ENVIRONMENTAL PROTECTION

River Lynher Catchment

River Water Quality Classification 1990

> NOVEMBER 1991 WQP/91/014 B L MILFORD

National Rivers Authority South Weet Region

GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ

RIVER WATER QUALITY IN THE RIVER LYNHER CATCHMENT

.

LIST OF CONTENTS

1	Introdu	iction	
2	River I	ynher Catchment	
3	Nationa	l Water Council's River Classification System	
4	1990 Ri	iver Water Quality Survey	
5	1990 Ri	ver Water Quality Classification	
6	Non-con	mpliance with Quality Objectives	
7	Causes	of Non-compliance	
8	Glossa	ry of Terms	
9	Referen	nces	
10	Appendi	ices:	
	10.1	River Quality Objectives including Monitoring points	
	10.2	Basic Determinand Analytical Suite	
	10.3	National Water Council (NWC) River Classification System	
	10.4	NWC Criteria for Non-Metallic Determinands - Regional Variation	
	10.4.1	NWC Criteria for Metallic Determinands - Regional Variation	
	10.5	1990 River Water Quality Classification - tabular format	
	10.6	1990 River Water Quality Classification - map format	
	10.7	Calculated Determinand Statistics used for Quality Assessment	
	10.8	Compliant/Non-Compliant River Reaches	
	10.9	Number of Samples Results exceeding quality standards	
	10.10	Percentage Exceedance of Determinand Statistics from Quality Standard	
	10.11	Identification of Possible Causes of Non-Compliance with River Quality Objectives	

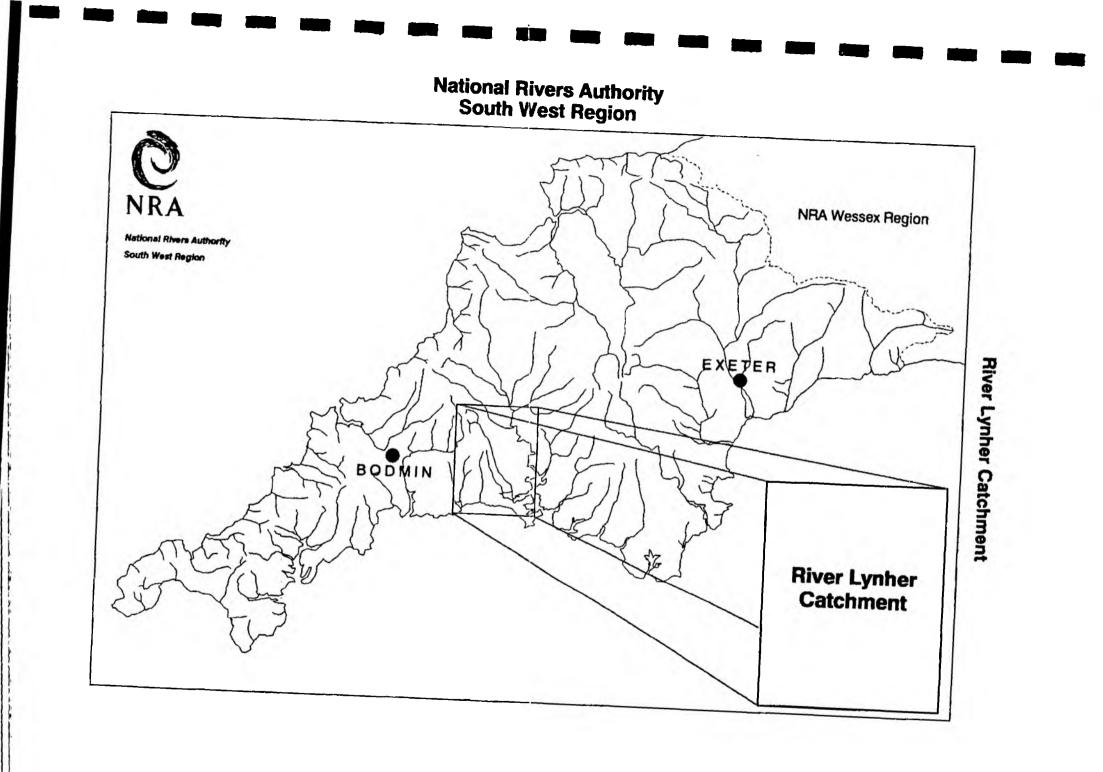
Page No.

