32	1	32	1	32	-	29		1 22	-	1 32	1.00		
LEMON	BRADLEY PLAYING PIELDS NEWION ABOT	R068005	40	-	(40 	-	40	-	40 	2	40 	1	40	-	15 	-	40 	1	40	-	40	
HATCHFORD STREAM	PERRY FAIM	F068006	31	-	ें ग	-	í n	-	<u>u</u>	1	30	-	1 31		28		1 31	3	19 24	-	19 24	
elangford stream	ELAICHFORD	R06B007	28	-	28	-	28	•	28	-	28			-		-		14		1.1		
LERCORE SUREAM	HICHER SANDAGRIE	R068012	34		ÌЖ	_	<u>j 34</u>	_	33	-	<u>i</u> 34	1	ЗА	1	34	-	î 34	4	1 2	-	21	
LEBROOKE STREAM	PRIOR TO RIVER TELEN	F068013	34	-	34	-	ј и	-	1 33	-	34	2. 2 0	34	-	33	•	34	ø	1 21	्र्	1 21	
SANDAGADE SURFAM	NEW CROSS KINGEDENION	19068010	34		34	-	 3 4	-	33	1	34	10	<mark>і </mark> Я	-	33	-	34	3	26		26	
LIVERION BROOK	VENTIFCRO BRIDE	 ROGEO50 	33	-	33	-	32	-	32	2	33	-	13	-	X	-	33	1	21	-	21	2
OVEY	BLACKALLER NORTH BOXES	ROGECOL	31	-	म	-	<u>n</u>	-	30	1	ं ज्ञ		31	-	25	-	<u> N</u>	2	0	-	0	-
EVEY .	DRAKEPORD BRIDGE	R06D002	30	-	30	-	30	-	30	-	30	2	30	-	24	-	30	1	0	-	0	-
EVEL .	LITTLE BOVEY	R060003	37	-	1 37		37	-	37	1	37	5	37	1	1 33	-	37	5	37	1	37	-
DAEX.	MARY CHARMEN	R060004	37	-	1 37	-	38	-	37	2	37	4	37	1	35	-	37	7	37	1	37 	•
ecka eficik	GIFT SHOP ROBBIDE	[R06D012]	20	-	20	-	20	-	19	1	20	i	20	-	13	-	20	2	0		0	
PAY HECK		- BOGCOOR	33	-	33	-	1 32	-	ं ग्र	1	1 33	3	1 33	1	30	-	B	2	21	-	त्र	
HRAY BROOK	RECALE	[R062011]	33	-	33	-	1 33	-	33	1	33 	2	33	1	30	-	1 33	1	27		71	
PROE, ERCOK	CHIDLEICH	[PO60055]	34	-	Ж	-	33	-	32	1	34	2	34	-	31	-	34	2	2		<u> </u> 	
RAMELE ERCOK	PRIOR TO RIVER TELON		30		30	•	30	-	29	ī	30	1	30	-	18	-	30	2	24	-	24	

Appendix 8.9

1

NACIONAL RIVERS AND RETT - SOUTH WEST REGION 1991 RIVER WIDER QUALITY CLASSIFICATION NUMER OF SIMPLES (N) AND NUMER OF SAMPLES EXCEPTING QUALITY SUMUNO (F) CAUCHMENT: TELIN

.

.

