

ENVIRONMENTAL PROTECTION

National Rivers Authority South West Region

River Fal Catchment River Water Quality Classification 1990

NOVEMBER 1991 WQP/91/020 B L MILFORD

> GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

7

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

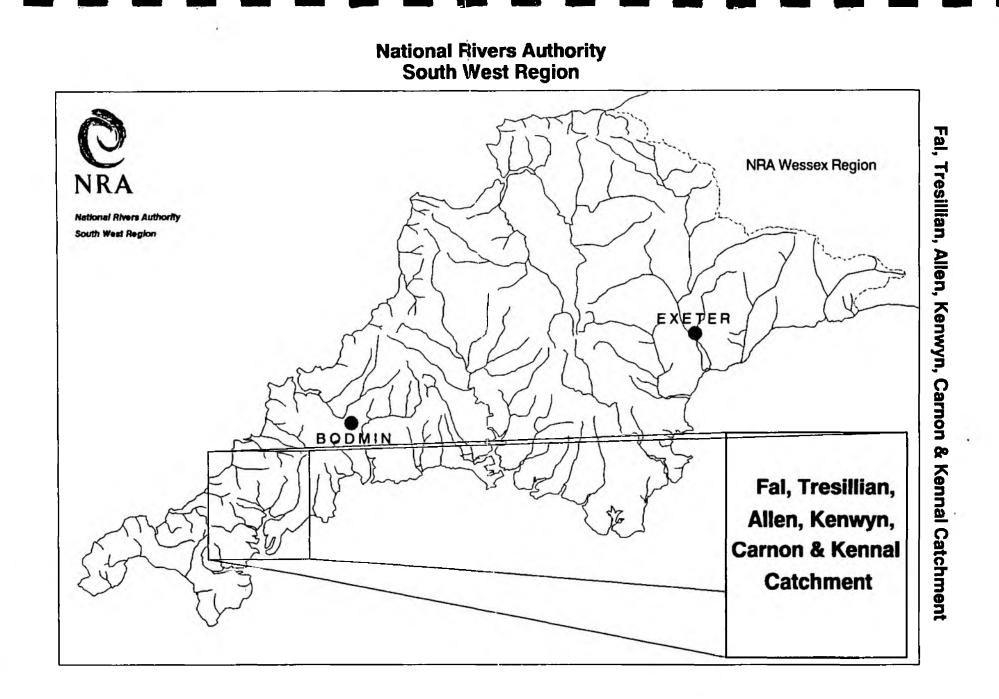
Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ

RIVER WATER QUALITY IN THE RIVER FAL CATCHMENT

1.1


1.

,

LIST OF CONTENTS

			Page	No.
1	Introdu	iction	1	L
2	River R	al Catchment	1	L
3	Nationa	al Water Council's River Classification System		3
4	1990 Ri	iver Water Quality Survey	4	4
5	1990 Ri	iver Water Quality Classification	4	4
6	Non-con	mpliance with Quality Objectives	!	5
7	Causes	of Non-compliance	!	5
8	Glossa	ry of Terms	(6
9	Referen	nces	(6
10	Appendi	ices:		
	10.1	River Quality Objectives including Monitoring points		
	10.2	Basic Determinand Analytical Suite		
	10.3	National Water Council (NWC) River Classification System		
	10.4	NWC Criteria for Non-Metallic Determinands - Regional Variation		
	10.4.1	NWC Criteria for Metallic Determinands - Regional Variation		
	10.5	1990 River Water Quality Classification - tabular format		
	10.6	1990 River Water Quality Classification - map format		
	10.7	Calculated Determinand Statistics used for Quality Assessment		
	10.8	Compliant/Non-Compliant River Reaches		
	10.9	Number of Samples Results exceeding quality standards		
	10.10	Percentage Exceedance of Determinand Statistics from Quality Standard		

10.11 Identification of Possible Causes of Non-Compliance with River Quality Objectives

.

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Fal catchment.

2. RIVER FAL CATCHMENT

The River Fal flows over a distance of 29 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at eight locations on the main river at approximately monthly intervals.

The Percuil River (5.5 km), Trevella Stream (8 km), River Allen (9.6 km), River Kenwyn (7.5 km) and Calenick Stream (9.1km) were all monitored at approximately monthly intervals at two sites between their source and the tidal limits, (Appendix 10.1).

The Penkevil Stream (5.6 km), Perranwell Stream (4.8 km), Penryn Stream (4.3 km) and Maenporth Stream (5.6 km) were all monitored at one site between their source and the tidal limits, (Appendix 10.1) on twenty occasions during 1990 because of no recent water quality data.

Swanpool Stream flows over a distance of 3.2 km from its source to the tidal limit, (Appendix 10.1) and was monitored at one site at approximately monthly intervals.

Mylor Creek flows over a distance of 2.2 km from its source to the tidal limit, (Appendix 10.1) and was monitored at three locations. Two sites were sampled at approximately monthly intervals and the site at Enys was sampled on twenty occasions during 1990 because of no recent water quality data.

The River Tresillian flows over a distance of 12.5 km from its source to the tidal limit, (Appendix 10.1) and was monitored at five locations. Three sites were sampled at approximately monthly intervals, the site downstream of Laddock sewage treatment works was sampled on six occasions and the site at Trendeal was sampled on fifteen occasions during 1990 because of no recent water quality data.

The River Carnon flows over a distance of 9 km from its source to the tidal limit, (Appendix 10.1) and was monitored at six locations. Five sites were sampled at approximately monthly intervals and the site at Devoran Bridge, which is a National Water Quality monitoring point, was sampled fortnightly. In addition County Adit discharge was monitored at approximately monthly intervals.

The River Kennal flows over a distance of 12.1 km from its source to the tidal limit, (Appendix 10.1) and was monitored at three sites at approximately monthly intervals.

Throughout the Fal catchment three secondary tributaries of the River Fal, two secondary tributaries of the River Tresillian, one secondary tributary of the River Allen, one secondary tributary of the River Kenwyn, three secondary tributaries of the River Carnon and one secondary tributary of the River Kennal were monitored. In addition Stithians Reservoir and College Reservoir were both monitored at one location at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

The Trewithen Stream and Bodella Brook flow over a distance of 6.0 km and 1.4 km respectively from their source to the confluence with the River Fal, (Appendix 10.1) and were both monitored at one location on twenty occasions during 1990 because of no recent water quality data. Monitoring points are located in the lower reaches.

The Gwindra Stream flows over a distance of 9.8 km from its source to the confluence with the River Fal, (Appendix 10.1) and was monitored at four locations at approximately monthly intervals.

Kestle Stream and Brighton Stream flow over a distance of 9.2 km and 6.8 km respectively from their source to the confluence with the River Tresillian, (Appendix 10.1) and were both monitored at one location at approximately monthly intervals.

Zelah Brook flows over a distance of 5.2 km from its source to the confluence with the River Allen, (Appendix 10.1) and was monitored at one location at approximately monthly intervals.

Shortlanesend Stream flows over a distance of 1.6 km from its source to the confluence with the River Kenwyn, (Appendix 10.1) and was monitored at one location on twenty occasions during 1990 because of no recent water quality data.

Baldhu Stream (1.6 km), Hick's Mill Stream (4.9 km) and St. Day Stream (3 km) were all monitored at one location between their source and confluence with the River Carnon, (Appendix 10.1) on twenty occasions during 1990 because of no recent water quality data.