1

1

2

3


3

4

4

5

5

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Lynher catchment.

2. RIVER LYNHER CATCHMENT

The River Lynher flows over a distance of 34.8 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at eight locations on the main river; seven of these sites were sampled at approximately monthly intervals. The site at Notter Bridge, which is a National Water Quality monitoring point, was sampled fortnightly.

Throughout the Lynher catchment one secondary tributary of the River Lynher was monitored at approximately monthly intervals and three secondary streams (Kelly Brook (R12Q026), Dean's Brook and Marke Valley were sampled between fifteen and twenty times during 1990 because of no recent water quality data.

The River Tiddy flows over a distance of 15.9 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at five locations; four of these sites were sampled at approximately monthly intervals and one site (R12R001) was sampled on twenty occasions during 1990 because of no recent water quality data.

The Trecorme Stream flows over a distance of 7.3 km from its source to the confluence with the River Tiddy, (Appendix 10.1). Water quality was monitored at one location on twenty occasions during 1990 because of no recent water quality data.

2.1 SECONDARY TRIBUTARIES

Kelly Brook and Withey Brook flow over a distance of 3 km and 7.5 km respectively from their source to the confluence with the River Lynher, (Appendix 10.1) and were monitored at two locations.

The Marke Valley Stream and Dean's Brook flow over a distance of 4.1 km and 6.5 km respectively from their source to the confluence with the River Lynher, (Appendix 10.1) and were both monitored at one location. Monitoring points are all located in the lower reaches.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOS) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Lynher catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Class	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

8. GLOSSARY OF TERMS

RIVER REACH A segment of water, upstream from sampling point to the next sampling point.

RIVER LENGTH River distance in kilometres.

RIVER QUALITY OBJECTIVE That NWC class, which protects the most sensitive use of the water.

95 percentiles Maximum limits, which must be met for at least 95% of the time.

5 percentiles Minimum limits, which must be met for at least 95% of the time.

BIOLOGICAL OXYGEN DEMAND A standard test measuring the microbial uptake of (5 day carbonaceous ATU) oxygen - an estimate of organic pollution.

pH A scale of acid to alkali.

UN-IONISED AMMONIA Fraction of ammonia poisonous to fish, NH³.

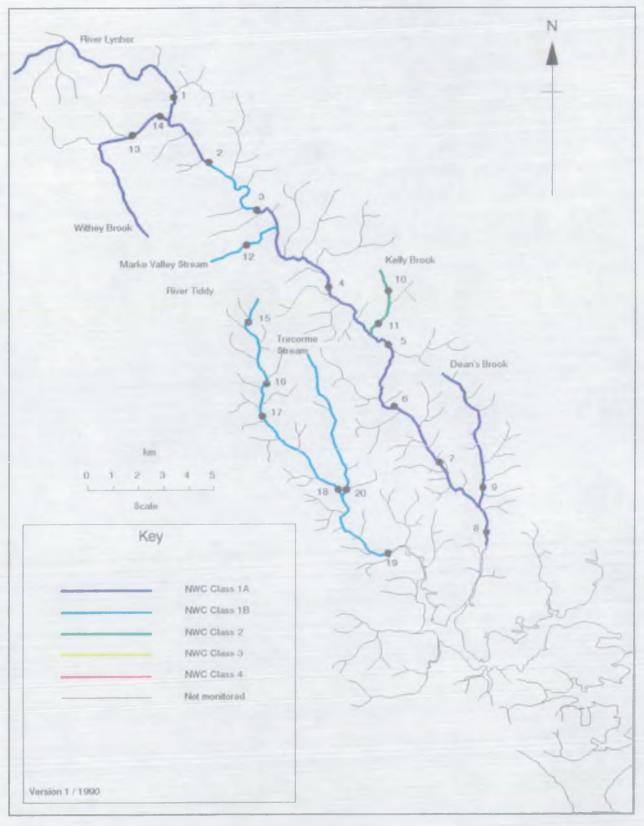
SUSPENDED SOLIDS Solids removed by filtration or centrifuge under specific conditions.

USER REFERENCE NUMBER Reference number allocated to a sampling point.

INFERRED STRETCH Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

9. REFERENCES

Reference


9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.

