Environmental Protection Report

River Tavy Catchment River Water Quality Classification 1991

> April 1992 WQP/92/0014 Author: B L Milford Water Quality Planner

National Rivers Authority

South West Region

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

R Broome - Co-ordinator and Editor Freshwater Planning - Production of Maps C McCarthy - Administration and report compilation A Gurney - Statistical Schedule production

Thanks are extended to A. Burghes of Moonsoft, Exeter for computer support.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Officer, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ

RIVER WATER QUALITY IN THE RIVER TAVY CATCHMENT

LIST OF CONTENTS

			Page NO.										
1	Introdu	action	1										
2	River I	Cavy Catchment	1										
3	Nationa	al Water Council's River Classification System	2										
4	1991 Ri	ver Water Quality Classification	3										
5	Non-con	pliance with Quality Objectives	3										
6	Glossary of Terms												
7	Referen	nces	4										
8	Appendi	.ces:											
	8.1	River Quality Objectives including Monitoring points - map format											
	8.2	Basic Determinand Analytical Suite											
	8.3	National Water Council (NWC) River Classification Syste	em										
	8.4	NWC Criteria for Non-Metallic Determinands - Regional Variation											
	8.4.1	NWC Criteria for Metallic Determinands - Regional Variation											
	8.5	1991 River Water Quality Classification - tabular format											
	8.6	1991 River Water Quality Classification - map format											
	8.7	Calculated Determinand Statistics used for Quality Assessment - tabular format											
	8.8	Compliant/Non-Compliant River Reaches - map format											
	8.9	Number of Samples Results exceeding quality standards - tabular format											
	8.10	Percentage Exceedance of Determinand Statistics from Quality Standard - tabular format											

Page No.

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirty-four catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a pre-determined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

-Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (7.1).

This report presents the river water quality_classification for 1991 for monitored river reaches in the River Tavy catchment.

2. RIVER TAVY CATCHMENT

The River Tavy flows over a distance of 35.2 km from its source to the tidal limit, (Appendix 8.1). Water quality was monitored at eight locations on the main river; seven of these sites were sampled at approximately monthly intervals. The site at Denham Bridge, which is a National Water Quality monitoring point, was sampled fortnightly.

Tamerton Foliot Stream and Milton Brook flow over a distance of 4.3 km and 5.3 km respectively from their source to tidal limit in the Tavy/Tamar Estuary, (Appendix 8.1) and were both monitored at one location.

Throughout the Tavy catchment five secondary tributaries of the River Tavy were monitored at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

The River Walkham flows over a distance of 22.1 km from its source to the confluence with the River Tavy, (Appendix 8.1) and was monitored at four locations.

The River Lumburn flows over a distance of 9.2 km from its source to the confluence with the River Tavy, (Appendix 8.1) and was monitored at two locations.

Walla Brook (5.6 km), River Burn (9.3 km) and Cholwell Brook (4.8 km), were all monitored at one location. Monitoring points were all located in the lower reaches of these streams, (Appendix 8.1).

Each sample was analysed for a minimum number of determinands (Appendix 8.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Resources Act Register, (7.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 River Quality Objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Tavy catchment are identified in Appendix 8.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 8.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

<u>Class</u>	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 8.4 and 8.4.1.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 8.3) recommended for use by the NWC system.

4. 1991 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1989, 1990 and 1991 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 8.5.

The quality class for 1991 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1990) also based on three years combined data, for each river reach in Appendix 8.5.

The river water classification system used to classify each river length is identical to the system used both in 1985 and 1990 for the Department of the Environment's Quinquennial River Quality Surveys. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1991 are indicated in Appendices 8.4 and 8.4.1.

The river quality classes for 1991 of monitored river reaches in the catchment are shown in map form in Appendix 8.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 8.7.

5. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 8.8.

Appendix 8.9 indicates the number of samples analysed for each determinand over the period 1989 to 1991 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with the relevant quality standard (represented as a percentage), is indicated in Appendix 8.10.

6. GLOSSARY OF TERMS

95 percentiles

5 percentiles

BIOLOGICAL OXYGEN DEMAND

(5 day carbonaceous ATU)

UN-IONISED AMMONIA

SUSPENDED SOLIDS

INFERRED STRETCH

USER REFERENCE NUMBER

RIVER REACH A segment of water, upstream from sampling point to the next sampling point. RIVER LENGTH River distance in kilometres. RIVER QUALITY OBJECTIVE That NWC class, which protects the most sensitive use of the water.