Stithians Stream flows over a distance of 5.6 km from its source to the confluence with the River Kennal, (Appendix 10.1) and was monitored at one site on twenty occasions during 1990 because of no recent water quality data.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Fal catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Class	Description
1A 1B	Good quality Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water guality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- 1) To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would have affected the classification of the River Fal at Terras Bridge, Grampound Bridge and Tregoney Gauging Station and the Gwindra Stream at all sites, except Nanpean Bridge.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

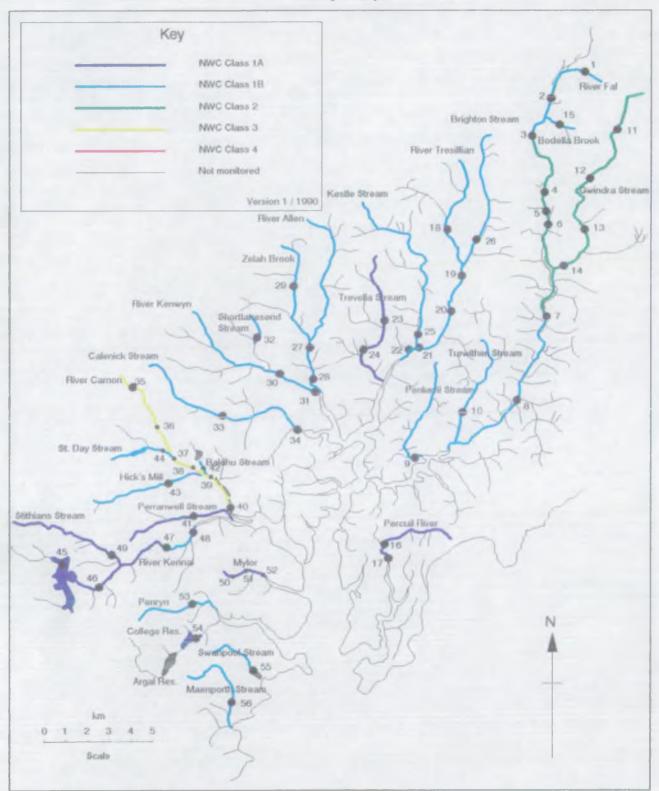
Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.


8. GLOSSARY OF TERMS

RIVER REACH A segment of water, upstream from sampling point to the next sampling point. RIVER LENGTH River distance in kilometres. RIVER QUALITY OBJECTIVE That NWC class, which protects the most sensitive use of the water. 95 percentiles Maximum limits, which must be met for at least 95% of the time. Minimum limits, which must be met for at least 5 percentiles 95% of the time. BIOLOGICAL OXYGEN DEMAND A standard test measuring the microbial uptake of (5 day carbonaceous ATU) oxygen - an estimate of organic pollution. A scale of acid to alkali. рН Fraction of ammonia poisonous to fish, NH³. UN-IONISED AMMONIA SUSPENDED SOLIDS Solids removed by filtration or centrifuge under specific conditions. USER REFERENCE NUMBER Reference number allocated to a sampling point. INFERRED STRETCH Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

9. REFERENCES

Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Fal, Tresillian, Allen, Kenwyn, Carnon & Kennal Catchments River Quality Objectives

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/l O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/l C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/l N Nitrate as mg/l N Nitrite as mq/l N Suspended solids at 105 C as mg/l Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/1 PSilicate reactive dissolved as mg/l SiO2 Sulphate (dissolved) as mg/l SO4 Sodium (total) as mg/l Na Potassium (total) as mg/1 K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

River Class	5	Quality criteria		Remarks	Curren	t potential uses
		Class limiting criteria (95 percent	ile)			
1A Good	(i)	Dissolved oxygen saturation	(i)	Average BOD probably not	(i)	Water of high quality
Quality	(ii)	greater than 80% Biochemical oxygen demand not greater than 3 mg/l	(ii)	greater than 1.5 mg/l Visible evidence of pollution should be absent		suitable for potable supply abstractions and for all abstractions
	(iii)			Should be absent	(ii)	Game or other high class fisheries
	(iv)	Where the water is abstracted for drinking water, it complies with requirements for A2* water			(111)	
	(v)	Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)				
18 Good Quality	(i) (ii)	DO greater than 60% saturation BOD not greater than 5 mg/1	(i)	Average BOD probably not greater than 2 mg/l		Water of less high quality than Class 1A but usable fo
	(iii)		(ii)	Average ammonia probably not greater than 0.5 mg/1		substantially the same purposes
	(iv)	Where water is abstracted for drinking water, it complies with	(111)	Visible evidence of pollution should be absent		
	{v)	the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(iv)	Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or		
			(v)	eutrophication Class 1A and Class 1B together are essentially the Class 1 of t River Pollution Survey (RPS)	he	

2 Fair

(i)

Quality

 (ii) BOD not greater than 9 mg/l
 (iii) Where water is abstracted for drinking water it complies with the requirements for A3* water

DO greater than 40% saturation

- (iv) Kon-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)
- Average BOD probably not greater than 5 mg/1
- (ii) Similar to Class 2 of RPS
- (iii) Water not showing physical signs of pollution other than humic colouration and a little foaming below weirs
- (i) Waters suitable for potable supply after advanced treatment

APPENDIX 10

- (ii) Supporting reasonably good coarse fisheries
- (iii) Moderate amenity value

i) Not likely to be anaerobic	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present.
This may not apply if there is a high degree of re-aeration		May be used for low grade industrial abstraction purposes. Considerable
Logo Company		potential for further use if cleaned up
Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
DO greater than 10% saturation		Insignificant watercourses
		and ditches not usable, where the objective is simply to prevent nuisance developing
	 Not likely to be anaerobic BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times 	 ii) Not likely to be anaerobic iii) BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times

- decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside i stated levels for those Classes. When this occurs the cause should be stated along with analytical results.
- (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as KH4. **
- (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons <u>stated</u>.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

Annonia Conversion Factors

 $(ng NH_4/1 to ng N/1)$

Class	18	0.4	B g	NHc/1	=	0.31	æg	N/1
Class	18	0.9	ng	NH4/1	:	0.70	ng	¥/1-
		0.5	Bg	NH ₄ /1	=	0.39	89	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

- River Quality Criteria
- Class
 - 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/1 0 Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l O Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 O Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/1 O
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Statistic

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH

Determinand

Suspended solids

5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile arithmetic mean

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>

RATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: FAL (20)

1990 Map	River	Reach upstream of	User	Rational	Reach	Distance	River	85	86	87	88	89	90
Position			Reference	Grid	Length	from	Quality	SINC	INVC	NWC	NHC	SINC	SMC
Number	1		Runber	Reference	(km)	source	Objective	Class	Class	Class	Class	Class	Class
	1		i	Ì		()cm)	1	İ	j,	i i	İ	ł	Ì
	i		İ	ļ		ĺ		j.		1			
	1					1	f 						
1	PAL	TREGOSS BRIDGE		SW 9655 6013	3.3	3.3	18	1B	18	18	18	18	3
2	PAL	GAVERIGAN BRIDGE	•	SW 9373 5875		7.5	18	18	2	2	18	18	1B
3	PAL	RETEW BRIDGE	•	SW 9265 5696		9.8	1B	3	2	2	1B	18	3
4	PAL	KERNICK BRIDGE	,	SW 9325 5464		12.8	2	3	2	2	3	3	3
5	PAL	TRETHOSA BRIDGE	•	SW 9340 5362		13.9	2	3 ;	2	2	3	3	
6	FAL	TERRAS BRIDGE	R19C004	SW 9340 5361	0.6	14.5	2	3	2	2	3	3	3
7	PAL	GRAMPOUND BRIDGE	R19C005	SW 9336 4844	5.6	20.1	2	3	2	2	3	3	3
8	FAL	TREGONEY GAUGING STATION	R19C006	SW 9205 4473	4.3	24.4	18	3	2	2	3	3	3
	FAL	NORMAL TIDAL LIMIT (INFERRED STRETCH)	Ì		4.6	29.0	1B	3	2	2	3	3	3
	PENKEVIL STREAM	PARSON'S HILL WOOD		SW 8709 4185	5.2	5.2	18	18					2
-	PENKEVIL STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)			0.4	5.6	1B	1B					2
10	TREMITHEN STREAM	MELLINGOOSE		SW 8955 4438	4.1	4.1	 1B	18					2
	TREWITHEN STREAM	FAL CONFLUENCE (INPERRED STRETCH)	i		1.9	6.0	18	18					2
11	GWINDRA STREAM	NANPEAN BRIDGE	R19C014	SW 9632 5586	2.4	2.4	2	3	3	3	3	3	2
12	GWINDRA STREAM	GOONABARN		SW 9555 5491		3.8	2	3	3	3	3	3	3
13	GWINDRA STREAM	GWIEDRA BRIDGE		SW 9510 5290	2.8	6.6	2	3 (3	3	3	3	3
14	gwindra stream	TREWAY BRIDGE	R19C009	SW 9380 5065		9.7	2	3	2	3	3	3	3
	gwindra Stream	(PAL CONFLUENCE (INFERRED STRETCH)	1		0.1	9.8	2	3	2	3	3	3	3
	BODELLA BROOK	CARSELLA	R19C018	SW 9409 5765		0.7	18	3	¦	i			3
	BODELLA BROOK	FAL CONFLUENCE (INFERRED STRETCH)			0.7	1.4		3					3
16	PERCUIL RIVER	LANDOSE	•	SW 8606 3782	3.7	3.7	1A	18	18			18	2
17	PERCUIL RIVER	TRETHEN MILL	R19A013	SW 8613 3638 	1.8	5.5	1A	18	1B			18	2
18	TRESILLIAN RIVER	TRENDEAL	R19D033	SW 8868 5283	4.0	4.0	18	18	2	18	- <u>1</u> B	2	18
19	TRESILLIAN RIVER	LADOCK WATER FUMPING STATION	•	SW 8928 5102	2.3	6.3	1B	18	2	18	1B	2	2
20	TRESILLIAN RIVER	TRESONGAR BRIDGE	R19D002	SW 8855 4810	3.3	9.6	18	2	2	2	2	2	18
21	TRESILLIAN RIVER	TRESILLIAN PUMPING STATION	R19D032	SW 8713 4706]	2.1	11.7	18	2	2	2	2	2	I
22	TRESILLIAN RIVER	BELOW LADDOCK STW	R19D034	SW 8710 4695	0.2	11.9	1B	2	2	2	2	2	1
ĺ	TRESILLIAN RIVER	NORMAL TIDAL LIMIT (INFERED STRETCH)	!		0.6	12.5	18	2	2	2	2	2	
	TREVELLA STREAM	FROGHORE BRIDGE		SW 8576 4835	3.8	3.8	<u> </u>	18	<u></u>	-1B	<u>1</u> B		
	TREVELLA STREAM	TREGURRA BRIDGE	R19D014	SW 8483 4689	2.0	5.8	18	18	- 1A	1B	1B	2	1B
	TREVELLA STREAM	(BORMAL TIDAL LINIT (INFERRED STRETCH)			2.2	8.0	אנ	18	ן אנ	18	1B	2	18
,	KESTLE STREAM	CANDOR FORD	R19D008	SW 8737 4770	8.5	8.5	1B	18		¦	¦	<u> </u>	2
ļ	KESTLE STREAM	TRESSILIAN R. CONFL. (INFERRED STRETCH)			0.7	9.2	1B	1B	18	Ì	ļ	18	2
	BRIGHTON STREAM	HEW MILLS	R190005	SW 9001 5228	5.5	5.5	18	- <u>1</u> B	 ¦	2	2		18
	BRIGHTON STREAM	TRESSILIAN R. CONFL. (INFERRED STRETCH)			1.3	6.8	18	18	2	2]	2	2	1B
		F				, 1		-				1	