9.2 Water Act 1989 Section 117

9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Appendix 10.1

Lynher Catchment River Quality Objectives

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 0Biochemical oxygen demand (5 day total ATU) as mq/1 O Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/l N Nitrate as mg/l N Nitrite as mq/l N Suspended solids at 105 C as mg/1 Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/l P Silicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/l SO4 Sodium (total) as mg/l Na Potassium (total) as mg/l K Magnesium (total) as mg/1 Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

APPENDIX 10.3

WWO NITCH NO	APRIL A					
River Class		Quality criteria		Remarks	Curren	t potential uses
		Class limiting criteria (95 percent	ile)			
1A Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Anmonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
1B Good Quality	(i) (ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/1 Ammonia not greater than 0.9 mg/1 Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	greater than 0.5 mg/l Visible evidence of pollution should be absent		Water of less high quality than Class 1A but usable for substantially the same purposes
2 Fair Quality	(i) (ii) (iii)	DG greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical	(i) (ii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good

drinking water it complies with the requirements for A3* water (iv) Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)

NWC RIVER QUALITY CLASSIFICATION SYSTEM

- (iii) Water not showing physical
 (ii) Supporting reasonably gamma signs of pollution other than
 ccarse fisheries
 humic colouration and a little
 (iii) Noderate amenity value foaming below weirs

Poor uality	(i) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/l.	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present.
		This may not apply if there is a high degree of re-aeration		Nay be used for low grade industrial abstraction purposes. Considerable
		•		potential for further use if cleaned up
8ad Wality		Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
		DO greater than 10% saturation		Insignificant watercourses
				and ditches not usable, where the objective is simply to prevent nuisance developing

- decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results.
- (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
- (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

Ammonia Conversion Factors

(mg NHe/1 to mg N/1)

Class 1	A 0.4	mg	NHc/1	:	0.31	ng	N/1-
Class 1	8 0.9	ng	NHc/1	Ξ	0.70	ng	N/1
	0.5	Dġ	NH4/1	=	0.39	ng	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

- 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/1 0 Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l 0 Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 0 Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l O

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Determinand	Statistic
Dissolved oxygen	5 percentile
BOD (ATU)	95 percentile
Total ammonia	95 percentile
Non-ionised ammonia	95 percentile
Temperature	95 percentile
Hq	5 percentile
-	95 percentile
Suspended solids	arithmetic mean

.

1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

.

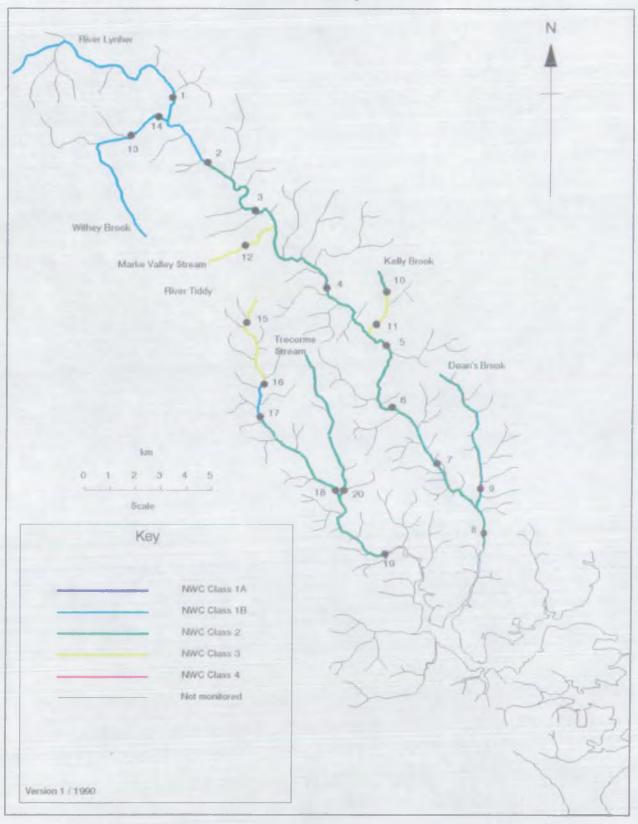
SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu
		Class 1 Class 2
0 - 10	95 percentile	<pre>< = 5 > 5</pre>
10 - 50	95 percentile	< = 22 > 22
50 - 100	95 percentile	< = 40 > 40
100 - 300	95 percentile	<pre>< = 112 > 112</pre>

