ENVIRONMENTAL PROTECTION

National Rivers Authority South West Region

River Par and River Crinnis Catchment River Water Quality Classification 1990

> NOVEMBER 1991 WQP/91/018 B L MILFORD

> > GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

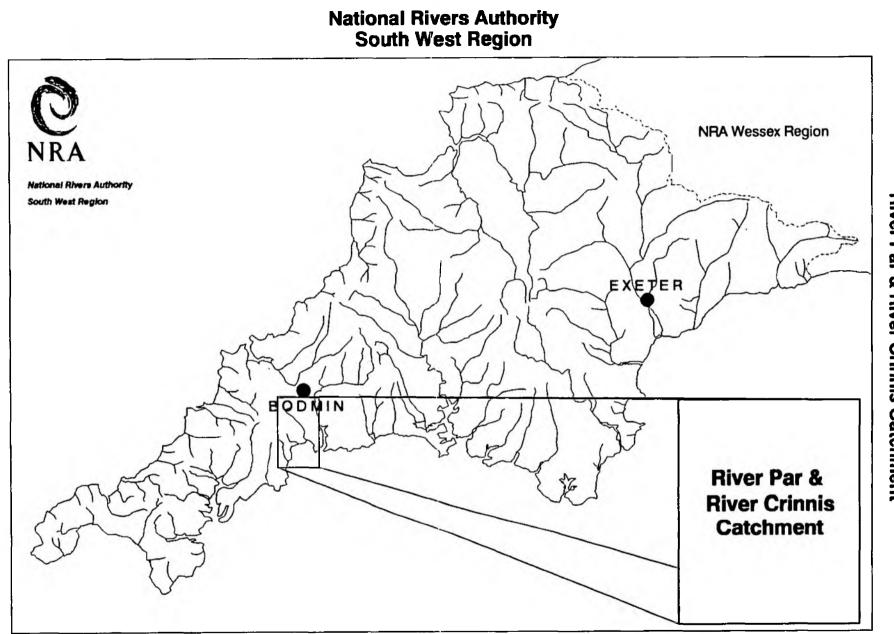
Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ



RIVER WATER QUALITY IN THE RIVER PAR AND RIVER CRINNIS CATCHMENT

LIST OF CONTENTS

Page No. 1 Introduction 1 2 River Par and River Crinnis Catchment 1 3 National Water Council's River Classification System 2 4 1990 River Water Quality Survey 3 5 1990 River Water Quality Classification 3 6 Non-compliance with Quality Objectives 4 7 Causes of Non-compliance 4 8 Glossary of Terms 5 **9** References 5 10 Appendices: River Quality Objectives including Monitoring points 10.1 10.2 Basic Determinand Analytical Suite 10.3 National Water Council (NWC) River Classification System 10.4 NWC Criteria for Non-Metallic Determinands - Regional Variation 10.4.1 NWC Criteria for Metallic Determinands - Regional Variation 10.5 1990 River Water Quality Classification - tabular format 10.6 1990 River Water Quality Classification - map format

- 10.7 Calculated Determinand Statistics used for Quality Assessment
- 10.8 Compliant/Non-Compliant River Reaches
- 10.9 Number of Samples Results exceeding quality standards
- 10.10 Percentage Exceedance of Determinand Statistics from Quality Standard
- 10.11 Identification of Possible Causes of Non-Compliance with River Quality Objectives

1

River Par & River Crinnis Catchment

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Par and River Crinnis catchment.

2. RIVER PAR AND RIVER CRINNIS CATCHMENT

The River Par flows over a distance of 15.3 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at seven locations on the main river at approximately monthly intervals.

The River Crinnis flows over a distance of 6.5 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at three locations on the main river at approximately monthly intervals.

Throughout the Par and Crinnis catchment five secondary tributaries and one tertiary tributary of the River Par were monitored, and one secondary tributary of the River Crinnis was also monitored.

2.1 SECONDARY TRIBUTARIES

The Treverbyn Stream (3.5 km), Carbis Stream (4.9 km) and Rosevath Stream (3 km) were each monitored at approximately monthly intervals at one location between their source and confluence with the River Par, (Appendix 10.1).

The Bokiddick Brook flows over a distance of 8 km from its source to the confluence with the River Par, (Appendix 10.1) and was monitored at two locations at approximately monthly intervals.

1

The Rosevean Stream flows over a distance of 1.9 km from its source to the confluence with the River Par, (Appendix 10.1) and was sampled at one site on twenty occasions in 1990 because of no recent water quality data. Monitoring points are all located in the lower reaches.

The Bodelva Brook flows over a distance of 2.1 km from its source to the confluence with the River Crinnis, (Appendix 10.1) and was monitored at two sites at approximately monthly intervals.

