ENVIRONMENTAL PROTECTION

National Rivers Authority South West Region

River Valency and Crackington Streams River Water Quality Classification 1990

> NOVEMBER 1991 WQP/91/029 B L MILFORD

> > GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ

RIVER WATER QUALITY IN THE RIVER VALENCY AND CRACKINGTON STREAMS CATCHMENT

1

1

2

2

3

4

₫

5

5

LIST OF CONTENTS Page No. 1 Introduction 2 River Valency and Crackington Streams Catchment 3 National Water Council's River Classification System 4 1990 River Water Quality Survey 5 1990 River Water Quality Classification 6 Non-compliance with Quality Objectives 7 Causes of Non-compliance 8 Glossary of Terms **9** References 10 Appendices: 10.1 River Quality Objectives including Monitoring points 10.2 Basic Determinand Analytical Suite 10.3 National Water Council (NWC) River Classification System 10.4 NWC Criteria for Non-Metallic Determinands - Regional Variation 10.4.1 NWC Criteria for Metallic Determinands - Regional Variation 10.5 1990 River Water Quality Classification - tabular format 10.6 1990 River Water Quality Classification - map format 10.7 Calculated Determinand Statistics used for Quality Assessment

- 10.8 Compliant/Non-Compliant River Reaches
- 10.9 Number of Samples Results exceeding quality standards
- 10.10 Percentage Exceedance of Determinand Statistics from Quality Standard
- Identification of Possible Causes of Non-Compliance 10.11 with River Quality Objectives

River Valency & Crackington Streams

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Valency and Crackington Streams catchment.

2. RIVER VALENCY AND CRACKINGTON STREAMS CATCHMENT

The River Valency flows over a distance of 8.0 km from its source to the tidal limit, (Appendix10.1). Water quality was monitored at two locations at approximately monthly intervals.

The Crackington Stream and Millook Stream flow over a distance of 5.0 km and 5.3 km respectively from their source to the tidal limits, (Appendix 10.1). Water quality was monitored on both watercourses at one location on twenty occasions because of no recent water quality data.

Wanson Water flows over a distance of 3.8 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at one location at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Valency and Crackington Streams catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

<u>Class</u>	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

2

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) α lso based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

8. GLOSSARY OF TERMS

RIVER REACH	A segment of water, upstream from sampling point to the next sampling point.
RIVER LENGTH	River distance in kilometres.
RIVER QUALITY OBJECTIVE	That NWC class, which protects the most sensitive use of the water.
95 percentiles	Maximum limits, which must be met for at least 95% of the time.
5 percentiles	Minimum limits, which must be met for at least 95% of the time.
BIOLOGICAL OXYGEN DEMAND (5 day carbonaceous ATU)	A standard test measuring the microbial uptake of oxygen - an estimate of organic pollution.
рн	A scale of acid to alkali.
UN-IONISED AMMONIA	Fraction of ammonia poisonous to fish, NH ³ .
SUSPENDED SOLIDS	Solids removed by filtration or centrifuge under specific conditions.
USER REFERENCE NUMBER	Reference number allocated to a sampling point.
INFERRED STRETCH	Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

9. REFERENCES

Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Appendix 10.1

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

1951

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/l C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/1 NNitrate as mq/1 N Nitrite as mg/l N Suspended solids at 105 C as mq/1Total hardness as mg/l CaCO3 Chloride as mq/1 Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/l Na Potassium (total) as mg/l K Magnesium (total) as mg/1 Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

NWC RIVER QU	ALITY C	LASSIFICATION SYSTEM				
River Class		Quality criteria		Remarks	Curren	t potential uses
		Class limiting criteria (95 percenti	ile)			1
1A Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
1B Good Quality	(i) (ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/l Ammonia not greater than 0.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/1 Average anmonia probably not greater than 0.5 mg/1 Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent presen or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 18 together are essentially the Class 1 of River Pollution Survey (RPS)	t the	Water of less high quality than Class 1A but usable for substantially the same purposes
						1.4
2 Fair Quality	(i) (ii) (iii)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with the requirements for A3* water	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/1 Similar to Class 2 of RPS Water not showing physical signs of pollution other than	(i) (ii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries

•

- (iv) Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)
- humic colouration and a little (iii) Moderate amenity value foaming below weirs

APPENDIX 10

3 Poor Quality	(1) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present. Way be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up
4 Bad Quality	Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance	
Ex L		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing
_				

- Notes (a) Under extreme weather conditions (eg flood, drought, freeze-up), or when dominated by plant growth, or by aquatic plant decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results. (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
 - (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Wember State.

Annonia Conversion Factors

1

(mg NHi/l to mg N/l)

Class	18	0.4	ng	NH4/1	:	0.31	ng	N/1
Class	18	0.9	ng	NH¢/1	:	0.70	ng	N/1
		0.5	69	NH ₁ /1	Ξ	0.39	ng	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

- 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l 0 Total ammonia not greater than 0.31 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l O Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 0 Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH

Determinand

Suspended solids

5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile arithmetic mean

Statistic

---- ...