Maximum limits, which must be met for at least 95% of the time.

Minimum limits, which must be met for at least 95% of the time.

A standard test measuring the microbial uptake of oxygen - an estimate of organic pollution.

A scale of acid to alkali.

Fraction of ammonia poisonous to fish, NH³.

Solids removed by filtration or centrifuge under specific conditions.

Reference number allocated to a sampling point.

Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

7. REFERENCES

pН

Reference

- 7.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 7.2 Water Resources Act 1991 Section 190.
- 7.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 OBiochemical oxygen demand (5 day total ATU) as mg/10Total organic carbon as mg/l C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/1 N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/l Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/l P Silicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/l SO4 Sodium (total) as mg/l Na Potassium (total) as mg/l K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

						APPENDIX 8
		NWC RIV	ER QUALITY	CLASSIFICATION SYSTEM		
River Class		Quality criteria		Remarks	Currer	it potential uses
		Class limiting criteria (95 percent	ile)			0
1A Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average BOD probably not greater than 1.5 mg/1 Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
18 Good Quality	(i) (ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/l Ammonia not greater than 0.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/1 Average ammonia probably not greater than 0.5 mg/1 Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of t River Pollution Survey (RPS)	, he	Water of less high quality than Class 1A but usable for substantially the same purposes
2 Fair Quality	(i) (ii) (iii) (iv)	DO greater than 40% saturation BOD not greater than 9 mg/1 Where water is abstracted for drinking water it complies with the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical signs of pollution other than humic colouration and a little foaming below weirs	(i) (ii) (iii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries Moderate amenity value

3 Poor Quality	(i) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are atsent only sporadically present. May be used for low grade industrial abstraction purposes. Considerable potential for further use if-cleaned-up
4 Bad Quality		Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
X 		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing

- stated levels for those Classes. When this occurs the cause should be stated along with analytical results. (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Aggonia figures are expressed as NH4. **
- (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.
- * EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

****** Ammonia Conversion Factors

(mg NH₄/1 to mg N/1)

Class	18	0.4	ng	NH ₄ /1	:	0.31	ng	N/1
Class	1B	0.9	ng	NH4/1	:	0.70	ng	N/1
		0.5	ng	NH4/1	:	0.39	mg	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria Class

1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l O Total ammonia not greater than 0.31 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l

- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l O Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
- Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 O Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
- 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/1 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Statistic

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH

Determinand

Suspended solids

5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile arithmetic mean

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

- - - - SOLUBLE COPPER

1.4.4

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
$ \begin{array}{r} 0 - 10 \\ 10 - 50 \end{array} $	95 percentile 95 percentile	<pre>< = 5 > 5 < = 22 > 22</pre>
$50 - 100 \\ 100 - 300$	95 percentile 95 percentile	<pre>< = 40 > 40 < = 112 > 112</pre>

Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

•

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3									
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 30 < = 200 < = 700 > 70 < = 300 < = 1000 > 100 < = 500 < = 2000 > 200</pre>									