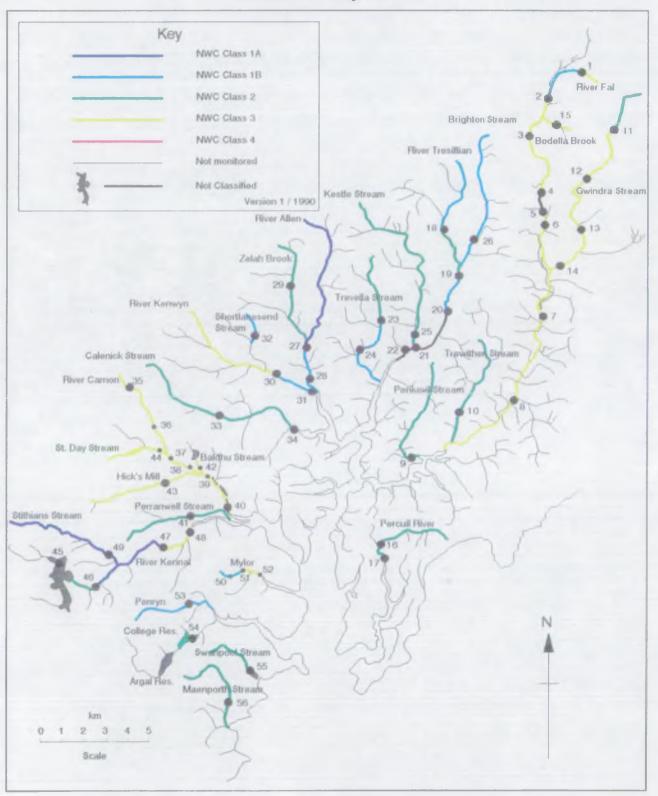
Appendix 10.5

.

NATIONAL RIVERS AUTHORITY - SOUTH MEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: FAL (20)

. .

1990 Map Position Number		Reach upstream of	User Reference Number	Rational Grid Reference 	Reach Length (km)	Distance from source (km)	River Quality Objective	• •	86 399C Class	87 390C Class	88 NMC Class	89 SMC Class	90 NMC Class
27		IDLESS BRIDGE	 	 		7.3	18	 			 	 1B	
28	ALLEN	MORESK LAUNDRY BRIDGE NORMAL TIDAL LIMIT (INFERRED STRETCH)	•	SW 8268 4505	2.2	9.5	18 18	2	18 18	1B 1B	1B 1B	1B 18	1B 1B
29	ZELAH BROOK	GNARNICK MILL ALLEN CONFLUENCE (INFERED STRETCH)	R19D030	SW 8165 4923	3.0 2.2	3.0 5.2	1B 1B	 					2
	KERWYN	NEW MILL		SW 8085 4587		5.1	18	18	18		2	2	
	KERWYN KERWYN	BOSVIGO BRIDGE NORMAL TIDAL LINIT (INFERRED STRETCH)	R19D007 	5W 8161 4528	1.0 1.4	6.1 7.5	18 18	18 18	1B 1B		2 2	2	1B 1B
32	SHORTLANESEND STREAM	ROSEMORTHY	R19D015	SW 8000 4710	1.6	1.6	<u>1</u> B	 		·			1B
	CALENICK STREAM	HUGLIS	•	SW 7840 4381	4.5	4.5	1B	18	18		2	2	2
	CALENICK STREAM	CALEFICK BRIDGE NORMAL TIDAL LIMIT (INFERRED STRETCH)	R19D006 	SW 8220 4310 	4.5 0.1	9.0	18 18	1B 1B	18 18		2 2	2	2
35	CARNON REVER	CHACENATER VIADUCT		SW 7446 4520	0.8	0.8	3	3	3	3	3	3	3
	CARNON RIVER	BELOW CRACEMATER S T W		SW 7560 4308	2.4	3.2	3	3	3	3	3	3	3
	CARNON RIVER	THELVEHEADS		SW 7618 4194		4.8	3		3		3	3	3
	CARNON RIVER	BELOW COUNTY AND WELLINGTON ADITS		SW 7669 4146 SW 7758 4115	0.9 0.6	5.7	3	3 3	3		2	1 3	1 3
	CARNON RIVER	DEVORAN BRIDGE		ISW 7910 39411		8.9	3	1 3 1	2	3	3	3	1 3
	CARNON RIVER	NORMAL TIDAL LINIT (INFERRED STRETCH)			0.1	9.0	3	3	3	3	3	3	3
,	PERRANNELL STREAM PERRANNELL STREAM	PERRANMELL. CARNON CONFLUENCE (INFERRED STRETCH)	R196020	SW 7758 3940	3.5 1.3	3.5	1A 1A	1B 1B					2
	BALDHU STREAM BALDHU STREAM	BISSOE BRIDGE CARNON CONFLUENCE (INFERRED STRETCH)	R19E021	5W 7760 4146	1.4 0.2	1.4 1.6	18 18	3		i			3
43	HICK'S MILL STREAM	HICK'S MILL	R19E019	SW 7673 4115	4.5	4.5	18	3		;			3
	HICK'S MILL STREAM	CARSON CONFLUENCE (INFERRED STRETCH)	İ		0.4	4.9	18	3					2
	ST DAY STREAM ST DAY STREAM	PRIOR TO R.CARNON CARNON CONFLUENCE (INFERRED STRETCH)	R19E022	SW 7595 4225	2.9 0.1	2.9	1B 18	- <u>3</u> - 3					3 3
	KENNAL	INFLOW, STITHLANS RES. (UNHOR. STRETCH)	¦	i	2.6	2.6	<u> </u>	18		18	18	2	¦
	KENNAL	STITHIANS RESERVOIR		[5W 7195 3635]	1.5	į 4.1 j	17	j 18 j	18	18	1B	2	l .
	KENNAL	TREGOLLS BRIDGE		[SW 7300 3613]	1.6	5.7	17	1B	18	1B j	1B	2	2
	KENNAL	PORSANDOTH GAUGING STATION		SW 7631 3768	4.6	10.3	18	18	18	18	1B	2	18
	KERNAL KERNAL	STICKEN BRIDGE NORMAL TIDAL LINIT (INPERRED STRETCH)	R192007	SW 7735 3819 	1.4 0.4	11.7 12.1	1B 1B	1B 1B	18 18	18 18	1B 1B	2	3
49	CTTNUTANC CTOPAN					i		i					-14
49	STITHIANS STREAM	SEALTREAUCH MOOR	R196023	54 7349 3735	4.9	4.9	1λ	18	i				-i