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 5 > 5 < = 22 > 22 < = 40 > 40 < = 112 > 112</pre>

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn									
		Class 1 Class 2 Class 3									
0 - 10	95 percentile	<pre>< = 30 < = 300 > 300</pre>									
10 - 50	95 percentile	<pre>< = 200 < = 700 > 700</pre>									
50 - 100	95 percentile	<pre>< = 300 < = 1000 > 1000</pre>									
100 - 300	95 percentile	<pre>< = 500 < = 2000 > 2000</pre>									

NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: VALENCY AND CRACKINGTON STREAMS (29)

1	1990 Map	River	Reach upstream of	User	National	Reach	Distance	River	85	86	87	88	89	90
I	Position			Reference	Grid	Length	from	Quality	INHC	SMC	INC	NHC	SINC	INC
1	Number		1	Runber	Reference	(kan)	source	Objective	Class	Class	Class	Class	Class	Class
İ			Í	1			()km)	Ì	i	i				i i
i	i		i	i i			i	i	i	i				i i
i	i		i	i i			ì	i	i	i				i i
i	i		i	i			i	i	i	i			i i	i i
i		VALENCY	ANDERTON FORD	R26A006	SX 1388 9130	3.1	<u>j 3.1</u>	18	18	i 3	18	18	- <u>1</u> B	1 <u>18</u>
i	2 1	VALENCY	BOSCASTLE BRIDGE	I R26A003	SX 0988 9128	4.7	i 7.8	I 1B	Í 18	i 2	1B	18	1.4	i ia i
i	-	VALENCY	MEAN HIGH WATER (INFERRED STRETCH)	1		0.2	1 8.0	 1 1B	18	12	18	18	1.	1.1.1
i	í		//	i i			1							
ï	3	CRACKINGTOR STREAM	CRACKINGTON HAVEN BRIDGE EAST	R26A001	SX 143 969	4.9	4.9	18	18				—	
i		CRACKINGTON STREAM	MEAN HIGH WATER (INFERRED STRETCH)	1 1		0.1	5.0	18	18					3 1
i	j			i i							i		i	
ř		MILLOOK STREAM	MILLOOK	826A004	SS 1848 0002	5.2	5.2	18	18		——;		¦	2
i	- 1	MILLOOK STREAM	MEAN HIGH WATER (INTERRED STRETCH)	i		0.1	5.3	18	18		i	i	i	21
i	i			i i								ł		- i
ŕ	<u> </u>	WANSON WATER	MANSON	R26A005	SS 1965 0096	3.5	3.5	18	18		¦	¦	¦	
ł			INTAN WARTE (THEFDER) CODEWAL			0.1	2.0	10	10					
i		MANJUN MAILA	INDER UTON MATON (THEPARD) SINGLAR)	! !		4.3	1 2.0	10	10		!		!	_ _
١,	l			l			[]				I	I	!	!

Valency and Crackington Streams Water Quality - 1990 Key N NWC Class 1A NWC Class 1B NWC Class 2 NWC Class 3 NWC Class 4 Not monitored Wanson Water Version 1 / 1990 Millook Stream km. 0 1 2 -3 4 5 Scale Crackington Stream Valericy Stream nS27

NUTCHAL RIVERS ANTHORNY - SOUTH WEST HEALON 1990 RIVER WHER QUALITY CLASSIFICATION CALILATED DEDRYINAND SURCISICS USED FOR QUALITY ASSESSMENT CATCHMENT: VALENCY AND CRACKINETON STREMS (29)

.

River	Reach upstream of	User	90		Calculated Dateminand Statistics used for Quality Assessment																		
1	1	Ref.	INC	1		ł				I		1		1		1		1		12.5			i
1	¶	Nate	(Class)	(pH)	LOWRE	इस	Upper	Тепр	erature	j 🚥	(\$)	BOD	(ALU)	Total /	Amonia	Union.	Amonia	S.S	olids	Total	Capper	Tota	l Zúnc
1	1	1	1 1	Class	Shile	Class	95kile	Class	95kile	(Class	5kile	Class	95kile	Class	95kile	Class	95 1 10	Class	Meen	Class	95tile	Class	95kile
1	1	1	1 1			1				1		Í I				i		Ì		1			
1	1	1	1 (1		1				1		İ				İ		Ì		i i			Í
l		<u> </u>								٩		L	_	l I		Ĺ		<u>ا</u>		1		•	
VALENCY	ANDERICN FORD	pr26A006		I JA	6.8	14	7.8	<u>1</u> A	15.8	118	77.6	I IV	2.9	118	0.466	I IA	0.010	1A	8.3	1A	9.3	18	75.5
VALENCY	BOSCASTLE ERILGE	R26A003	6 1 A	1A	6.7	AL	8.1	17	16.7	AL I	84.6	AL I	3.0	1A	0.235	14	0.010	17	15.1	AL	12.4	7	75.2
CRACKINGION STREAM	CRACICINGION HEAVEN HEADOE EAST	1726400	3	1	7.0	 1 A	8.8	1	19.0	 1A	86.0	2	7.2	2	0.981	3	0.030	 1	11.1	AL	5.0	18	10.0
WANNER WRITER	MENECK	R264005	5 3 	1	6.7	1A	8.4	1A	19.4	2	50.0	 2	5.2	1 3	9.600	3	0.220	<u>, 17</u>	5.2	AL	24.0	18	17.0
Millook Sirean	MILLOOK	R26A004	2	1.	7.1	1 A	8.4	2	21.6	, 1a 	87.0	A	2.3	1A 	0.147	<u>, 17</u>	0.010	<u>1</u> 7	3.7	1 A 	22.0	JA	8.0