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

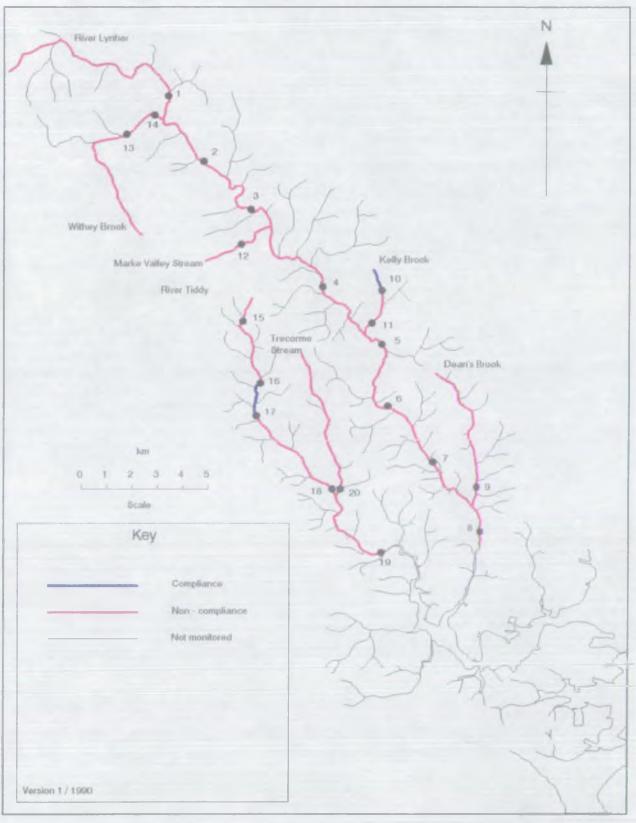
Total Hardness (mean) mg/l CaCO3	Statist ic	Total Zinc ug/l Zn Class 1 Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>


NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: LYNNER (14)