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: TAVY

1991 Map	River	Reach upstream of	User	National	Reach	Distance	River	85	B6	[87	88	89	90	91
Position	1	i -	Reference	Grid	Length	from	Quality	NWC	NWC	NWC	NWC	NWC	NWC	I NWC
Number	i	i	Number	Reference	()km }	source	Objective	Class	Class	Class	Class	Class	Class	[Class]
1	i	i	1	F	Ì	(km)	ł	;	ł	1			1 '	
i	i	i	i			1	1		1	1			ł	F 1
ı L	1	i i	i	i i	1	1	l I		t	l I	l I		1 /	1 1
1	1	i	i	i	Ì		i i		1	1			1 '	
·	TAVY	HILL BRIDGE	R12C001	SX 5321 8040	11.0	11.0	18	1B	LA	3	1.8	3	3	<u>3</u>
1 2	TAVY	HARFORD BRIDGE	R12C002	SX 5057 7678	5.2	16.2	1A	1B	18	1A	1A	2	2	2
1 3	TAVY	KELLY SCHOOL	R12C015	SX 4915 7500	2.6	18.8	1B	18	j 18	<u> </u> 1A	1A	2	1A '	1 1
a a	TAVY	WEST BRIDGE	R12C003	SX 4768 7378	2.0	20.8	18	1B	18	1.1.	1.	2	3	2
1 5	TAUY	BELOW CROWNDALE STW	I R12C023	isx 4702 7211	2.1	22.9	j 2	18	j 2	2	2	2	j 3	3
	ITAVY	WASH FORD	R12C005	ISX 4700 7105	1.5	24.4	18	18	j z	j 18	1B	2	2	j 2 j
1 7	TAVY	DENHAM BRIDGE	R12C006	SX 4769 6776	6.2	30.6	Í 1A	18	Í LA	j 1.a	1 1 A	2	1B	1B
I R	ITAUY	LOPWELL DAM	R12C007	SX 4750 6502	4.6	35.2	18	18	18	j 1A	18	1A	1B	<u>i 1</u> a j
	1	1	1	Ì		i	i -	i i	Ì	i i	i		(/	1 1
<u> </u>	TAMERTON FOLIOT STREAM	TAMERTON FOLIOT	R12B005	SX 4690 6090	4.1	4.1	1A		i	i			18	4
	TAMERTON FOLIOT STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)	1	Í	i 0.2	j 4.3	1 A		i	Ì	i -		1B	4 1
			i	i	=	i	1			i	Ì		i i	i i
10	MILTON BROOK	BELOW MILTON COMBE	R12B001	SX 4821 6475	4.4	4.4	1 1A	18	1B	1B	1B	2	2	18
	MILTON BROOK	NORMAL TIDAL LIMIT (INFERRED STRETCH)	i	i i	0.9	5.3	1.1.1.	18	1B	1B	1B	2	2	18
1			i	i		1	Ì	İ	İ	Í	İ I	i I	i i	i i
i	WALKHAM	MERRIVALE BRIDGE	R12D001	SX 5500 7510	8.9	8.9	1.	1.0	18	1.4	1.	2	3	3
1 12	WALKHAM	WARD BRIDGE	R12D002	SX 5421 7203	3.6	12.5	1 1 1 1 1 1	18	2	11	I LA	2	2	1A
13	IWALKHAM	MAGPIE BRIDGE	R12D003	SX 5038 7035	5.7	18.2	1A	18	1A	1A	1A	2	2	1B
14	WALKHAM	GRENOFEN BRIDGE	R12D004	SX 4900 7098	1.7	19.9	1B	1A	LA	18	1B	18	(1B /	18
j	WALKHAM	TAVY CONFLUENCE (INFERRED STRETCH)	i	i i	2.2	22.1	1B	1A	LA	18	18	18	18	1B
1]		_I	ll		.[I	ll	<u> </u>	!	!		!!	! <u></u> !
15	LUMBURN	RUSHFORD BRIDGE	R12C009	SX 4496 7635	3.1	3.1	18	16	18	18	LA	1A		1A
16	LUMBURN	(SHILLAMILL (PRIOR TO R.TAVY)	R12C010	SX 4666 7193	5.9	9.0	18	18	2	1B	18	18	1A	1
	LUMBURN	TAVY CONFLUENCE (INFERRED STRETCH)	1		0.2	9.2	1B	18	2	18	18	18		I TV I
I	l		<u> </u>			!				!			!!	
17	WALLABROOK	PRIOR TO RIVER TAVY	R12C011	ISX 4928 7545	5.6	5.6		18	1.9	ļ		18	18	1.18
	l	_ <u></u>				!	!	<u> </u>	<u> </u>	! <u> </u>	!!		!'	
18	BURN	PRIOR TO RIVER TAVY	R12C008	SX 4983 7618	9.0	9.0	i la i	18	4	1 LA		2	4 4 1	TR
1	BURN	TAVY CONFLUENCE (INFERRED STRETCH)	1		0.3	9.3	I LA	18	2	I TV		2	{ ∠	1 18]
	! <u></u>		- <u> </u>			!	!		!	!	!	 	!!	!!
19	CHOLWELL BROOK	BROOK TAVY	R12C019	5X 5088 /831	4.8	1 4.8	і тв	4		•			4 4 1	4
			1						·	ļ			('	

NYCILINAL RIVERS AUTHORITY - SOUTH WEST RELEAN 1991 RIVER WRIER QUALITY CLASSIFICATION CALCILLATED DETERMINAND STATISTICS USED FOR QUALITY ASSESSMENT CATCHMENT: TAVY