.

Valency and Crackington Streams Compliance - 1990

NRICUNAL RIVERS AND RETT - SOUTH WEST RESION 1990 RIVER WHER QUALITY CLASSIFICATION NUMBER OF SAMPLES (N) AND RUMER OF SAMPLES EXCEEDING QUALITY STANDARD (F) CRICHMENT: VALENCY AND CRACKINGTON STREAMS (29)

River	Beach upstress of	User Ref.	th T	MOC	pr u	iber	Tempera	rture	DO 	(\$)	BOD ()#	UD)	Total A	monia	Union.	Amonia	S.Sal	ids	Total	Comper	Thial	Zinc
	i i	Ruther	N	F	<u>រ</u> ត	F	i ស i	7	19 	F	N	F	์ พ	F	i M	r i	ឥ	F	N 	F	N	F
																					- 4	÷
VALENCY	ANDERIUN PORD BOSCASTLE BRIDGE	R25N006 R25N003	26 28	Ξ	26 28	-	26 27	-	. 26 27	1	26 28		26	-	24 27	-	26 28	2 3	22	-	22 23	-
CRACKINGION SINEAM	CRACKINGION HAVEN BRIDDE EAST	R26A001	20	-	20	-	19	-	19	-	20	1	20	1	19	1	20	3	12	-	12	-
MILLOOK SURFAM	ранск	7254004	40	-	40	-	40	2	38	2	40	-	40	-	40	-	40	-	24		24	_
WARSON WRITER	MAREICEN	1264005	38	-	38	-	38	-	38	4	38	2	38	6	38	4	38	2	24	-	24	-

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: VALENCY AND CRACKINGTON STREAMS (29)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	F STATISTIC	FROM QUALIT	'Y STANDARD				
1	Í	Ref.							1			1
1	1	Number	pH Lower	pH Upper	Temperature	DO (%)	BOD (ATU)	Total	Un-ionis●d	Suspended	Total	Total
l	1	1 1	ľ	1	1			Ammonia	Ammonia	Solids	Copper	Zinc
Ì	Ì	1 1		I	1		1 1		1	1 1]	1
Ì	1	1 1			1 1	1			1			1
I		_11		I	l	l						l <u>•</u>
VALENCY	ANDERTON FORD	R26A006	-	-	-	I <u> </u>	-	-	-	-	-	
VALENCY	BOSCASTLE BRIDGE	R26A003	-		00-00	. –	-	-		10 1 0	-	-
CRACKINGTON STREAM	CRACKINGTON HAVEN BRIDGE EAST	R26A001	-	-			43	40	43			-
İ	i i	i i					i i				100 million (1997)	1
HILLOOK STREAM	MILLOOK	R26A004	-	-	-	-	-	1.0		-		-
		_!!			!		!					
WANSON WATER	WARSON	R26A005	- 	-	-	17	4	1271	948	-	-	-
	_I								l			l

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSS OF NON-COMPLIANCE WITH ROO CATCHDENT: VALENCY AND CRACKINGTON STREAMS (29)

...

1990 Map River	Reach upstream of	User	Reach	Possible causes of non-compliance	Т
Position	i	Reference	Length	i ·	Ì
Number		Number	(km)	Ì	Ì
1 1		1			1
1 1		1			1
1 1				1	I
<u> </u>					ļ
3 CRACKINGTON STRE	M CRACKINGTON HAVEN BRIDGE	EAST R26A001	4.9	LAND RUN-OFF, DROUGHT, SEWAGE TREATMENT WORKS, PARMING ACTIVITIES, SE	Ъļ
!!					_!
1 4 MILLOOK STREAM	MILLOOK	RZ6A004	5.2	DROUGHT, SEPTIC TANK	1
ll					-!
I 5 IWANSON WATER	WANSON	R26A005	3.5	POLLUTION (ONE OFF), SEPTIC TANK, LAND RUN-OFF, PARMING ACTIVITIES	1
II		II		I	_1

.