2.2 TERTIARY TRIBUTARY

The Molinnis Stream flows over a distance of 1.1 km from its source to the confluence with the Carbis Stream, (Appendix 10.1) and was monitored at one site at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Par and River Crinnis catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

2

Table 1 - National Water Council - River Classification System

<u>Class</u>	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5. The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would have affected the classification of the River Par at all sites, except Criggan Moor, the Rosevean Stream prior to its confluence with the River Par and the Crinnis Stream at Cuddra Road Bridge and Crinnis Beach.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

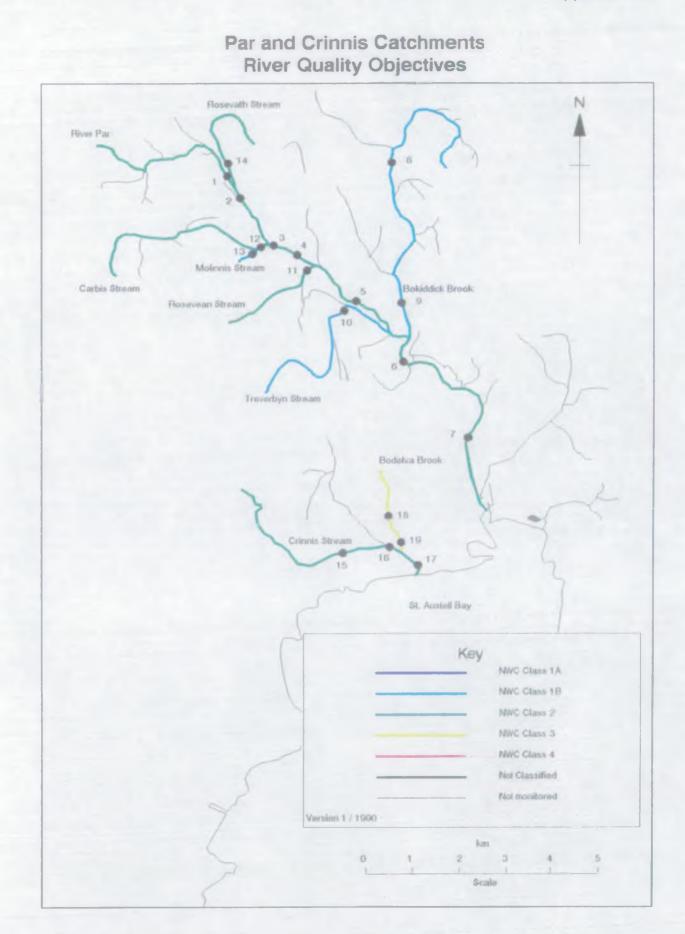
For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

4

8. GLOSSARY OF TERMS

RIVER REACH A segment of water, upstream from sampling point to the next sampling point. RIVER LENGTH River distance in kilometres. RIVER QUALITY OBJECTIVE That NWC class, which protects the most sensitive use of the water. **9**5 percentiles Maximum limits, which must be met for at least 95% of the time. 5 percentiles Minimum limits, which must be met for at least 95% of the time. BIOLOGICAL OXYGEN DEMAND A standard test measuring the microbial uptake of (5 day carbonaceous ATU) oxygen - an estimate of organic pollution. pН A scale of acid to alkali. Fraction of ammonia poisonous to fish, NH³. UN-IONISED AMMONIA SUSPENDED SOLIDS Solids removed by filtration or centrifuge under specific conditions. USER REFERENCE NUMBER Reference number allocated to a sampling point. INFERRED STRETCH Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

9. REFERENCES


Reference

9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.

9.2 Water Act 1989 Section 117

9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

5

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 0Biochemical oxygen demand (5 day total ATU) as mg/1 0 Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mq/1 NNitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/1 Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/l SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/1 Na Potassium (total) as mg/1 K Magnesium (total) as mg/1 Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