River	Reach upstream of	User	RQD			Calcul	ated Deta	HUTTINA	rd Statis	tics us	ed for Q	uality.	Assessme	nt							-		
P	1	Ref.	1	1						1		1		1		1		ļ		1		1	1
1	1	Nutber	I I	pH i	LOWER	pH (ipper	Temp	erature	1 00	(\$)	BCD	(<i>P</i> IU)	Total	Ameria	Union.	Amaria	S. S	olids	Total	Cupper	Tota	l Zinc
1		Í	1	Class	5tile	Class	95% <u>ilo</u>	Class	5 95kile	Class	5% <u>il</u> e	Class	95kile	Class	5 9 5%ile	Class	95%ile	Class	Mean	Class	95kile	Class	95kile
1		1	1	1		1				ļ .		1		1		1				I		1	1
1	i	l l	1	ļ.		1				ł		1		1		1		1.1	6. S	1			1
l	<u> </u>	1	l –	1		l				l		I	_	<u> </u>		1				l			
TAVY	HULL BRIDGE	RL20001	1.8	3	4.7	<u>1</u> A	7.9	1A	17.1	1A	62.5	1 18	3.3	1A	0.120	IA	0.010	1A I	11.4	2	8.2	18	27.0
TRAY	HARFORD BRILLEE	R120002	1A	1A	5.8	1A	7.8	1A	17.6	18	79.0	18	4.0	1A	0.082	(IA	0.010	1A	10.3	2	30.0	1A	171.0
TRVI	KELLY SCHOOL	RL20015	18	la	6.3	1A	7.7	1A	16.7	1A	83.6	1A	2.3	1A	0.086) 1A	0.010	LA	4.9	I -	-	-	- 1
TANY	WEST BRIDGE	RL20003	1138	1A	6.6	1A	7.8	1A	16.3	1A	69.1	2	6.1	2	0.762	I IA	0.012	18	10.4	1A	22.0	I IA	111.0
TRAY	HELOW CROWNDALE STW	RL20023	2	j 1A	6.5	1A	7.6	AL	17.3	10	66.0	2	9.0	3	3.214	1 I A	0.010	1.4	ມ.9	1A	ш.0	12	27.0
ישרו	wash ford	R120005	18	1A	6.8	AI	7.8	1A	16.2	1A I	67.5	1B	4.7	18	0.335	1A	0.010	1.	15.2	2	27.5	I IA	94.5
TENT	DENIAM BRODGE	R120006	I IA	I IA	6.7	1A	7.7	1A	16.9	1 IA	68.5	18	3.6	1A	0.155	1A	0.010	18	8.8	1.	10.8	1.	29.4
TANY	LOPWELL DAM	RL20007	18	1 1 A	6.7	1A	8.0	1A	19.4	1A	81.6	1A	2.9	[1A	0.142	1A	0.010	1A	4.6	1A	11.0	1A	24.0
1		1	İ	4		1		ļ		1		1		1		1			2	1			
TEMERION POLLOT STREAM	THERICN FOLIOT	R1.28005			6.8	AL	8.0	18	15.4	4	9.0	I IA	2.1	AL	0.126	<u> </u> -	- 1	18	4.6	-	-	-	-
MILION BROOK	BELON MULTON COME	R128001	1	1	7.0	AL	7.7	1A.	16.2	18	81.6	<u> </u> 1	2.2	18	0.582	1	0.010	14	7.9	1.	17.0	14	16.0
WALISPM	MERRIVALE BRIDGE	R120001	1	3	4.8	<u>גר</u>	7.1	14	14.9		87.4	 1A	2.8		0.045	<u> </u>	0.010	18	2.5	2	7.0	1.	14.0
WALKERM	WARD BRIDGE	RL20002	1 1A	1A	5.4	A	7.2	1A I	15.0	I IA	87.8	j 1.A	2.2	1 1	0.040	Í 1A	0.010	18	3.5	1 1	5.0	1A	14.0 j
WALIGAM	MAGPLE HRIDLE	(RL20003	Í 1A	j la	6.3	1 A	7.5	17	15.2	İ IA	87.6	i 18	3.5	i 1A	0.222	i 1A	0.010	1.4	7.9	i la	16.7	1.	25.0 Ì
WALKERM	GRENDFEN BRIDGE	R12004	118	IA I	6.3	1A	7.7	la	15.1	1A	87.8	118	3.2	1.4	0.151	1A	0.010	18	5.9	AL	13.5	1A	24.5
LUMBURN	RUSHPORD FREDCE	 R1,20009	113		6.7	 	7.8	-17	16.0	<u>مد</u> ا	81.6	 	2,7	 	0.105	 1A	0.010	14	6.7	1 14	10.0	18	33.0
ILLMELIRN	SHILLAMILL (PRICE TO R. TAVY)	R120010	118	AL	6.8	X	7.7	1A	15.6	LA	82.6	1A I	2.7	X	0.270	1	0.010	IA	8.7	14	31.5	18	240.0
WALLAERCOK	PRIDE TO RIVER TANY	[R120011		LA IA	7.0		7.9	18	17.0	1,8	78.6	 1A	2.2	<u> </u>	0.130	 1A	0.010	14	6.0	1.	9.9	1.	36.4
ł	1	i	i	i		İ		l		ĺ		Ì		İ.		i i			1	1		1	i
BURN	HUR TO RIVER DAVY	R120008	I IA	<u>1</u> 7	6.8) 1A	7.8	18	16.7	1.	85.7	<u> </u> 18	3.2	18	0.384	1	0.010	18	6.0	1 14	20.8	1.6	69.3
CHOWELL BROOK	BROCK TRAVY	R120019	118	4	6.3	 1x	7.7	1.	17.6	 1A	83.7	18	3.2	18	0.316	1 1A	0.010	18	4.3	2	128.5	2	361.1
1	L		<u> </u>	l		I		l				<u> </u>		<u> </u>		<u>!</u>				<u> </u>			<u> </u>