1

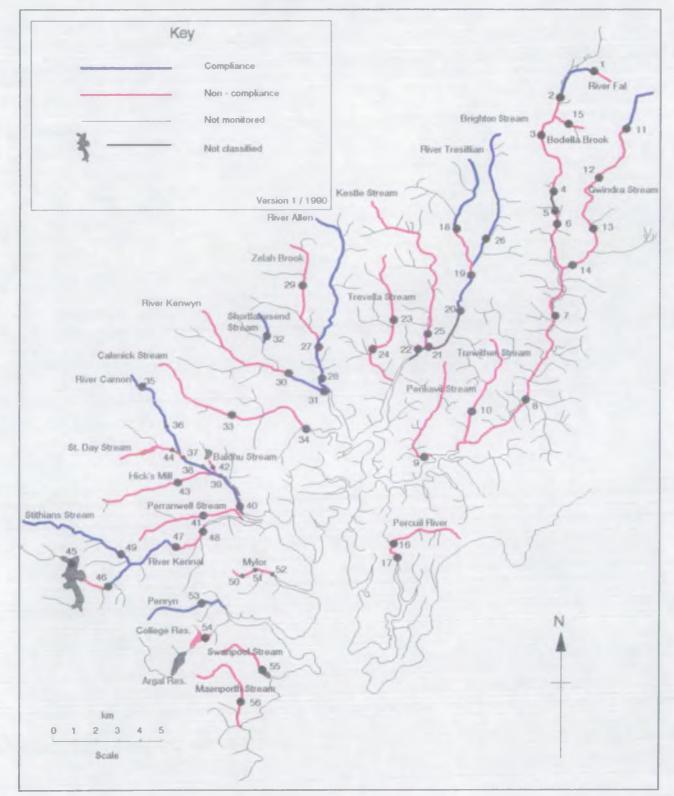
Appendix 10.5

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: FAL (20)

1990 Map		Reach upstream of	User	National	•	Distance	•	85	86	87	88	89	90
Position			Reference	•	Length	from	Quality	•			•	INNC	BINC
Runber			Runder	Reference	(km)	•	Objective	CLASS	CLASS	CIASS	CLASS	CLASS	Class
						(1km) 		 					
	STITHIANS STREAM	KENNAL CONFLUENCE (INFERRED STRETCH)			0.7	5.6		 1B					<u> </u>
l	MYLOR STREAM	ABOVE MYLOR S T W	R19A036	SW 7884 3651	0.3	0.3	<u> </u>	18	18				1B
51 İ	MYLOR STREAM	ISNYS	i R19A035	SW 7906 3651	0.3	i 0.6 j	18	18	18	i i	i	3	18
	MYLOR STREAM	MYLOR BRIDGE	•	SW 8043 3611		2.2	14	18	18		İ	3	3
53	PENRYN RIVER	TRENDUCH	R19A037	SW 7735 3505	2.8	2.8	1B	-17					18
ļ	PENRYN RIVER	NORMAL TIDAL LINIT (INFERED STRETCH)	1		1.5	4.3	18	1					18
¦	ARGAL STREAM	INFLOW, COLLEGE RES. (URMON. STRETCH)	-¦		4.9	4.9	<u> </u>						
54	ARGAL STREAM	COLLEGE RESERVOIR	R19A033	SW 7718 3355	0.9	5.8	17				1		2
	ARGAL STREAM	NORMAL TIDAL LIMIT (URMON. STRETCH)		1	1.8	7.6	18				1		
<u>55</u>	SWANPOOL STREAM	ABOVE SWANPOOL	B19A009	SW 8004 3166	2.7	2.7	1.8	¦	¦	—_¦	18	- <u>2</u>	2
ļ	SHANPOOL STREAM	NORMAL TIDAL LIMIT (URMON. STRETCH)		1	0.5	3.2	18				18	2	
•	MAENPORTH STREAM	TREGEDRA BRIDGE	R19A008	SW 7883 3028	4.0	4.0	<u> </u>	¦	——¦	¦	¦	'i	2
ļ	MAENPORTH STREAM	NORMAL TIDAL LINIT (INFERRED STRETCH)	1 1	1	1.6	5.6	18	- 1	1	1	Í	Í	2

Appendix 10.5

Fal, Tresillian, Allen, Kenwyn, Carnon & Kennal Catchments Water Quality - 1990 NETIONAL RIVERS AUHERTY - SOUTH WEST REGION 1990 RIVER WIDER QUALITY CLASSIFICATION CALCULATED DETERMINAND STRTISTICS USED FOR QUALITY ASSESSMENT CRICHMENT: FAL (20)