Water of high quality suitable for potable supply

abstractions

fisheries

abstractions and for all

Game or other high class

APPENDIX

NWC RIVER QUALITY CLASSIFICATION SYSTEM River Class Quality criteria Remarks Current potential uses Class limiting criteria (95 percentile) 1A Good (i)(i)Average BOD probably not (i)Dissolved oxygen saturation Quality greater than 80% greater than 1.5 mg/l Visible evidence of pollution (ii) Biochemical oxygen demand (iii) not greater than 3 mg/1 should be absent (iii) Ammonia not greater than (ii)0.4 mg/1 (iv) -Where the water is abstracted (iii) High amenity value for drinking water, it complies with requirements for A2* water (v) Non-toxic to fish in EIFAC terms {or best estimates if EIFAC figures not available) 18 Good Average BOD probably not (i)DO greater than 60% saturation (i)Quality (ii)BOD not greater than 5 mg/1 greater than 2 mg/1 (iii) Ammonia not greater than (ii)Average amnonia probably not 0.9 mg/l greater than 0.5 mg/1 (iii) Visible evidence of pollution (iv) Where water is abstracted for should be absent drinking water, it complies with the requirements for A2* water (iv) Waters of high quality which (v) Non-toxic to fish in EIFAC terms cannot be placed in Class 1A (or best estimates if EIFAC because of the high proportion figures not available) of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication (v) Class 1A and Class 1B together are essentially the Class 1 of the River Pollution Survey (RPS) 2 Fair Average 800 probably not (i)DO greater than 40% saturation (i)(i)Quality BOD not greater than 9 mg/l greater than 5 mg/1 (ii)(iii) Where water is abstracted for Similar to Class 2 of RPS (ii) (iii) Water not showing physical drinking water it complies with (ii) signs of pollution other than the requirements for A3# water (iv) – Non-toxic to fish in EIFAC terms humic colouration and a little (iii) Noderate amenity value (or best estimates if EIFAC foaming below weirs figures not available)

Water of less high quality than Class 1A but usable for substantially the same purposes

¥aters suitable for potable

Supporting reasonably good

supply after advanced

coarse fisheries

treatment

3 Poor Quality	(i) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/l.	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present.
	(,,,,,	This may not apply if there is a high degree of re-aeration		May be used for low grade industrial abstraction purposes. Considerable
		*		potential for further use if cleaned up
4 Bad Quality		Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
x		DO greater than 1D% saturation		Insignificant watercourses
		·		and ditches not usable, where the objective is simply to prevent nuisance developing

- es (a) Under extreme weather conditions (eg flood, drought, freeze-up), or when dominated by plant growth, or by aquatic plant decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results. (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
 - (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

Ex EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

** Ammonia Conversion Factors

(mg NHe/1 to mg N/1)

Class 1A 0.4 mg HH4/3 = 0.31 mg H/1 Class 1B 0.9 mg HH4/3 = 0.70 mg H/1 0.5 mg HH4/1 = 0.39 mg H/3

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

- 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/1 0 Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/1 O Total ammonia not greater than 0.70 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 0 Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/1 0
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/1 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

5 percentile
95 percentile
95 percentile
95 percentile
95 percentile
5 percentile
95 percentile
arithmetic mean

Statistic

Determinand

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH

Suspended solids

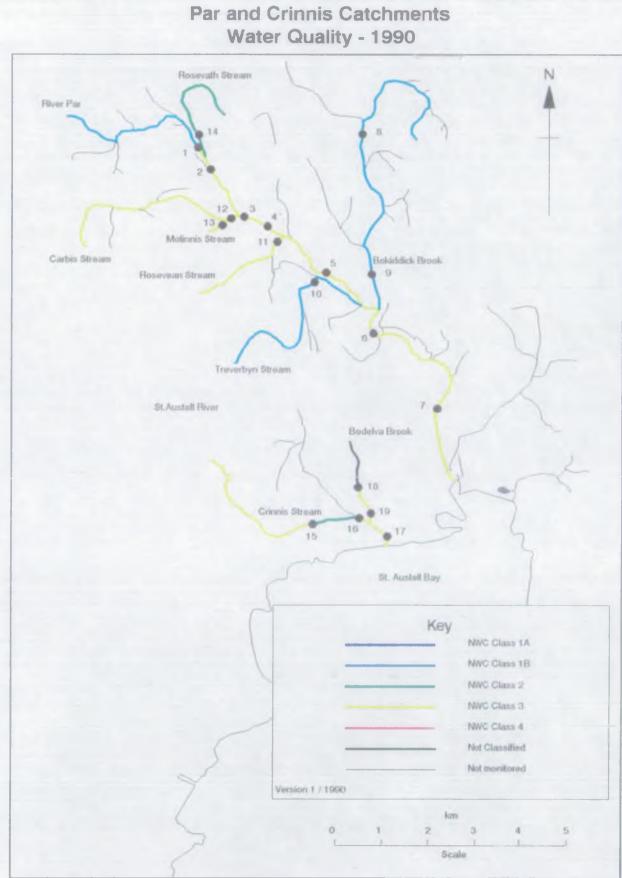
NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu
		Class 1 Class 2
0 - 10	95 percentile	< == 5 > 5
10 - 50	95 percentile	<pre>< = 22 > 22</pre>
50 - 100	95 percentile	<pre>< = 40 > 40</pre>
100 - 300	95 percentile	<pre>< = 112 > 112</pre>