NATIONAL RIVERS ANALORITY - SOUTH WEST REGION 1991 RIVER WHER QUALITY CLASSIFICATION NUMBER OF SAMPLES (N) AND NUMBER OF SAMPLES EXCEEDING QUALITY STANDARD (F) CRICHMENT: TAVY

River	Reach upstream of	User	dH L	ower	L BHO	tper 🛛	Temper	ature	DD DD	(%)	BOD (ATU)	Total A	minia	Junian.	Amenia	S.So	lids	Total	Opper	Total	Zinc
1		Ref.			1		•		1		1		1		1				1			
i I	 	Number	N	F	N 	F	N 	F	N	F	I N	F	N 	F	N	F	N	F	N 	P	N	F
					 1		I 1		1 						 		1		 			
TAVY	HULL BRIDGE	R12001	34	2	34	-	33	_	33		İЖ	-	34	-	27	-	34	3	27	3	27	1
TRAY	HARFORD BRIDLE	[R120002]	34	-	34	-	j 34	-	j 33	1	j 34	2	j 34	-	j 31	-	34 1	2	14	1	14	- 1
TAV	KEILY SCHOOL	R120015	31	-	j 31	-	j 32	-	30	-	j 32	-	j 31	-	1 28	_	31	1	9	-	9	-
TAVY	WEST BRIDGE	R120003	34	-	i 34	-	j 34	-	33	-	j 34	2	34	1	1 34		34	2	15	-	15	-
TAVY	BELOW CROWNDALE STW	[R120023]	28	-	j 28	-	28	-	28	-	28	1	28	5	28	- 1	28 '	2	19	-	19	-
TAVY	WASH FORD	R120005	36	-	j 36	-	36	-	j 36	-	36	1	36	-	j 36	-	36	3	29	1	29	-
TAVY	DENIGM BRIDGE	RL20006	69	-	69	-	69	-	68	2	69	4	69	1	1 13	-	69	4	63	1	េស	- 1
TAVY	LORWELL DAM	R12007	35	-	35	1	35	-	35	1	35	-	35	-	35	-	34	-	14	-	14	- !
TAMERICA FOLIOF STREAM	TAMERICN FOLIDI	[R128005]	ш	-	<u> </u>	-	<u> 1</u>	-	<u>́</u> п	1	μ	-	jμ	-	9	1	ш	-	7	-	7	1
MILION BROCK	HELOW MILLION COMBE	[R12B001]	36	-	36		35	-	35	1	36	-	36	2	31	-	36	2	14	-	14	-
WALKSAM	MERRIVALE BRIDGE	IR120001	34	2	34	-	1 34		<u> </u>	-	1 <u>34</u>	1	34	-	17		34	i -	16	2	16	
INALISIAM	WARD BRIDGE	[R120002]	35	-	j 35	-	j 35		j 35	-	j 35	-	35		j 17	-	35	1	j 16	-	16	- 1
WALKHAM	MACATE BRIDGE	[RL20003]	35	-	35		35	-	j 35	-	j 35	1	j 35	-	j 27	-	35	2	j 22	-	22	-
MALKHAM	GRENCIPEN BRIDGE	R120004	37	-	37	-	37	-	37	-	37	-	j 37	-	35	÷	37	3	30	-	30	,
	RUNTOND BRIDGE	R12009	33		<u> </u>		33		32		33	_	33	-	33	-	33	1-	<u> 13</u>	-		
ILIMBURN	SHILLAMILL (PRICE TO R. TAVY)	[R120010]	39	-	39	-	36	-	36	-	39	-	39	-	34		39	4	30	-	30	-
WALLAHROOK	HRICR TO RIVER TRAY	R120011	34	-	34	-	33	-	33	1	1 34	-	34	-	27		34	1	20	-	20	-
BLEN	FRICE TO RIVER TANK	RL2CD08	36	-	36	-	36	-	36	-	36	1	36	2	1 33	-	36	1	34	1	34	-
CHOEVELL BROOK	BROOK TAVY	[R120019]	31	-	31	-	30		30	-	31	-	31		23	-	31	1	20	10	20	15
		1 1					1		ł						_!				·		·	