1990 Map	River	Reach upstream of	User	National	Reach	Distance	River	85	86	87	88	89	90
Position	Í		Reference	Grid	Length	from	Quality	NWC	MHC	NHC	INNC	RMC	INC
Number	İ	i	Number	Reference	(km.)	source	Objective	Class	Class	Class	Class	Class	Class
	İ	i	i	1	Ì	(kaa)	ĺ	i		Í	Í	Í	İ
	i	i	i	Ì	Í	i	İ	ì			Ì	İ	i
	i	i	i	i	i	i	İ	i i			i	i	i
		i	i	1	i	i	i	i i			i	i	i i
1	LYNHER	TREEARTHA ROAD BRIDGE	R120001	5X 2603 7778	9.2	9.2	1.4		18	18	18	18	18
2	LYNHER	BERRIOWBRIDGE	R120002	SX 2733 7564	2.9	12.1	j 1A	1 1	1B	18	1B	1B	1B
3	LYNHER	RILLA MILL BRIDGE	R12Q003	SX 2948 7311	4.2	16.3	18	18	2	2	2	2	2
4	LYNHER	BICTON MILL BRIDGE	R12Q004	SX 3215 7005	5.0	21.3	j 1 a	1 B	2	2	18	2	2
5	LYNHER	NEWBRIDGE	R120005	SX 3473 6801	4.0	25.3	1.1.	1 B	2	18	3	3	2
6	LYNHER	CLAPPER BRIDGE	R120025	SX 3515 6526	3.5	28.8	1.	18	2	14	1.	2	2
7	Lynher	PILLATON BRIDGE		sx 3650 6324		j 31.4	1.	18	2	17	14	2	i 2 i
8	LYNHER	NOTTER BRIDGE		SX 3850 6090		34.8	14	18	2	2	1B	2	i 2
			1			i		i i				-	i
9	DEAN'S BROOK	BRIDGE	R120029	5X 3825 6224	5.9	5.9	1	18				· · · · ·	2
	DEAN'S BROOK	LYNHER CONFLUENCE (INFERRED STRETCH)	i -	i i	0.6	6.5	1 1 1	i 138 j					izi
100 C			i			i		i	Ì			ĺ	
10	KELLY BROOK	HAYE	R120026	SX 3470 6991	1.3	1.3	2	2	3	3	3	3	2
11	KELLY BROOK	CADDAPIT	R120009	SX 3400 6888	1.3	2.6	2	i 2 j	3	3	3	3	j 3 j
	KELLY BROOK	LYNNER CONFLIENCE (INFERRED STRETCH)	1	i i	0.4	3.0	2	i 2 i	3	3	3	3	i 3 i
		i i i i i i i i i i i i i i i i i i i	i i	i i		i I		i i		Ì		i 1	i i
12	MARKE VALLEY STREAM	UPTON CROSS	R12Q027	SX 2870 7195	2.3	2.3	18	2					3
Ì	MARKE VALLEY STREAM	LYNHER CONFLUENCE (INFERRED STRETCH)	i i	i i	1.8	4.1	1B	2	Í	Í			3
			_ i i	i i	I ,	I				i			i i
	WITHEY BROOK	UPSTREAM OF BASTREET INTAKE		SX 2435 7637	5.3	5.3	1.	18	2	2	2	2	18
	WITHEY BROOK	PRIOR TO RIVER LYNHER	R12Q008	SX 2610 7723	2.1	7.4	אנ	18	18	18	2	1B	18
	WITHEY BROOK	LYNHER CONFLUENCE (INFERRED STRETCH)	1		0.1	7.5	18	18	18	18	2	18	18
								<u> </u>	!		!		
	TIDDY TIDDY	ABOVE PERSILVA S T W	•	SX 2900 6890	0.7	0.7	18		2	2	4	4	3
	TIDDY	BUTTERDON MILL		SX 2944 6617		4.0	18	18	2	2	4		3
		TREMUNSEY BRIDGE		SX 2966 6502		5.3	1B	2	18	18	2	2	1B
	TIDDY	TILLAND MILL BRIDGE		SX 3288 6188		10.5	18	2	18	18	2	2	2
	TIDDY	TIDEFORD BRIDGE	KIKKUU4	SX 3443 5960			18	2	18	18	2	2	2
	TIDDY	NORMAL TIDAL LIMIT (INPERRED STRETCH)			1.8	15.9	19	2	1B	18	2	2	2
20		TILLAND BRIDGE		SX 3315 6196					!	!	!	!	!
,	TRECORME STREAM TRECORME STREAM		I KT TKUNG	24 3373 0170	6.8 0.5	6.8	18		!	!			2
	TRECORDE STREAM	(TIDDY CONFLUENCE (INFERRED STRETCH)	1		V.5	1.5	1B	I I	1				2

Appendix 10.5

0.5


Lynher Catchment Water Quality - 1990

NCLUME AMES AUHRTY - SULE MET HELD 1990 RIVER WIER GINLET CLASSIFICATION CNALMED TRIBRING STATISTICS USED FOR GINLETY ASSESSMENT CROCHENT: LEVER (14)