River	Reach upstream of	Uber Pef.	pH L	CHINE .	pH ∪ 	ipar.	Temper	ature		(\$)	800 (REU)	Total J	Amonda	Uhian. 	Amonia	S.So	lids	Total	other	Total 	Zinc
ļ		Nuber	11	P	11	r.	R	F	1 19	P	N	- F	1 21	r.	N	7	N	P	N		t M	P
ļ									<u> </u>				<u> </u>		[24	-		
HEADON BROOK	TRENCHPORD RESERVOIR	[R06C050]		-	24	-		-		4	24	-	24	-	23 34		24 37		36	-	36	_
BEADON BROOK	TOTTIFORD HOLEE	[R06C009]	37	2	1 37	1	37	-	36	2	37		1 37	_			37		1 35	-	1 35	-
BENON BROCK	HMAR BRIDGE	R06C010	37	-	37	-	37	-	36	-	1 37	-	37	-	26				1 36		35 36	•
BEALON BROOK	HELLER TO RIVER TELLEN	R06C040	36	-	36	1	36	-	35	1	36	-	36		24		36	-	30	•	1 2 0	-
NENVICK STREAM	NEWLICK RESERVOIR				24		23	-	22	1	24	-	24	-	17		24	-	23	-	23	
KENNICK STREAM	TOTTIFORD RESERVOIR	[R06C049]	24	-	24	-	23	-	23	1	24	-	24		1 21	-	24	•	24	-	24	1
PCORERY ERCOK	ABOVE BARYTES MINE	F060013	-37		37		37		37		37	-	37	-	30	-	37	-	37	-	37	-
ROCKERY BROCK	FRICE TO RIVER TELEN	[R06C014]	31	-	37	-	36	-	36	-	37	•	1 37 1	-	32	-	37	-	37	-	37	-
SCHECH ERCOR	SCHEEN PRIDE	8060015	31		31		31	_	31	7	31		31	÷.	24	-	31	1	20	-	20	-
REEDY BROOK		RD6C054	29	-	29	-	29		29	9	29	1	29	-	28	-	29	3	22	1	22	-
SOUTLEY BROOK	CLIFFORD BARION	R06C057	25		25	-	25	-	24	6	25	3	25		22	-	B	3	19	1	19	-
FINELE BROOK	FINGE HOUSE	R06C053	32)	32	-	32	-	31	_	32	1	12		28	-	32	•	26	1	26	-
BLACKREEN BROOK	OPPLE	[R06C052]	32	-	32	-	32	-	31	3	32	-	32	1	28	-	32	-	20	-	20	-

....

.

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: TEIGN

River	Reach upstream of	User Ref.		PERCENTAGE	EXCEEDENCE OF	7 STATISTIC	FROM QUALIT	Y STANDARL)	1	r ,	1
		•	 pH Lower 	pH Upper 	 Temperature 	DO (%)	BOD (ATU)	Total Ammonia	 Un-ionised Ammonia 	(Suspended Solids	Total Copper	Total Einc
SOUTH TEIGN RIVER	PERNWORTHY RESERVOIR	 R06C051	 			25			.			
SOUTH TEIGN RIVER	LEIGH BRIDGE	R06C001	-	-	100	20	-	-	-		-	-
NORTH TEIGN RIVER	GIDLEIGH PARK HOTEL	R06C002	-	-	-ii	i	i		-		28	-
TEIGN	RUSHFORD	R06C003	I –	-	1 - 1	30	48	-	1 -	-	-	
TEIGN	CLIFFORD BRIDGE	R06C004	-	1 -	I - 1	8	-	-	1 -	-	-	-
TEIGN	BRIDFORD BRIDGE	R06C005	1 -	-	1 -	i –		-	1 -	-	i - I	-
TEIGN	SPARA BRIDGE	R06C037	-	-	i -	j 51	-	-	i -	i -	-	-
TEIGN	CROCOMBE BRIDGE	R06C006	i -		1 -	i 16	i - i	-	i -	i - I		-
TEIGN	CHUDLEIGH BRIDGE	R06C007		-	i - i	i 4	i 1 i	-	i -	1.	-	-
TEIGN	NEW BRIDGE	R06C008		-	i → 1	i a	i _ i	_	i -		-	
TEIGN	PRESTON	R06B001		-	4	-	13	-		-	-	-
ALLER BROOK	EDGINSWELL PUMPING STATION	R06A001		-								
ALLER BROOK	MANOR DRIVE KINGSKERSWELL	R06A002	i -	-	1 -	- 1	1 - 1	-	í -	i - 1	1	-
ALLER BROOK	ALLER ORCHARD	R06A003	i -	-	i - i	-	i - i	88	186	-	-	-
ALLER BROOK	PENNINN NEWTON ABBOT	R06A004	-	-	-	-	j - j	-	45	-	-	-
LEMON	BAGATOR MILL	R06B003		-	-{		i	-	¦		-	1. - - 1
LEMON	BELOW CONFLUENCE WITH RIVER SIG	R06B004		-	I - I	I –	1 - 1	~	-	I - 1	-	1 .
LEMON	BRADLEY PLAYING FIELDS NEWTON ABB	R068005	-	-	-	17	-	-	-	-	-	-
BLATCHPORD STREAM	PERRY PARM	R068006						-	·i			-
BLATCHFORD STREAM	BLATCHPORD	R068007	•	-	-	•		•	-	22	-	-
UGBROOKE STREAM	HIGHER SANDYGATE	R068012		-			-	-				
UGBROOKE STREAM	PRIOR TO RIVER TEIGN	R06B013		-	:41	-	<->		-	43	-	-
SANDYGATE STREAM	NEW CROSS KINGSTEIGNTON	R068010		-	-			-	-	-	-	
LIVERTON BROOK	VENTIFORD BRIDGE	R06B050		-	<->	6			·/			-
BOVEY	BLACKALLER NORTH BOVEY	R06D001	¦			1	17		·			
BOVEY	DRAKEFORD BRIDGE	R06D002	- 1	-	1 - 1	I –	j 36 (-	1 -	-		-
BOVET	LITTLE BOVEY	R06D003	-	-	i - i	-	i 54 i	-	i -	- 1	-	-
BOVEY	TWINYEO FARM	R06D004	-	2		2	60		į -	9	-	1
BECKA BROOK	GIFT SROP POOTBRIDGE	R06D012	-	-	-	9	132	-			-	-
WRAY BROOK	CASELY COURT	R06D008	¦	-	·//		90	10				
WRAY BROOK	KROWLE	R06D011	-	•	•	1	74	-	-	i -	-	-
KATE BROOK	CRUDLEIGH	R06C055	-	-	-	(= 4	10	-		-	-	
BRAMBLE BROOK	PRIOR TO RIVER TELON	R06C011			.[]					·		