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

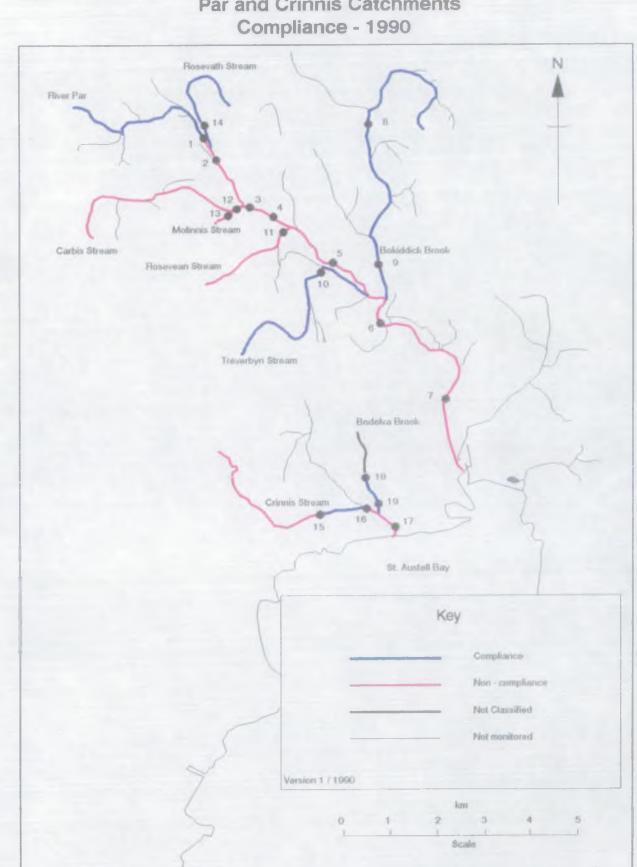

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn
-		Class 1 Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: PAR AND CRININIS (18)

KMC NMC lass Class 1B 1B 1B 1B 1B 1B 3 3 3 3 3 3 3 13 3 13 1B 1B 1B 1B 1B 1B 1B 1B	ASS Class 	55 Class 1 18 3 18 5	S (Class 2 2 1B 3 3 3 3 3 3 3 3 3 1B 1B	 18 3 18
1B 1B 1B 1B 1B 1B 3 3 3 3 3 3 3 3 3 3 1B 1B	B 1E B 1E B 1E B 1E B 1E C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	3 18 3 18 3 18 3 18 3 13 13 13 13 13 13 13 13 13 13 13 13 13 1	 	 18 3 18
1B 1B 1B 1B 3 3 3 3 3 3 3 3 3 3 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B	.B 1E .B 1E .B 2 .B 2 .B 2 .B 2 .B 1E .B 1E	3 1B 3 1B 3 3 3 3 3 3 3 1B 1 1B	2 1B 3 3 3 3 3 3 1 3 1 3 1 3 1 8 1 8	3 18 18
1B 1B 1B 1B 3 3 3 3 3 3 3 3 3 3 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B	.B 1E .B 1E .B 2 .B 2 .B 2 .B 2 .B 1E .B 1E	3 1B 3 1B 3 3 3 3 3 3 3 1B 1 1B	2 1B 3 3 3 3 3 3 1 3 1 3 1 3 1 8 1 8	3 18 18
1B 1B 1B 1B 3 3 3 3 3 3 3 3 3 3 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B	.B 1E .B 1E .B 2 .B 2 .B 2 .B 2 .B 1E .B 1E	3 1B 3 1B 3 3 3 3 3 3 3 1B 1 1B	2 1B 3 3 3 3 3 3 1 3 1 3 1 3 1 8 1 8	3 18 18
1B 1B 1B 1B 3 3 3 3 3 3 3 3 3 3 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B	.B 1E .B 1E .B 2 .B 2 .B 2 .B 2 .B 1E .B 1E	3 1B 3 1B 3 3 3 3 3 3 3 1B 1 1B	2 1B 3 3 3 3 3 3 1 3 1 3 1 3 1 8 1 8	3 18 18