River	Reach upstream of	User	90			୍ଦାପ୍ୟ	ated Det	el mirital	xi Statis	tics (E	ed for (ality	Assesses	गरे.									
1		Pef.] । नग	Lower	 1 लगः	Uncer	 170	ensture	 m	(%)	 सम	(7000)	l Motal	Zenerwi -	l Ithian	Amenia		olida	 matei		1 1 1 1 -	ul Zinc
	1	I I I I I I I I I I I I I I I I I I I	 	• •	Skile			• •	95tile		Stile		95%ile	• • •	95tile		95kile		s Maan	•	95kile	• · · ·	s 95%ile
	i	i	i	i —		i —		i		1000		i —		i —		i		i		i		1	
1		Ì		Ì		ļ		ļ				1		1		ĺ		ĺ		Ì		•	
FAL.	TREACES BRIDGE		3	I IA	5.9	1.	7.3	A L	14.8	1B	78.0	AL	2.2	1 14	0.207	AL	0.010	3	32.2	AL	8.8	I IA	31.5
FAL	Grandigen Bruide	R190002	IB	17	6.2	1A	7.2	A	14.9	18	76.0	1A	2.5	1A	0.175	1A	0.010	j 1.A.	11.5	1A	11.8	1A	41.3
PAL .	RELEW RELEAS	R19003	, -	1 17	5.9	17	7.1	AL	14.9	1B	77.5	I IA	2.6	1 17	0.212	1	0.010	3	30.6	AL I	12.8	N IA	44.8
PAL	REFRICK ERIDGE	R190011		14	5.8	1 1	6.8	I IA	15.7	118	78.3	1A	2.4	1A	0.139	14	0.010	3	66.4	I IV	9.9	1	65.9
PNL	TERROS BRILLE	R190004		L IV	5.1	14	7.0	1 1A	14.9	1X	80.4	I IV	2.6	I IV	0.237	AL I	0.010	3	37.8	1 17	16.3	1	45.5
FAL	GRAMPCUND ERIDEE	PR190005		I IV	6.3	1A	7.1	14	15.5	1A	80.7	118	3.4	3	5.550	I IA	0.014	3	38.7	I IA	15.0	1 17	105.4
FAL.	THEOREY GAUGING STRATION	R190006 	3	1 y	6.5	1A 	7.2	1A	17.2	118 	79.4	18	3.1	18 	0.313	1A 	0.010	3	41.0	1A 	15.3	1 . -	68.8
HEREVIL SIREAM	HENRESON'S HELL WOOD	R190019	2	11	6.7	1	8.1	1	16.8	1	82.3	<u> 2</u>	5.2	18	0.575	<u>م</u> ل	0.010	17	14.5	AL	5.0	1	27.0
TREMUTHEN SURRAM	MELLINGOSE	attoen	2	14	6.8	11	7.9	14	16.0	18	78.5	18	4.6	2	0.985	17	0.010	1	17.2	14	6.0	AL	27.0
GNINERA SEREZM	NAME AN BRIDE	R190014	2	1	5.6	<u> </u>]A	7.5	1A	16.1	118	68.1	2	7.9	<u>, v</u>	0.089	15	0.010	1	24.9	<u> </u>	8.0	AI	42.0
GATHERA SUREAM	CCCIVEREN	R190017	•	1 3	4.1	14	7.0	1	16.4	113	73.1	2	5.3	1 2	0.961	14	0.010	3	57.3	2	76.0	i 1A	157.0
GMINUNA SIJREAM	GMINERA BRODGE	T190008	•	Í 1A	5.9	I IA	7.1	14	15.1	2	54.0	3	10.6	i 3	5.525	1	0.012	3	45.8	i 1Ā	14.6	1 1	102.6
GMINURA SIREAM	TRENAY HRIDGE	7190009	3	AL J	6.1	1A	7.1	Ъ.	16.0	18	72.5	2	5.7	3	3.650	17	0.010	3	32.0	אנ	14.3	AL	131.6
BODEZLA ERCOK	CARGELLA	R190018	3	3	3.4	 	6.6	14	19.3	2	46.9	3	13.7	3	4.130	AL	0.010	3	51.4	A L	18.0	1A	59.0
PROUL RIVER	LANDCOSE	R19034		1	7.2	1 1	8.1	1	15.3	1	70.3	<u> </u>	6.7	<u> </u>	0.080	<u> </u>	0.010			<u> </u>	6.0		11.0
PERCULL RIVER	TREDEM MUL	(R19A013		1 1A	7.2	1 1 1	8.6	1A 1A	18.8	1 2	N.3 58.5	2 1B	4.1	1 1A 1 1B	0.080	1A 1A	0.010	אנו גנו	5.3 9.2	1A 1A	8.8	<u> </u> X	10.9
		1			7.4		0.0	1	10.0	1 1			7.4		0.570		0.010		3.2	1	049		
DESULIDE RIVER	TREALENL	F19D033	•	11	6.8	<u>1</u> 7	7.6	X	15.9	1	85.1	18	3.1	14	0.225	14	0.010	- IA	5.1	<u> </u> 1A	6.0	XL	54.0
TRESILLIAN RIVER	LADOCK WHER FUMPING STRITTON	R190001	•	1A	6.8	1A	7.5	1 1A	15.9	1 12	83.5	2	5.1	I IA	0.304	I IA	0.010	I IA	10.1	1	7.0	N I	104.2
TRESTLLIAN RIVER	TRESONGER BRIDE	F19D002	118	 .	7.0	AL	7.6	1A	16.1	1B	79.0	18	4.8	1B 	0.562	1 A	0.010	I IV	12.2	1X	6.9	1 λ	64.3
TREVELLA STREPH	FROMER BRIDES	1719009	2	<u> </u>	7.2	<u></u>	7.7	1	16.0	AL	80.3	1	2.6	2	0.952	1	0.010	1	9.3	1.	11.4	<u> 1</u>	234.4
TREVELLA SINEMI	SECURA BRIDGE	jR190014	18	אנ	7.1	AL	7.7	1 1	16.6	18 1	79.4	1B	3.7		0.352	17	0.010	אנן	17.7	AL	7.9	1A	29.9
RESULE SURERN	CINICAR FORD	R19006	2	17	6.6	A L	7.6	14	16.3	1B	79.0	2	8.0	118	0.540	AL	0.010	1A.	14.4	۸L	10.6	17	34.2
BRICHICK STREAM	NEW MILLS	R190005	18	AL	6.5	1	7.5	17	15.6	18	64.4	14	2.6	11	0.254	AL	0.010	18	8.0	17	9.7	1	179.7
ALLEN	IILESS BRIDE		14	1	7.2	 	7.8	<u>در</u>	17.3		81.5	1 1	2.6	<u> </u>	0.235	L	0.010	1	4.6	IA IA	9.5		37.5
ALLEN	MORESK LALNERY BRIDGE	R190004		14	7.2	1A.	7.7	AL	17.1	118	76.6	118	3.5	118	0.351	1N	0.010	1	9.8	14	5.5	AL I	25.5
ZELIHI BRCCK	GANARICK MILL	12130030	2	AL I	7.2	 1A	7.7	2	21.8	118	67.0	2	6.0	118	0.600	1A	0.010	18	15.9	18	7.0	1	31.0
INDIAN	NEW MILL	R190016	3	1	6.9	1	7.7	1A	17.1	1.	81.0	18	3.0	17	0.090	14	0.010	3	21.7	18	24.0	1	127.4
KERWEIN	Bosvigo Bridge 	1R190007	118	AL J	7.1	i 1A	7.8	I IA	18.1	1 IA	86.8	118	4.6	18	0.400	I IA	0.010	1Å.	11.8	1A.	11.0	1A	55.8
SHORTLANESEND STREAM	ROSEMCROHY	19191015	118	14	6.8	<u>1</u> 79	7.4	18	17.8	AL	82.1	<u>גר </u>	2.6	118	0.394		0.010	14	9.8	AL	3.0	1 A	11.0
CALENICK STREAM		R190025	2	1	6.8		7.7	1	16.9	 18	78.2	2	6.4	2	0.868		0.010	1	8.2	-		<u> </u>	

Appendix 10.7

NATIONAL RIVERS ADDORUTY — SOUTH WEST REGION 1990 RIVER WHER QUALITY CLASSIFICATION CALCULATED DETERMINAND STRUISTICS USED FOR QUALITY ASSESSMENT CATCHMENT: FAL (20)