River	Reach upstrees of	User	90			Calculated Determinent Statistics used for Quality Assessment																	
	1	Pad.	INC										11.1	1		L .				2.5.2	1.0	!	•
		Raber	CLass		Lower		in the second				(\$)	•		·			Amonia		olids		Copper	•	al Zinc
				C1#55 	9tile	Class 	95%ile	Class 	: 95 tile	Class	5kile	(Class (: 95kile	Class	95 1.1. e		i 95kile		Photo.		: 9 5%ila		s 95%ile
			 					 		 		 								<u> </u>		<u>ا</u>	
Langer R.	TREENRIGA ROND BELLICES	R12001	•	1	6.4	1A	7.7	אנן	14.7	18	75.5	1B	3.1	118	0.340	1	0.010	I IV	18.1	1 14	9.5	1 72	46.0
LINER	1225 (610) 2 (610 R.B.	R12002	•	1A	6.3	I IV	7.3	1A	15.1	118	71.0	118	3.2	1 14	0.220	14	0.010	I IA	10.7	1 14	7.5	1 12	22.5
	BILLA MILL HOLKE	R120003	2	1A	6.6	<u> 1</u> A	7.4	1A	15.3	18	78.8	1B	4.8	18	0.168	1 14	0.010	 1 A	15.4	2	46.0	1 79	57.2
LEGER	BUCKEN MULL BRIDGE	RL20004	2	אנ ן	6.7	1 A	7.5	A L	15.5	118	73.5	1B	3.9	1	0.310	1	0.010	1	19.3	2	84.5	1	146.5
LINER	TELEVISION CONTRACTOR OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER	JR1.20005		18	6.6	1A	7.6	אנן	15.9	2	52.0	1B	3.3	18	0.325	1A	0.010	1A	19.4	2	90.0	1 14	195.0
LENER	CLAPPER BRIDGE	R120025	2	1 n	6.6	1 A	7.6	אנן	15.6	1A	62.3	1B	4.0	18	0.324	1A	0.010	1A	23.5	2	128.0	2	221.9
DITTER	PILLNICH BRIDE	R120006	2	17	6.7	1 A	7.5	AI	15.9	1A	84.0	1B	3.2	17	0.300	11	0.010	1	23.1	2	90.5	2	207.0
LINER	INITIER BRIDGE	jR1.2007	2	17	6.7	1.	7.5	1.	16.5	j 1A	84.0	118	3.2	1 A	0.120	11	0.010	 	11.1	2	23.0	IV	83.7
dean's ercok			2	12	7.0	A (7.5	AL	18.1	18	68.0	2	5.1	AL	0.260	AL	0.010	1	10.6	11	4.0	<u>, 1</u>	8.0
NELLY FROM	PRVE	18120026	•	14	6.5	LA IA	7.4	AL	15.3	18	75.1	2	7.7	1	0.080	14	0.010	1	4.1	11	30.0	2	414.0
NELLY HECCH	KNEINPET	R1.2009	3	אנ	6.7	1 12	7.4	1 JA	17.4	2	51.2	18 	4.1	3 	3.350	14.	0.016	1A 	ш.0	2	46.1	2	414.6
MARKE VALLEY STREPH	UPTON CROSS	1212027	3	18	5.7	אנן	7.0	1	14.5	<u> </u>	61.2	3	15.3	1	0.050	<u> </u>	0.010	<u> </u>	16.2	2	420.0	<u> </u> 3	1320.0
NUTHER BROOK	URSTREM OF INSTREET INDIRE	F12010	113	18	5.4	1	6.8	7	15.1	1,8	61.5	<u>1</u> 1	2.1	17	0.055	i la	0.010	11	3.2	1	5.0	AL	15.4
NUTER BOOK	HRICR TO RIVER LENHER	[R12008	128	A L	5.3	1 7	7.5	AL	14.9	18	@ .0	18 	3.6	17	0.168	1 A	0.010	1A 	11.1	1 1	9.2	I IV	18.7
1107	ABOVE REVEILURA S T W	PR12R001	3	18	6.1	1	7.9	1	16.1	X	81.0	3	10.1	118	0.670	1 16	0.010	1.	14.1		13.0	1	30.0
1010.02	HITTERICS MILL	19129002	j 3 j	1.	6.8	j 1A	7.7	1 14	16.5	18	73.4	3	15.7	2	1.250	1A	0.010	3	26.7	1 17	22.3	1 17	180.5
TILLY	TROLINGEY BRIDLE	R128005	128	17	6.9	j 1A	7.8	1.	17.7	18	79.5	18	3.4	17	0.240	1A	0.010	I IA	8.1	1 1	7.0	1 14	106.6
THEFT	TILLAND MULL HEIDOR	R12R003	j 2 j	1.	7.0	11	8.9	17	19.8	118	77.0	2	6.1	1A	0.204	j 1A.	0.010	1A	24.4	1 17	22.2	AL	2D1.3
	TELEBORD HEILIGE	JR1.2R004	2	18	7.1	אנן	8.0	AL I	17.8	Ι IA	80.5	2	6.4	μ λ	0.190	<u> 1</u>	0.010	j 1a	22.0	2	43.4	, ту	85. 2
TRUCENE STREAM	TILLIND BRIDDER		2	1	6.9	L	7.9	14	17.1	18	73.4	2	8.0		0.340	- 1	0.010		9.9	<u>1</u>	7.0	14	31.0

NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTINGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHDENT: LYNNER (14)