1B 1B 1B 1B 3 3 3 3 3 3 3 3 3 3 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B	.B 1E .B 1E .B 2 .B 2 .B 2 .B 2 .B 1E .B 1E	3 1B 3 1B 3 3 3 3 3 3 3 1B 1 1B	2 1B 3 3 3 3 3 3 1 3 1 3 1 3 1 8 1 8	3 18 18
1B 1B 3 3 3 3 3 3 3 3 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B	.B 1E .B 2	3 1B 3 3 3 3 3 3 1 1B 1 1B	1B 3 3 3 3 3 3 1B 1B	3 18 18
3 3 3 3 3 3 3 3 3 3 3 3 3 3 1B 1B 1B 1B 1B 1B 1B 1B	B 1 E B 1 E B 1 E	3 3 3 3 3 3 1 3 1 8 1 1 8 1 8	3 3 3 3 3 3 1B 1B	3 3 3 3 3 3 1B 1B
3 3 3 3 3 3 3 3 3 3 1B 1B 1B 1B 1B 1B	B 18 B 18	3 3 3 3 1 3 1 3 1 1 8 1 1 8 1 1 8	3 3 3 3 1B 1B	3 3 3 3 1B 1B
3 3 3 3 3 3 1B 1B 1B 1B 1B 1B	B 1E B 1E	3 3 3 1 3 1 1 8 1 8	 1B 1B	3 3 3 1B 1B
3 3 3 3 	B 18 B 18 B 18		 1B 1B	3 3 1B 1B
3 3 1B 1B 1B 1B 1B 1B 1B 1B	.B 18 .B 18		 1B 1B	3 1B 1B
1B 1B 1B 1B 1B 1B 1B 1B	.B 1B		 1B 1B	 1B 1B
1B 1B 1B 1B 1B 1B 1B 1B	B 1B	18	- 1B	 1B 1B
1B 1B 1B 1B	B 1B	18	- 1B	1B
1B 1B	•		•	• •
	.B 18	1 IB	•	• •
	i		(1B	1 18
		i	i	i i
3 (-¦	- ¦	18
i	i	i	i	ii
3 1		- i	i —	i <u> </u>
3	i	i	i	j 3 j
I I	Í	Ì	Í	i i
3	—i—	-1	1	3
3	1	1	1	j 3 j
<u>_!</u>	_!	_!	<u> </u>	<u> </u> !
2	ļ	1	ļ	3
2	ļ	ļ	ļ	3
!	_!	_!	.! <u> </u>	<u> </u>
· -	•		ļ	2
[3	1 18	1B	ļ	2
!	_!	_!	.! <u> </u>	!!
			2	3
				2
			•	3 3
- L	1 3	1 3	4	1 3 1
!	—¦——	-!	·	!!
			-	131
4				131
1	1		-	1 2 1
3333	3		3 1B 1B 3 3 3 3 3 3 3 3 3 3 3 3	3 1B 1B 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2