River	Reach upstream of	User	90	1		Culcul	ated Dat	emina	nd Statis	tics u	sed for Q	unlity	Assessme	nt									
		Ref.	NKC	1		1		1		1		1		1		1		1		1		ł	
	i	Nuther	Class	j pH	Lower	j pH	Upper	Tem	entime	i n) (3)	i BOD	(AUU)	Total	Amenia	iunian.	Ameria	I S.S	blids	Total		Tota	al Zinc
İ				Class	5 Stile		95%ile		5 951ale		5 Stile	•	951ile	•	95kile	•	s 95kile	•	Mean	•	95kile		s 95kile
		i	i	i		i		i .		i		i		i		i		i		i		i	
İ	i	i	i	i		i				i		i		i		i		i		i		i .	
(<u> </u>	1		<u> </u>		<u> </u>		<u> </u>		<u> </u>						<u> </u>		<u> </u>			
CALENICK SIREAM	CALENICK BRIDGE	F19006	2	1A	6.6	14	7.7	AL I	16.5	1A	81.5	18	3.6	118	0.315	1 1	0.010	1 1 1	9.8	2	67.8	AL	292.0
CARNEN REVER	GROENTER VIALLCT	R195016	3	1	6.1	12	7.2	AL	17.5	2	44.0	2	5.3	18	0.385	<u> 1</u>	0.010	1	7.9	1 2	ର.4	3	1126.0
CAREN RIVER	BELOW OPPOENDER S T W	R19E008	3	11	6.3	1 A	7.2	j 1A	17.4	118	ഖ.0	118	4.5	2	0.850	j IA	0.010	j 3	32.7	į 2	427.2	j 3	1583.5
CARNEN RIVER	THELFEADS	R19E001	j 3	j 1.v.	5.2	AL	7.3	İ IA	16.6	j 1B	79.8	j 1a	2.6	j 1B	0.365	i 1A	0.010	1 A	7.6	i 2	648.8	i 3	2280.0
CANKIN RIVER	BELOW COUNTY AND WELLINGTON ADELS	jR196015	j3	j 3	3.3	j IN	6.4	I IA	17.1	j 2	57.0	j la	2.5	j IA	0.296	j 1A	0.010	14	13.4	i 2	1290.0	i 3	8965.0
CARACIN RIVER	BUSSOE BRIDGE	R19E003	i 3	í 3	3.2	İ 1A	6.2	İ 1A	20.2	i 138	63.5	i 2	6.2	i z	1.075	i 1A	0.010	1 1 A	18.9	i 2	1339.0	i 3	12195.0
CARNEN RIVER	devoran Bridge	R19E004	•	3	3.5	AL J	6.3	I IA	19.3	18	68.8	i 1B	3.5	2	1.247	I IA	0.010	AL I	19.1	2	872.5	3	
PERRONNELL STREAM	PERRANNELL	 R196020	2	 1A	6.1	 1Ă	7.4	 A	15.0	 1B	74.4	 18	3.4	 18	0.390	λί	0.010	18	11.1		1330.0		31.0
BALIHU STREAM	RISSE BRIDE	 			3.6		9.2	2	22.0	 1B	65.1		9.0		2.092		0.490	3	28.8	2	350.0		87200.0
						i -		Ē		i_				Ĺ		Ĺ		_		i –			
hick's Mill Stream	HICK'S MILL 	R195019 	3	1A	6.4	1A 	7.4	1A 	17.0	1A 	86.0	18	4.6	2	0.900	<u> </u> 	0.010	17	8.8	2	790.0	3	4000.0
ST DAY SUREAM	RECOR TO R. CARNON	12195022	3	3	3.2	1A 	6.6	2	23.0	1 A	86.0	1 1A	2.4	, IY	0.240	i -	-	17	4.4) -	-	-	-
RENRIAL	TREALS BRIDE	R190005		18	6.3	1 A	7.3	<u> </u>	18.8	1A	81.1	18	4.9	2	0.829	1	0.010	18	6.0	1	13.9	18	25.7
PERSON	PONSANDOTH GAUGING STREETON	R19ED06		17	6.6	1A	7.5	1A	16.1	1 A	86.5	1A	2.9	1.	0.194	1A	0.010	18	5.6	j 1A	18.1	1.	135.6
KERRAL	STICREN BRIDDE	R192007	3	A L	6.5	1A 	7.2	1A 	15.5	2	45.4	2	5.6	3	1.740	I IV	0.010	18	11.3	11	11.6	1	27.0
SITCHIARS STREAM	SEALREALCH MOOR	11190023	٨	17	6.2	1 14	7.4	AL	17.9	1	86.1	AL	2.3]A	0.118	1 x	0.010	18	5.7	1	8.0	18	43.0
MILCR STREAM	JABOVE MELCR STW	18199036	19	14	6.7	1	7.4	1	16.0	18	77.0		1.8	13	0.040	1	0.010	18	2.8		6.0	18	36.0
MILOR STREAM	ENERS	R194035	1B	18	6.5	j 1A	7.4	1 1 A	17.0	18	റ .0	j 1A	2.3	j 1.v.	0.174	1 A	0.010	1A	3.5	j IA	6.0	14	27.0
MILOR STREAM	MALOR BRIDGE	R190014	3	18	6.8	AL	7.5	1 X	16.9	2	58.9	2	7.3	3	5.440	۲L I	0.010	1A.	7.6	Į 1A	12.4	18	75.6
PENRIN RIVER	I SEMOLEH	R190037	18	1A	6.9	A L	7.8	AL	16.2	1	82.2	1B	4.6	1A	0.199	17	0.010	18	21.1	14	12.0	1A	62.0
ARGAL SDREAM	COLLEGE RESERVOIR	R194033	2	1A	7.0	L IA	8.6	2	24.0	AL	86.0	2	8.6	17	0.030	1.	0.010	İA	15.9	-	-	_	
SWIPCE STREPH	ABOVE SARROOL	 R19009	2	1A	7.0	1	7.7	1A	18.7	118	73.3	 2	5.6	1.	0.082	 1A	0.010	18	20.0	14	23.0	LA	115.0
MAENFORTH STUREAM	TRECEDER	R199008	2	13	6.8	 1A	7.4	 גנן	18.9	 2	54.2		2.2	1.	0.188		0.010	12	6.0	1	6.0	18	33.0
		1	_			i				i -				, <u> </u>									

Appendix 10.7

Fal, Tresillian, Allen, Kenwyn, Carnon & Kennal Catchments Compliance - 1990

NRELONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WRITER GUPLETY CLASSIFICATION NUMER OF SAMPLES (N) AND NUMER OF SAMPLES EXCELENCE QUALITY STANDARD (P) CHICHMENT: FAL (20)

River	Peach upstress of	Uber Bef.	pH 1	CHAR	PH 1	fber.	Tape	ature .	DD	(\$)	BCD	(AU)	Total /	annia	Union.	Ameria	S.So	Lids	Total	Opper	Total 	l Zinc
		Rusber	N	F	N	*	R	r	N 	F	151 	r	1 13	F	N	7	N 	F	N 	۲] ត 	P
							 		 		 		ļ ļ	-								
FAL	TREGOSS BRIDE	pr190001		-) 34	-	34	-	34	-	33	-	34	-	34	-	34	4	1 34	-	34	-
PAL	Grverigan Bridde	R190002	34	-	34	-	34	-	34	-	33	-	34	-	34	-	34	3	1 34		34	-
FAL	RETEN BRIDGE	R19C003		-	34	-	34	-	34	-	33	-	34	-	34	-	34	6	34	-	34	-
FAL	REFUECK ERIDCE	R190011	21	-	1 21	-	20	-	20	-	20	-	21	-	20	-	21	ш	21	-	21	-
FAL.	TERRAS BRIDGE	F19C004	34	1	1 34	-	33	-	33	-	33	-	34	12	32	-	34	14	34	-	34	-
FAL	GRANECURD HRIDGE	R190005	32	-	32	-	32	-	1 32	-	1 31	-	32	5	32	-	32	13	1 31	-	1 31	-
FAL	TREALNEY GAUGING SIDELTON	R19C006	54	-	54	-	53	-	53		53	-	54	1	20	-	54	28	54	-	54. 	-
PENCEVIL SINESH	ENRSON'S HELL WOOD	R190019	21	-	21	-	21	-	21	*	20	1	21	-	21	-	21	2	<u>u</u>	-	ш	-
TRACTION STREAM	MELLINCOSE	attoers	21	-	21	-	21	-	21	-	20	-	21	1	21	-	21	3	<u> </u>	-	<u> </u>	-
GAINERA SEREAM	NAMERAN EKIDER	R190014	20	-	20	-	20	-	20	~	1 19	-	20	-	19	-	20	5	19	-	19	-
Galindra. Socrean	COLUMERT	[R190017]	20	3	20	-	20	-	j 20	-	19	-	j 20	-	j 20		j 20	12	j 19	-	j 19	-
GAINERA STREAM	GAINERA BRIDGE	R19008	34	-	j 34	- 1	34	-	ј 34	121	33	1	j 34	7	j 34	-	j 34	19	j 33	-	33	-
GNINERA STREAM	TRENEY BRIDGE	12190009		-	34	-	34	-	j 34	-	33	-	j 34	4	33	-	34	14	33	-	33	-
BODELLA BROOK	ORSELLA	12190018	21	8	21	-	- 21	-	21	2	20	6	21	10	17	-	21	5	12	-	12	-
PERCLUL, RIVER	LANHCOSE	[R19034]	21	-	21	-	<u> </u>		2	2	21	1	21	-	19	-	21	-	20	-	20	
HROUL RIVER	TREDEN MILL	R199013	25	-	25	-	25	-	24	5		2	24	3	23	-	25	2	20 	-	20	-
TRESILLIAN RIVER	TENEAL	R190033	20	-	20	-	20	~	20	-	20	-	20	-	18	-	20	1	17	-	17	-
TRESILLIAN RIVER	LADOCK WRITER PUMPING STRUTTCH	[R190001]	30	-	30	1.70	29	-	29	-	30	1	30	-	29	-	30	3	20	-	20	-
TRESILLIAN RIVER	TRESONGAR BRIDGE	R190002	31	7	1 31	-	31	-	31	-	1 31	1	1 31	-	30	-	31	2	1 21	-	21	-
DEVELLA SIDEM	PROMINE BRIDGE	12190009	30	-	30	-	30	-	30	1	30	-	30	3	30	-	30	1	23	-	23	-
INEVELLA SILIEM	TREALERA HRIDE	R190014	28	-	28	-	:28	-	28 	1	28	2	28	1	26	-	28	4	20	-	20	-
ESILE SINESM	CINICIR PORD	12190006	25	-	25	-	234	+	25	_	25	1	25	-	25	-	- 25	2	23	-	23	-
BRUCHICON SCREAM	INEW MILLS	P190005	27		27	-	27	-	27	-	Z7		27		25	-	27	2	22	-	22	-
NIEN	IDLESS BRIDGE	[R190018]	29	-	29	-	29	-	29	-	29	-	29	-	29	-	29	-	29	-	29	-
NLEN .	MCRESK LAUNDRY ERIDDE	[R190004]	38	-	38	-	38	-	38	-	36	1	38	-	j 37	-	38	3	29	-	29	-
ZELAH BROOK	GNNINICK MILL	R19030	18	-	 18	-	13	1	18		18	1	18	-		-	18	2	16	-	16	-
02356233	NEW MILL	(account)	23	-	23	-	23	-	23	-	23	-	23	-	23	-	23	3	23	-	23	-
CENSIEN .	BOSVIGO BRIDGE	R190007	36	-	j 36	-	36	-	j 36	-	36	1	36	1	35	- 1	36	3	34	-	34	-
HORILANESEND SIREAM	ROSEACRONY	R190015	20	-	20	-	21)	-	20	-	20		20	-	20	-	20	1	11	-	11	-
ALENICK STREAM		R190025	22		22		22		22	-	22	1	22	1	20			2	20		20	