Appendix 8.9

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: TAVY

River	Reach upstream of	User	1	PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD)			
1	1	Ref.	1	1	1 1		1 1		•	}		1
Í	1	Number	pH Lower	pH Upper	Temperature	DO (%)	BOD (ATU)	Total	Un-ionised	Suspended	Total	Total
i i	1	I	1	1	1 1		1 1	Ammonia	Ammonia	Solids	Copper	Zinc
1	1	1	ŀ	I	1		1 1		4			
1			1						1			
l <u> </u>	_l	_!	l		ll				!			
TAVY	HILL BRIDGE	R12C001	6	-	-	-	-	-	-	-	64	0.0
TAVY	HARFORD BRIDGE	R12C002	- 1	-	- 1	1	32	-	-	-	36	- 1
TAVY	KELLY SCHOOL	R12C015	- 1	-	-	-		-	-	-	-	-
TAVY	WEST BRIDGE	R12C003	- 1	-	1 - 1	-	21	9	-		-	-
TAVY	BELOW CROWNDALE STW	R12C023	-	-	1 - 1	-	(-)	106	1 -		-	(
TAVY	WASH FORD	R12C005	I –	—	1 - 1		-	-	1 - 1	-	25	
TAVY	DENHAM BRIDGE	R12C006	-	-	1 - 1	-	18	-	-	i - E	-	-
TAVY	LOPWELL DAM	R12C007	-	-		-	-		-	-	7	-
TAMERTON FOLIOT STREAM	TAMERTON FOLIOT	R128005		-	-	89		•		-	-	
MILTON BROOK	BELOW MILTON COMBE	R12B001		-			-	88			-	-
I WALKHAM	MERRIVALE BRIDGE	R12D001					-				40	-
WALKHAM	WARD BRIDGE	R12D002	-	-	1 - 1	-	- 1	-	-	- 1	- 1	-
WALKHAM	MAGPIE BRIDGE	R12D003		-	1 - 1	-	17	-	-	-	-	-
WALKHAM	GRENOFEN BRIDGE	R12D004	n y a 1	-		-	-	-	-		-	-
LUMBURN	RUSHFORD BRIDGE	R12C009		-			¦¦					
LUMBURN	SHILLAMILL (PRIOR TO R.TAVY)	R12C010		-		-		-	(-	0.00	-	- !
WALLABROOK	PRIOR TO RIVER TAVY	R12C011	-	-		2			-		-	- <u></u>
									·	¦		
	I I I I I I I I I I I I I I I I I I I	1	-		-		, • ,	27		-		
CHOLWELL BROOK	BROOK TAVY	R12C019	-	-	-	-	-		-	-	484	81