Appendix 10.5



NYTIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WRIER GUNLETY CLASSIFICATION CALCULATED DEDENTIONNO STRUISTICS USED FOR GUNLETY ASSESSMENT CATCHENT: ENR AND CRIMINS (18)

River	Reach upstream of	Uper	90			alai	ated Lat	ecuiner	rd Statis	tics u	ed for Q	unlity	Assected	nt									
		•	NC							1		1		1	1.1	Ι				2.0		1	
	1	Stuber.	Class		Lower		Upper			,	(%)	. —					. Annuia	•	blids		Copper		al Zinc
				dam	- Skile	Class	95kile	Class	95ble		5 Stile		s 95kile	Class	95kile	Class	s 95kile	Class	F Maan	Class	95kile	dan	s 95kile
										l				1									
				l				-						ļ		1				1		١.,	5.11
ENR RIVER	CRICERN MOCR	R164007	19	14	6.0	1	7.1		14.9	18	67.1	1	2.2	1	0.218	1	0.010	1	13.0	1.	15.0	18	36.0
BAR RIVER	A.391 BRIDE	R164001	•	1	5.1	1.	6.9	1	14.4	118	60.8	1	2.9	1	0.184	1	0.010	1 3	28.6	1 2	66.4	11	ണ.6
BR RIVER	HIGHER MENDEN	171.62006		3	4.2	1 14	7.3	1 1	15.7	1138	72.1	1 18	3.1	118	0.322	11	0.010	i 3	46.0	1 2	76.0	1 14	77.5
BR RIVER	LAREAN BOLLE	176.64002		3	4.0	1	7.1	i IA	14.6	1 18	68.5	i IA	3.0	i	0.183	1 1	0.010	i 3	56.2	iz	133.2	1 1	95.9
ENR RIVER		RL61003	•	1	5.8	1	6.8	i IX	15.5	1 18	62.9	118	3.8	13	3.250	1	0.010	i 3	78.6	i Ž	106.0	1 16	124.9
IN RIVER		181.64004	•	1	5.6	1	7.5	i IX	14.8	1 13	77.2	i IA	2.9	i 2	0.950	1	0.010	i 3	47.0	1 2	72.0	14	76.2
EAR RIVER	ST. HAZEY HEDDE	1160005	i 3 i	1 1A	5.4	1 1	7.5	i IA	14.9	i IA	82.0	1 18	3.3	110	0.546	I IA	0.010	3	34.4	1 2	87.7	1 14	118.1
		i	i i	i —		i		i		í -		i T				i		i i		i		i	
BORILLERCK HROOK	LONERIONEL FAIRL	R160014	18	1	6.0	AL	7.1	<u> </u>	15.0	118	64.3	<u> 1</u>	2.2	14	0.229	1	0.010	14	11.5	AL	12.0	Î ÎĂ	28.0
BRIDDECK SHOCK	TIRLEARN	RL6N09	18	1.	6.4	1.	8.0	I I A	15.8	j 18	69.8	j IA	2.9	118	0.385	A L	0.010	j 1A.	10.9	j IA	9.8	į 1A.	181.1
	İ	i	í i	İ		i		i		i		i		i –		i		i		i		i	
TREVEREN STREAM	200M FRICR TO HAR REVER	pre-pro-	18	1	6.2	14	7.2	AL	17.0	18	71.4	11	2.2	<u>i</u> ub	0.369	<u> </u>	0.010	1	12.0	1	7.0	11	34.0
	1			1		t 👘		Ĺ		Í		Í		Ì		ĺ –		ĺ .		1		1	
ROSEVERN STREAM	FRIDE TO FAR RIVER	TI 60012	3	3	4.1	1 1	7.0	AI	21.4	2	60.0	2	6.0	2	1.540	AI	0.010	3	30.3	2	127.0	1 A	86.0
	l					<u> </u>								1		1		L		L		L	
CARBLE STREAM	FRICE TO EAR RIVER	page 1	3	3	4.1	1 18	7.2	17	16.5	<u> </u> 2	48.5	18	4.1	<u> 18</u>	0.420	<u> 1</u> A	0.010	3	90.9	2	99.0) IA	91.0
	<u> </u>			L		L		<u> </u>						<u> </u>		<u> </u>		i				<u> </u>	
MOLINEIS STREPH	POLLINKIS	[R160016	3	3	3.2	אנן	7.3	1 12	18.4	I IV	85.0	118	4.6	18	0.458	אנן	0.010	3	49.8	2	270.0	! 2	240.0
								<u> </u>								<u> </u>		l		<u> </u>		<u> </u>	
ROSEWAUH SUREAM	HOREMPOL	larences	2	A L	5.8	1A	7.1	I IV	14.5	2	60.0	2	6.0	1 12	0.240	1 1	0.010	1 1	11.1	1 72	6.0	1	29.0
			Ļ	ļ.,		<u> </u>	9.9	<u> </u>	16.5		91.0		2.7	<u> </u>		<u> </u>	0.000	└──	29.6	<u>.</u>	100.0	<u> </u>	10/ 0
CRINNIS RIVER	(Cueera rond breize (A390) Korejkor bry rond breizer	(121 -200 02) (121 -200 03)			6.5		9.9 7.2	1A					-		0.800	1	0.010				190.0	1	106.0
CRINNIS RIVER	J	•			6.1	I IV			14.5	18	71.0		8.2	1A	0.270		0.010		16.2	4	81.0	I IV	270.0
CRIMUS RIVER	(CRINKUS BEACH (ADET FOREINL)	PR1 78-204	1 2 1	I IV	6.3	 1 A	7.0	אנן	15.9	4	56.0	1 2	14.1] 18	0.393	1 1	0.010	3	73.9	4	135.0	1 4	950.0
BODELIJA HROCK	IA. 3082 BRIDER	IR17001			6.1	1	7.9		15.0	18	80.0		7.5	119	0.500	1.	0.010		209.2	\ <u> </u>		-	_
		1			~							-		. ~				- T		1			

Appendix 108

Par and Crinnis Catchments

INDIDANL RUVERS AUTHORITY — SOUTH WEST REGION 1990 RIVER WRIER QUALITY CLASSIFICATION NUMER OF SAMPLES (N) AND NUMER OF SAMPLES EXCEEDING QUALITY STINIONIO (F) ORTCHMENT: BAR AND CRIMINIS (18)