1

Appendix 10.9

1.0

NYCIONAL RIVERS AURORITY - SOURI WEST REGION 1990 RIVER WHER GUILITY CLASSIFICATION NUMER OF SAMPLES (N) AND NUMER OF SAMPLES EXCEPTING GUILITY STRUMO (F) CRICHMENT: FAL (20)

River	Reach upstreem of	User	pH :	Lower	j pH	Upper -	Despes	ature	00	(\$)	BOD	(AUU)	(Dotal	Annia	Union.	Amonia	5.9	lids	Total	Copper	Total	Zinc
		Ref.			Į.		1		1		ļ –		1		ţ		1		l –		1	
	1	Runber	N	F	11	P	N	E.	N	2	N	F	N	F	N	F	N	F	N	F	1	F
		1			ļ		!		!		ļ		!		!		!		ļ		ļ	
					!		!		!		!		!		!		!		ļ		!	
1							1		}		1		ľ				1		1		1	
CALENICK STREAM	CALENICK BRIDGE	[R190006]	34	-	34	-	34	1	34	-	34	ī	34	-	34	1.5	34	2	ं अ	3	31	1
CARNEN RIVER	CIRCEMPIER VIALUCT	ACCREDIT	34	-	34	-	30		30	-	34	_	1 34	_	28	-	<u> </u> 34	_	31		ं य	-
CARNON RIVER	HELOW CHACEWRIER S T W	[R19E008]	35	-	35	-	35	-	35	-	35	-	1 35	-	34	-	35	-	32	-	32	-
CARLAN RIVER	THEOREMOS	R19E001	34	-	34	-	j 34		34	-	34	-	34	-	33	-	34	-	31	-	1 31	-
CARNON RIVER	BELOW COLNEY AND WELLENDION ACTES	R196015	35	-	35	-	34	-	34	-	35	-	35	-	15	-	35	-	j 32	-	32	-
CARION RIVER	BUSSCE HRIDGE	(R196003	36	-	36	-	35	•	34	-	36	-	36	-	1 19	-	36	-	33	-	1 33	-
CARACIN REVER	DEVORAN ERIDGE	E19E004	54	-	54	-	54	-	54	-	54	-	54	-	16	-	54	-	54	-	54	-
PERRANWELL STIREAM	PERFANELL	R19E020	20	-	20	-	20	-	20	1	20	1	20	1	20	5	20	1	i n	1	<u> </u>	-
BALIHU SIREAM	BUSSCE BRIDGE	[R195021]	20	3	20	1	20	2	20	-	20	7	20	16	17	2	20	8	i II	2	<u>u</u>	11
HICK'S MILL SINESH	HICK'S MILL	100000	18	_	1.8		18	-	18	-	18	-	18	3	17	-	18	2	<u>– u</u>	10	11	10
ST DAY STREAM	HEIDR TO R. CNINCN	R198022	15	13	15	-	15	1	1 15	-	15		1 15		7		15	-		-	9	-
KENNAL	TREDCLLS BRODOR	120005	22	-	22	-	20	-	20	-	21	2	22	3	20	-	22	_	22		22	
KENTAL	PONEMODIH GRUGING SIDNETON	[R19E006]	22	-	22	-	22	-	j 22	-	j 22	-	1 22	-	jn	-	j 22	-	1 21	_	21	-
KERRAL	STICKEN BRIDGE	pr196007	27	-	27	-	26	-	26	6	27	1	27	3	j 26	-	27	1	123	-	23	-
SITUHIANS SCREAM	SENJREAUCH MOOR	[R198023]	20	_	20		20	-	20	_	19	_	20	-	20	-	20	-	1 12	-	12	-
Mylor Stream	ABOVE MALOR S T W	1960460A	12		1 12	-	1 12	-	12	1	12	-	12	-	10	÷	12	_	12	-	12	-
MILCR STREAM	2825	R19035	20	-	20	-	19	-	19	2	19		20	-	18		20	-	12	- 1	12	-
Malor Stream	MATCH ERIDGE	[R19014]	25	-	25	-	25	-	1 25	n	25	7	25	17	25	-	25	-	23	-	23	-
PENRIN RIVER	TREMULA	R194037	20	-	20		20	-	20	-	19		20	-	19	-	20	4	12		12 -	-
ARGAL STREAM	COLLEGE RESERVOIR	191.99033	12		12	-	12	2	12	-	12	7	1 12		11		12	2	12		12	-
SURVECCE STREAM	ABOVE SHARROOL	12199009	27	-	27	-	25	-	26	-	27	1	27	-	25	-	27	4	19	-	- 19	_
PRESERVER STREAM	THEFTA HOUSE	[R194008]	20	-	20	-	20	-	20	2	19	_	20	-	20	-	20	-	12		12	-

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: FAL (20)

River [1	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	T STANDARD	•			
		Ref. Number	pH Lower	 pH Upper 	 Temperature 	DO (%)	BOD (ATU)	Total Ammonia	 Un-ionised Ammonia	Suspended Solids	Total Copper	Total Zinc
				 								•
PAL	TREGOSS BRIDGE	-1 R19C001							·	29		i -
	AVERIGAN BRIDGE	R19C002	i -	i –	-	_		-	i –	-	i -	i –
•	RETEW BRIDGE	R19C003		i –	-	_	- 1	-	i –	22	-	1 –
	KERNICK BRIDGE	R19C011		i -		_	- 1	-	i –	166	i -	- 1
	TERRAS BRIDGE	R19C004		i –		-	-	-	i –	51	-	i -
	TRAMPOUND BRIDGE	R19C005		i –	- 1	_		256	i –	55	i -	i -
	TREGONEY GALGING STATION	R19C006		0-0	-	-	- 1	-	-	76	-	-
PENKEVIL STREAM	PARSON'S HILL MOOD	R19C019			-		4	-			-	<u> </u>
TREWITHEN STREAM	ELLINGOOSE			-	-		-	41	-	-	-	
WINDRA STREAM	VANPEAN BRIDGE	R19C014						_	¦			
•	SOONABARN	B19C017			-	-		-		129	_	
•	WINDRA BRIDGE	B19C008		-		_	18	254	i _	83	_	
•	TREWAY BRIDGE	R19C009	•	0.00		_	-	134	-	28	-	-
BODELLA BROOK	CARSELLA	R19C018	32	-	-	22	173	490		118	-	-
PERCUIL RIVER	LANHOOSE	R19A034				12	<u>123</u>	-				
PERCUIL RIVER	RETHEN MILL	R19A013	-	1.0-01	-	27	j 38 j	84	-	-	-	-
TRESILLIAN RIVER	TRENDEAL		-				·¦¦	-	i—			-
TRESILLIAN RIVER	LADOCK WATER PURPING STATION	R19D001	-200	- 1	- i	-	2 1	-	i -	-	-	- 1
RESILLIAN RIVER	RESONGAR BRIDGE	R19D002	-	0 0 0		-		-	-	-	й —	-
TREVELLA STREAM	ROGMORE BRIDGE	R190009						207	¦			-
	TREGURRA BRIDGE	R19D014		0.0	-	1	22	14	-	-	-	-
UESTLE STREAM	CANDOR FORD	R192008	-	-	-		59					
RIGHTON STREAM	EW MILLS	R190005	1. (*)4	-	-	=	-		-		-	
VLLEN II	DLESS BRIDGE	B190018				=						
•	ORESK LAUNDRY BRIDGE	R19D004		0.0 .0 0.0	1.2	-	-	-	-	- -		-
ELAH BROOK	MARNICK MILL	R19D030	-		1	-	20	-	-			-
CENWYN K	TEW MILL	B19D016							i			
CERMAN I E	SOSVIGO BRIDGE	R19D007	-	-	-	-	-	-	-	-	-	-
SHORTLANESEND STREAM	OSEMORTHY	R19D015	-	-						-	-	
		!			l		11		I i			
ALENICK STREAM	rugus	R19D025	-	-		-	27	24	I <u> </u>	-	-	-