River	Reach upstream of	User	1	PERCENTAGE	EXCEEDENCE OF	' STATISTIC	FROM QUALIT	y standard				
	1	Ref.	1	and the second second	1 1				1		1	
		Runber	pH Lower 	pft Upper	Temperature	DO (%)	(UTA) (JOB 	Total Ammonia	Un-ionised Ammonia	Suspended Solids	Total Copper	Total Sinc
LYNHER	TREBARTHA ROAD BRIDGE			-	·	6	3	10	¦			
LYNHER	BERRIOWERIDGE	R120002	-	-	i - i	11	i 7 i	-	i –	-	i – i	-
LINHER	RILLA MILL BRIDGE	R120003		-	i – i	_	i – i	-	i –	i - i	109	_
LYNCHER	BICTON MILL BRIDGE	B120004		-	i - i	8	i 28 i	-	i –	i -	284	-
LYREER	NEWBRIDGE	B120005		-	i – i	35	8	5	i –	-	309	-
LYNNER	CLAPPER BRIDGE	R120025		-	i - 1	-	34	Ă	i –	i -	482	11
LINDER	PILLATON BRIDGE	R120006		-	i _ i	-		-	i _		322	
LYNNER	NOTTER BRIDGE	B120007		-	2	-		-	1		5	-
		1		10 M								
DEAN'S BROOK	BRIDGE	R120029	-		-	15	70	÷.	-			-
KELLY BROOK		B120026		-	·¦			-		-		
KELLY BROOK	CADDAPIT	R120009		-	-	-	-	115	-	-	-	1 A 1
MARKE VALLEY STREAM	UPTON CROSS	R120027			-		209	-			1809	560
WITHET BROOK	UPSTREAM OF BASTREET INTAKE					23	¦	-				_
WITHEY BROOK	PRIOR TO RIVER LINKER	R1 20008	-		-	14	20	-	-	-	-	-
TIDDY	ABOVE PERSILVA S T W	B128001	-				102	-	;			<u>-</u>
TIDDY	BUTTERDON MILL	R12R002			i - i	-	i 214 i	79	i –	7	- 1	-
TIDDT	TREBURSEY BRIDGE	R122005		-	i - i	-		-	i -	1.14	i – i	-
TIDDY	TILLAND HILL BRIDGE	8129003	-		i - i		21	-	- 1	-	20 -	-
TIDDY	TIDEFORD BRIDGS	R1 2R004	-	-	-	-	27	_	<u> </u>	-	9	-
TRECORNE STREAM	TILLAND BRIDGE	R12R006					61					

NEICONL RIVERS MINISPITY - SOUTH WEST RESION 1990 RIVER WEER QUALITY CLASSIFICATION NUMER OF SIMPLES (N) AND RUMER OF SIMPLES EXCEEDING QUALITY SUMUND (F) CREMENT: LINER (14)

River	Reach upstress of	Uper	by I	OHR	PHU	the.	Tapat	BUEN	00	(\$)	BCD (/	(UD)	Total .	America	junion.	Junctria	S.S	lids	TOCAL	Citter	1 1000	1 Zinc
	1	Puf,		1.1			1.1	1.2	! _	_												
		Number	M			r				r			A					r				f
			29		i I i 29				29	2	29	1	1 29	- 1	 				29		29	
LEVELAR	THERMORY FOND BRIDGE		29		29		29	12	29	3	29	1	1 29		1 27	-	28	4	i 29	-	29	-
REAL	BERROCHERODIES	[R120002]		0.70	1		1 31	2	i n	1.2	n	ĩ	1 31	-	i mi	-	31	3	i n	2	1 31	-
	BULLA MILL BRIDGE	(R120003)	n	-		-	29		29	2	29	ĩ	1 29	1	28	-	29	4	29	4	1 29	-
2 REPR	HICCOM MOLL HRODOR	[R12004]	29	-	29	-	•	-	29		29		29	-	29		29		29	6	29	1
27 HER	Markey ar	[R120005]	29	-	29	-	29			3	22	1	22		ĨĨ	1.20	22	1	1 22	1	2	2
LEADER .	CLAPPER BELDES	[R120025]	22	-	22	-	22 29	-	29	-	29	÷	1 29		29	1.5.1	29		1 29	2	1 29	ī
DINHER	PILLAION BRIDGE	[R12006]	29	-	29	-		-				-		-	i ĩi		49	1	1 50	3	เรื่อ	- 2
EXER	HUTTER BRIDGE	(R12007)	-	-		-		-	49 	+		•							<u> </u>			
ZARY'S ERCOR		R1200291	19		19	-	19		19	1	19	1	1 19		110	-	19	1	1 12		1 12	-
SELLY BROCK		R120026	20	141	20	-	20	-	20	-	20		20	-	21	-	20	1	112	-	112	-
ELLY BROOK	OUNTT	pr1.20009	29	-	29	- Č	27	-	27	-	29		1 29	3	1 27		29	3	25	1	125	-
HARE VALLEY STREM	UPTON CROSS	17120027	20	-	20	-	20	-	20	-	20	2	20	-	1 14	-	20	3	17	16	17	16
CTREX BOOK	USINGH OF INSUET INSUE	RL2010	28	-	28	-	28	-	28	5	28	-	28	-	22	-	28	-	23	-	23	-
COHET BROOK	IFREER TO REVER LANSER	[RL2008]	Ħ	-	1 31	-	37	-	1 31	4	31	1	1 31	-	1 18	-	30	,	1 25	-	25	-
TIN	ABONS PERSILIA S T W	10045.5tt	18	-	18	-	118	-	18		18	3	1 18	-	14	-	1.0	2	<u> </u>	- -	<u>u</u>	
	BUTTERDOM MILL	[RL2R002]	29	-	23	-	28	-	28	-	29	2	1 29	3	1 77	-	29	3	1 2	-	X	-
	THERE BUDGE	RL2R005	2	-	22	-	22	-	22		22		[22	-	22	-	22		1 20	-	20	1.5
	TTLIND MILL BRIDE	(FL2R003)	22	-	1 22	1	1 21	-	1 2	-	1 22	1	1 2	-	1 21	-	22	3	1 22		22	
		[RL2R004]	29	-	29	-	29	-	29	-	29	2	29	-	20	-	29	3		1	77	-
RECORDS STOREM	TILLING BODG	R128006	20	-	20	-	20	-	20	-	20	1	20	-	13	- 1	20	2	12	-	1 12	-

NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT: LYNNER (14)

.

1990 Map		Reach upstream of	User	Reach	Possible causes of non-compliance
Position		1	Reference	Length	1
Runber	İ	Í	Bumber	(km)	1
	1	Í	1 1		1
		1	1		1
1	Ì	1	i i		1
	I	[_!!		
	LYNDER	TREBARTHA ROAD BRIDGE	R120001		LAND RUN-OPP
	LYNCHER	BERRIOWERIDGE	R120002	2.9	LAND RUN-OFF
	LYNHER	RILLA MILL BRIDGE	R12Q003	4.2	LAND RUN-OFF, MINING, CATCHNENT GEOLOGY
4	LINNER	BICTON MILL BRIDGE	B120004		LAND RUN-OFF, UP-STREAM ABSTRACTIONS
	LYNHER	NEMBRIDGE	R120005		MINING, CATCHDENT GEOLOGY, LAND RUN-OFF
	LYNDER	CLAPPER BRIDGE	R120025		PENTING
ן י	LYNHER	PILLATON BRIDGE	R12Q006	2.6	MINING
8	LYNHER	NOTTER BRIDGE	R120007	3.4	MINING, UP-STREAM ARSTRACTIONS
		I	_		
9	DEAN'S EROOK	BRIDGE	R12Q029	5.9	LAND RUN-OFT
I			_!!		
11	KELLY BROOK	CADDAPIT	R120009	1.3	SENAGE TREATMENT NORKS
1		1	!i		
12	MARKE VALLEY STREAM	UPTON CROSS	R12Q027	2.3	MINING, CATCHMENT GEOLOGY
I			_!!		
•	WITHEY BROOK	UPSTREAM OF BASTREET INTAKE	R120010		DROUGHT
- 14 j	WITHET BROOK	PRIOR TO RIVER LYNCHER	R12Q005	2.1	DROUGHT, LAND RUN-OFT
I		l	_		<u> </u>
15	TIDDY	ABOVE PENSILVA S T W	R12R001	0.7	LAND RUN-OFT
16	TIDDY	BUTTERDON MILL	R12R002	3.3	I LAND RUN-OFT
	TIDDY	TILLAND MILL BRIDGE	R12R003		LAND RUN-OFT
19 j	TIDDY	TIDEFORD BRIDGE	R12R004	3.6	LAND RUN-OFT
I		I	_‡!		J
20	TRECORDE STREAM	TILLAND BRIDGE	R12R006	6.8	LAND RUN-OFF
i		_i	_ii		i

1

Appendix 10.11