Appendix 8.10

1

.

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: TEIGN

River	Reach upstream of	USOT PERCENTAGE EXCEEDENCE OF STATISTIC FROM QUALITY STANDARD										
		Ref. Number	pH Lower	 pH Upper 	 Temperature 	DO (%)	BOD (ATU)	Total Ammonia	 Un-ionised Ammonia 		Total Copper	Total Sinc
BEADON BROOK	TRENCHFORD RESERVOIR	R06C050	-	-	-	31	-	10 - 11		-	-	-
BEADON BROOK	TOTTIFORD HOUSE	R06C009		-	-	7	- 1	-	55	-	-	
BEADON BROOK	HYNER BRIDGE	R06C010		-		+	-	-	-	-	-	27
BEADON BROOK	PRIOR TO RIVER TEIGN	R06C040	-	•	-	•		-	-		640	
KENNICK STREAM	KENNICK RESERVOIR	R06C048	-	-	-	15		-	-		-	-
KENNICK STREAM	TOTTIFORD RESERVOIR	R06C049	-	-	-	29	-	-	-	-	-	-
ROOKERY BROOK	ABOVE BARYTES MINE	R06C013		-	·ii		-		-		-	-
ROOKERY BROOK	PRIOR TO RIVER TEIGN	R06C014	-	-	-	1.0	-		-	-	-	-
SOWTON BROOK	SOWTON BRIDGE	R06C015	-	-	-	25	-	-	-	Ē	-	-
REEDY BROOK	REEDY BRIDGE	R06C054	-	-		74	35	- 19 - 1	-	-	9	-
SCOTLEY BROOK	CLIFFORD BARTON	R06C057		-	-	52	2383	-	-	-	25	-
PINGLE BROOK	FINGLE BRIDGE	R06C053		-	-		-	-	-	-	-	-
BLACKATON BROOK	CHAPPLE	R06C052	-	-	-	9		23				