NATIONAL RIVERS AUTHORITY - SOUTH MEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCREDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: FAL (20)

River	Reach upstream of	User	1	PERCENTAGE	EXCEEDENCE OF	STATISTIC	PRON QUALIT	Y STANDARD)			
	1	Ref.	I									
		Munder 	pH Lower	pH Upper 	[Temperature]	DO (%)	BOD (ATU) 	Total Amonie	Un-ionised Ammonia 	Suspended Solids 	Total Copper	Total Zinc
		l 		I					i i			•
CALENICK STREAM	CALENICK BRIDGE	R190006	-	-	-	-	-	-	-	-	70	-
CARNON RIVER	CHACENATER VIADUCT	R192016		-					· [-	-	
CARNON RIVER		R19E008	_	-	i - i	_	- 1	-	i -	-	-	i –
CARNON RIVER		R19E001	_	-	-	_	-	-	i -	- 1	_	-
CARNON RIVER	BELOW COURTY AND WELLINGTON ADITS		-			-	-	-	i –	-	_	-
CARION RIVER		R198003	_		- 1	-	- 1	-	i –	i - i	_ ·	-
CARNON RIVER		R198004	1 < ->	i -	1		- 1	-	-	-		-
		i i		i					1.4		100	
PERRANMELL STREAM	PERRANNELL	R19E020		- -	-	7	14	26			3225	-
BALDHU STREAM	BISSOE BRIDGE	R19E021	28	2	2	-	80	199	2233	15	213	17340
HICK'S MILL STREAM	HICK'S MILL	R192019			-			29			1875	1233
ST DAY STREAM	PRIOR TO R. CARSON	R198022	36	-				-			-	
KENRAL	TREGOLLS BRIDGE	R19E005			¦		63	167		! <u> </u>		
KENINAL	PORSABOOTH GAUGING STATION	R192006	-	-	-	- 1	_	-	_			
KERINAL	STICKEN BRIDGE	R198007	÷	-	-	24	12	149	-	-	-	
STITHLANS STREAM	SEAUREAUGH MOOR	R19E023	<u>-</u>	— —_								
		l			!l	I	ł_		Iİ	ll		
TILOR STREAM		B19A036	-	-	-	4	-		<u> </u>	- 1	- 1	
TILOR STREAM		R19A035		-	-	16	-	-	! - !	- 1	- 1	-
YLOR STREAM	MYLOR BRIDGE	B19A014	1.2		-	26	143	1655	- 	-	-	
PENRYN RIVER	TREMOUGH	R19A037	-	-	-			-		- í		- (- 20)
RGAL STREAM	COLLEGE RESERVOIR	R19A033		-	12	-	187	-	 			
WANPOOL STREAM	ABOVE SNANPOOL	R194009	-				<u> </u>	-			{	
AENPORTH STREAM	TREGEDNA BRIDGE	R19A008	-		-	10				<u> </u>		

Appendix 10.10

NATIONAL RIVERS ANTHORITY - SOUTH MEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH ROO CATCHMENT: FAL (20)

· - WORK ALREADY IN HAND

	İ	1	Runber	Length (km) 	
1	 FAL	TREGOSS BRIDGE		3.3	CHINA CLAY DISCHARGE, POLLUTION (ONE OFF)
3	FAL	* RETEW BRIDGE	R19C003	2.3	CHINA CLAY DISCHARGE
4	FAL	* KERNICK BRIDGE	R19C011	3.0	CHINA CLAY DISCHARGE
6	FAL	* TERRAS BRIDGE	R19C004	0.6	CHINA CLAY DISCHARGE
7	FAL	* GRAMPOUND BRIDGE	B19C005	5.6	CHINA CLAY DISCHARGE, SEMAGE TREATMENT WORKS
8	FAL	* TREGORET GAUGING STATION	R19C006	j 4.3	CHINA CLAY DISCHARGE
9	PENKEVIL STREAM	PARSON'S HILL WOOD	R19C019	5.2	EUTROPHICATION, LAND BUN-OFF, FARMING ACTIVITIES
10	TREWITHER STREAM	MELLINGOOSE	R19C016	4.1	EUTROPHICATION
12	GWINDRA STREAM	* GOORABARN	R19C017	1.4	CHINA CLAY DISCHARGE
13	GWINDRA STREAM	* GWINDRA BRIDGE	R19C008	2.8	CHINA CLAY DISCHARGE, FARMING ACTIVITIES
14	GWINDRA STREAM	• TREMONY BRIDGE	R19C009	3.1	SEMAGE TREATMENT WORKS, CHINA CLAY DISCHARGE, STORN OVERFLOW
15	BODELLA BROOK	* CARSELLA	B19C018	0.7	CHINA CLAY DISCHARGE, SEWAGE TREATMENT WORKS
16	PERCUIL RIVER	LANEHOOSE	R194034	3.7	LAND RUN-OFF, FARMING ACTIVITIES
17	PERCUIL RIVER	TRETHEN MILL	B19A013	1.8	LAND RUN-OFF
19	TRESILLIAN RIVER	LADOCK WATER PURPING STATION	R19D001	2.3	LAND RUN-OFF
23	TREVELLA STREAM	PROGMORE BRIDGE	R190009	3.8	LAND RUR-OPT
24	TREVELLA STREAM	TREGURRA BRIDGE	R190014	2.0	LAND RUR-OFF
25	KESTLE STREAM	CANDOR FORD	R190008	8.5	LAND RURI-OFF
29	ZELAH BROOK	GHARNICK MILL	R19D030	3.0	LAND RUN-OFF, DROUGHT, FISH FARM EFFLUENT
- 30	KERWYN	NEW MILL	R19D016	5.1	ENGINEERING WORKS, LAND BUN-OFF
33	CALENICK STREAM	HUGUS	B19D025		LAND RON-OFF, FARMING ACTIVITIES
	CALENICK STREAM	CALENICK BRIDGE	R19D006		MINING, CATCHNENT GEOLOGY
41	PERRANWELL STREAM	PERRAWELL	R19E020	3.5	POLLTUION (ON-GOING), MINING, CATCHMENT GEOLOGY
42	BALOHU STREAM	BISSOE BRIDGE	R19E021	1.4	UP-STREAM ABSTRACTIONS, MINING, CATCHMENT GEOLOGY
43	HICK'S MILL STREAM	HICK'S HILL	R19E019	4.5	MINING, CATCHNENT GEOLOGY, SEWAGE TREATMENT MORKS
-44	ST DAY STREAM	PRIOR TO R. CARNON	R19E022	2.9	LAND RUN-OFF, BLUE-GREEN ALGAE
46	KENNAL	TREGOLLS BRIDGE	R19E005		LAND RUN-OFF. INPOUNDMENT

1

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT: FAL (20)

* = WORK ALREADY IN HAND

1990 Map	River	Reach upstream of	User	Reach	Possible causes of non-compliance
Position			Reference	Length	
Rumber	1		Number	(km)	1
1 I	1		1 1		i i
1			j i		1
i	i i		i i	ĺ	i i i
i	i i		i i		
48	KENNAL	* STICKEN BRIDGE	R19E007	1.4	SEWAGE TREATMENT WORKS
i	i i		i i		
50	MYLOR STREAM	ABOVE MYLOR S T W	R19A036	0.3	
51	MYLOR STREAM	ENTS	R19A035	0.3	EUTROPHICATION
j 52	MYLOR STREAM	MYLOR BRIDGE	R19A014	1.6	SEMAGE TREATMENT WORKS, LAND RUN-OPF, POLLUTION (ONE OFF)
i i			i i		
54	ARGAL STREAM	COLLEGE RESERVOIR	R19A033	0.9	BLUE-GREEN ALGAE, DROUGHT, EUTROPHICATION
i i			i i		
55	SWANPOOL STREAM	ABOVE SWANPOOL	R19A009	2.7	LAND RUN-OFF, URBANISATION, SPATE
i i			i i		
56	NAENPORTH STREAM	TREGEDNA BRIDGE	R19A008	4.0	DROUGHT, PARMING
i i		-			
·			·	'	

Appendix 10.11