River	Reach upstreem of	User Ref.	pH I	OWNE	ि वस प	fber	Tearce	rature	0	(\$)	800 (ATU)	Total J	Acuantia	Union.	Amria	S.90 	olids	Total	Officer	i Total	1 Zinc
		Nuber	N	P	N	F	N	F	N	F	N	F	N	P	N	۳	N	F	N	P	N	F
							}				!		!				4		!			
					i		1		1		1		ł		1		1		1		1	
		i i			i		i		i		i		i		i	i	i		i		i -	,
PAR RIVER	ORIGIEN MOOR	R16007	20	-	20	-	20	-	20	-	20	-	20	_	20	-	20	1	j μ	-	<u>і п</u>	-
BAR RIVER	A 391 BRIDGE	R164001	32	1	j 32	-	32	-	j 32	-	32	-	32	-	j 31	-	32	6	j 31	-	1 31	-
BAR RIVER	HIGHER MENNOW	R16006	21	1	j 21	-	j 21		j 21	-	j 21	-	j 21.	-	1 21	-	1 21	8	j 21	-	1 21	-
PAR RIVER	LANEN BRIDE	R16A002	33	3	j 33	-	j 33	-	j 33	_	33	-	j 33	-	j 32	-	1 33	20	j 33	-	j 33	-
BAR RIVER	ILIRULIAN HRIDGE	R164003	33	-	j 33	-	j 33	-	j 33	-	j 33		j 33	3	j 33	-	33	27	33	-	1 33	-
PAR RIVER	TREFFIC HRIDE	R16004	33	-	j 33	-	1 33	-	j 33	-	j 33	-	j 33	-	33	-	33	20	j 33	-	33	-
BAR RIVER	ST. HAZEY BRIDGE	R164005	33	1	i 33	-	j 32	-	32	-	j 33	-	j 33	-	j 32		33	19	j 33	-	j 33	
	i	i i			i		i		i		i		i		i		i		i		i	
KINDECK BROOK	LOWERICAN FARM	R164014	20	-	20	-	20	-	20	-	20	_ `	20	-	20	-	20	2	<u>) 11</u>	-	<u> </u>	_
BORNEDUCK BROOK	ILRUXAN	[R16009]	20	-	j 20	_	j 20	_	j 20	_	i 20	-	j 20	-	j 20		20	3	j 20	-	j 20	-
	i	i i			i		í		i		i		i		ì				i		i	
DEVERSON STREAM	200M PRICE TO BAR RIVER	R16A013	20	-	20	-	20	-	20	_	20	-	20	-	20	-	20	3	<u>i u</u>	-	<u>i</u> u	-
	i	i i			i i		i		i		i		i		i	1.5			i		i	
ROSEWEAN STREAM	FRICE TO PAR RIVER	R164012	20	3	20	-	19	_	19	_	20	-	20	1	19	-	20	9	<u>i</u> u	_	<u>i 11</u>	-
	İ	i i			1		İ		Í		Ì		i		i	100	1		Í		Í	
OFFICE STREPH	PRICE TO PAR RIVER	R160011	20	1	20	-	20	-	20		20	_	20	_	20	÷.	20	12	<u>i</u>	- 4-	11	_
	İ	i i			Í		Ì		i i		i		Ì		i				i i		<u> </u>	
MELINNES STREPH	MULLINGIS	R162016	20	2	20	-	20	-	20	-	20	-	20	-	17	-	20	8	<u>u</u>	3	<u> </u>	. 1
		i			Í.		Ĺ		Í .		1		1					_	L .		ι	
RUSDIZICH STORZAM	ROSEXATH	R16H008	11	-	<u> </u>	-	<u> 1</u>	-	1 II	-	1 11	1	II	-	<u>i</u> 11	-	<u> </u>	1	μ	-	j u	
					I _		1		ł		1		<u> </u>		I		I		L		<u> </u>	
MINNES RIVER	CUDERA ROND BRIDGE (A390)	R172002	12	-	112	1	<u> II</u>	-	<u>11</u>	_	12	-	12	_	<u>i</u> u	_	12	3	12	-	12	-
CRIMNES REVER	CARLEON BAY ROAD BRIDDE	81.72003	12	-	1 12	-	1 12	-	112	-	1 12	-	j 12	-	j 😐	-	12	2	1 12	-	12	-
RINNIS RIVER	(CRUNNUS HEACH (ADET FOREAL)	R17A004	21	-	1 21	-	1 21	-	21	-	j 21	1	j 21	-	21	-	j 21.	9	1 14	-	j 14	-
		- i - i			L		1		I I		1		1		1							
ROLEDIA BROOK	A.3082 HRIDE	R17A001	11	-	<u>u</u>	-	<u>i</u> II	-	<u>i u</u>	-	<u>i 1</u>	_	<u>i 1</u>		11	-	<u> </u>	-	9	-	9	-
	i	i i			i		i		i		i		i		i		i		i		i	
					<u> </u>																	

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: PAR AND CRINNIS (18)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	' STATISTIC	FROM QUALIT	y standard				
	1	Ref.	I	1		ļ	I I		I	F	H:	1
		Number 	pH Lower 	pH Upper 	Temperature	DO (%)	BOD (ATU) 	Total Ammonia	Un-ionised Ammonia	Suspended Solids	Total Copper	Total
				 1					! 			
PAR RIVER	CRIGGAN MOOR	R16A007	i	i –			-	-	i 	-	'	-
PAR RIVER	A.391 BRIDGE	R16A001	i –		i - i	-	-	-	- 1	14	—	1 -
PAR RIVER	HIGHER MENADEW	R16A006			i - i	-	-	-	i -	84	i –	i -
PAR RIVER	LAVREAN BRIDGE	R16A002	20		i - i	-	- 1	-	i -	125	i –	i -
PAR RIVER	LUXULYAN BRIDGE	R16A003	i –	-	i - i	-	- 1	109	i -	214	-	i –
PAR RIVER	TREFFRY BRIDGE	R16A004	-	-	i – i	-	- 1	-	i -	88	-	i -
PAR RIVER	ST. BLAZEY BRIDGE	R16A005	-	-	-	-	-	-	-	38	-	-
BOKIDDICK BROOK	LOWERTOWN FARM	R16A014		-	·					-		
BOKIDDICK BROOK	LUXULYAN	R16A009		-	-	-	-	-	i -	-	-	-
TREVERBYN STREAM	200M PRIOR TO PAR RIVER	R16A013	-		-		-		-			
ROSEVEAN STREAM	PRIOR TO PAR RIVER	R16A012	17	-	-	-	-	-		21	-	-
CARBIS STREAM	PRIOR TO PAR RIVER	R16A011	18	-	-	-	-	-		263	-	-
MOLINNIS STREAM	MOLLINNIS	R16A016	37	-	-		-	_	-		1127	. 20
ROSEVATH STREAM	ROSEVATH	R16A008	-	T F T		-	-				-	-
CRINNIS RIVER	CUDDRA ROAD BRIDGE (A390)			10			-	_	1 	18		
CRINNIS RIVER	CARLYON BAY ROAD BRIDGE	R17A003	-	-	i – i		-	-	i – 1	-	-	i –
CRINNIS RIVER	CRINNIS BEACH (ADIT PORTAL)	B17A004	-	-		-	57	-	-	195	-	-
BODELVA BROOK	A. 3082 BRIDGE		-	-		-			-			

NATIONAL RIVERS ADTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH ROO CATCHMENT: PAR AND CRINNIS (18)

* = WORK ALREADY IN HAND

1990 Map	River	Reach upstream of	User	Reach	Possible causes of non-compliance
Position	1		Reference	Length	
Number	Ì	i	Number	(km)	İ.
1)	j l	t I		İ. Alaşı da başar da başar da başar da başar da başar da başar da başar da başar da başar da başar da başar da
	1	i	i i		i i i i i i i i i i i i i i i i i i i
	1	i i	i i		Í l
1	1	1	i i		Ì
2	PAR RIVER	* A.391 BRIDGE	R16A001	0.1	LAND RUN-OFF, CHINA CLAY DISCHARGE
3	PAR RIVER	* HIGHER MENADEW	R16A006	1.5	CHINA CLAY DISCHARGE
4	PAR RIVER	* LAVREAN BRIDGE	R16A002	0.5	CHINA CLAY DISCHARGE
5	PAR RIVER	* LUXULYAN BRIDGE	R16A003	2.1	CHINA CLAY DISCHARGE, SEWAGE TREATMENT WORKS
6	PAR RIVER	* TREFFRY BRIDGE	R16A004	1.9	CHINA CLAY DISCHARGE
7	PAR RIVER	* ST. BLAZEY BRIDGE	R16A005	3.0	CHINA CLAY DISCHARGE
11	ROSEVEAN STREAM	* PRIOR TO PAR RIVER	R16A012	1.7	CHINA CLAY DISCHARGE, CANALISATION
		<u>l</u>		I	
12	CARBIS STREAM	* PRIOR TO PAR RIVER	R16A011	4.7	CHINA CLAY DISCHARGE
	ł	I	_ I		1
13	MOLINNIS STREAM	* MOLLINNIS	R16A016	.0.9	CHINA CLAY DISCHARGE
	l				l
15	CRINNIS RIVER	* CUDDRA ROAD BRIDGE (A390)	R17A002	4.6	CHINA CLAY DISCHARGE
17	CRINNIS RIVER	* CRINNIS BEACH (ADIT PORTAL)	R17A004	0.8	CHINA CLAY DISCHARGE, CANALISATION, LAND RUN-OFF, UNKNOWN POINT SOURCE, MININ

.