NRA-WATER RESOVECES 63

NRAM
 User - Guide

\mathbf{N} ational Rivers Authority
Resource
Allocation

NRA

Model

Water Resources (Planning \& Operations)
January 1992

User - Guide

Contents

1. Introduction

2. Model description
2.1 The program - general
2.2 The modelled system
2.3 The main program segment
3. The allocation routine
2.5 The parameter list
4. Running the model
3.1 General procedure
3.2 Block data segments
3.3 Data files
3.4 Running the programs

Tables
Figures
Appendices

THarrison
Senior Hydrologist (Planning \& Operations) January 1092

INIRODUCTION

This document provides a description of and running instructions for the National Rivers Authority - Resource Allocation Model (NRAM). The original version of this model, called the Regional Resources Allocation Model, was developed by Severn-Trent Water Authority in 1980. Such a model became desirable when possibilities for interlinking command areas and demand centres made necessary the consideration of the Water Authority's area as a whole. The model is designed to show how the present or projected water resource system of the Severn and Trent River Basins would react to a wide range of hydrological conditions under varying operational rules.

During the period 1980-87 the model was used to assess the feasibility of many major capital schemes including re-building of the Carsington Dam, the East-West link, and major treatment work enhancements. It was also used for general resource optimisation throughout the region, resource allocation during droughts, design and assessments of resource control rules, assessment of standards of service, and for revenue forecasting purposes.

The NRA, after their formation in 1989, took over the use of the model and made significant enhancements and corrections to the model and data during the period 1990-91 to produce the version that is now called NRAM. However it is important to note that unit cost values have not been updated and are still set at 1980-81 prices.

Recently NRAM has been used for the River Severn Control Rules project to assess the various options that are currently being proposed.

The specification of the model and control of its use is under the direction of Gordon Davies.

2.1 The program-gem-ral

The program is written in Fortran 77 for use on the Authority's DEC VAX 3100 computer. The program, including all segments, is some 3,500 lines long, of which 600 are taken up in the four BLOCK DATA segments. There are five other segments of which four form the allocation derivation routine while the fifth controls the listing of allocation details. Data input not performed by BLOCK DATA segments is handled on six channels and there are five types of results listing, one run information file and one channel for the storage of allocations, ready for re-input. Fig 1 shows the organisation of these components, which are described in more detail below. The passing of information between segments is accomplished mainly by common blocks. Table 1 shows which common blocks are used by each of the segments. Listings of all program segments, together with definitions of all variables, are available as an appendix. These listings should be considered as examples only, as versions in use at any one time may differ in some details.

2.2 The modelled system

2.2.1 General remarks

The difficulty in a general simulation model is to reach a compromise between the unwieldyness of a highly detailed model and the unacceptable loss of accuracy with an over simplified model. The degree of simplification of the physical system and of the operating rules and practices, and the choice of timestep to be used in the simulation all have a role in this compromise. The approach to the physical system used in formulating this model was a flexible one, in that the decision on whether to include a component was made on grounds not of size but of importance to the system. A schematic diagram of the modelled system is shown in Figure 2.
2.2.2 Soprces

Water resource sources are split into four categories:
(i) Strategic reservoir systems
(ii) Major river abstractions
(iii) Strategic groundwater abstractions
(iv) Local sources.

These are described in more detail in the following sections. The Source Numbers and Names currently used in the model are:

Source No.		Source Name
		Elan Valley
1		Lake Vymwy
2		Tittesworth
3		Dove Scheme
4		Derwent Valley
5		Ogston
6		Church Wilne
7	Charnwood	
9		Blithfield
10		Shustoke

11	Draycote
12	Stanford
13	Groundwater (See 2.2.5)
14	Wyelands
15	Shelton
16	Hampton Loade
17	Trimpley
18	Ombersley
19	Upton and Worcester
20	Mythe
21	Willes Meadow
22	Homesford
23	Little Eaton
24	Local Sources (See 2.2.6)

2.2.3 Reservoirs

The reservoirs simulated in the model have several different combinations of purpose and modes of operation, making a general reservoir module impractical. There are certain basic elements of operation common between reservoirs however and where possible these are treated in the same way from reservoir to reservoir. All direct supply reservoirs have two 'supply curves' which define three levels of output. In most reservoirs one or both curves have secondary functions, also controlling prescribed flows, compensation releases or hands-off flows at refill abstraction points. All pump filled reservoirs have filling targets, specified as a curve, which are sometimes used in conjunction with other rules. The major reservoirs have flood drawdown curves designed to lessen the risk of excess spillages. Certain groups of reservoirs which are, or can be assumed to be, operated together are treated as one reservoir in the model, the operating rules being defined on the sums of the volumes in the separate reservoirs.

2.2.4 River abstractions

There are three types of river abstractions in the model; direct supply, refill, and major abstractions by other bodies. The quantities abstracted for direct supply are determined by the allocation routine, except that in some cases the upper limits are controlled by river flow or reservoir volume. Refill abstractions are determined within the simulation with reference to licences, river flows and filling targets. The third class of abstractions includes major industrial abstractions, spray irrigation abstractions and abstractions by other water companies. These are determined outside the simulation and are specified as either a fixed quantity or by the interaction of a 'profile' over the year and a factor, between 0 and 1 , for each year.

2.2.5 Aqpifers

All but one of the aquifer units identified as part of the modelled system are used solely for direct supply. Their use will vary little with climatic conditions and thus their effect on river flows will also be fairly constant. Because of these considerations, and because of the complex nature of groundwater modelling, the integration into the model of simulations of these direct supply units has not been undertaken. Since the direct supply units are not simulated, they are all treated as a single source by the allocation routine.

The Shropshire Groundwater Scheme is of a different type with the quantities abstracted being dependent on the flows in the River Severn. It is desirable that this should be simulated so that the effect on the river of abstractions can be determined, but at tine moment the model does not attempt to simulate any interaction between river and aquifer.

2.2.6 Local Sources

These are sources which can only supply a single demand centre usually at a fairly constant rate. They may be smail local reservoir or river abstractions, or they may be borehole or spring sources, or some combination of these. Since the local source units are not simulated, they are all treated as a single source by the allocation routine.

2.2.7 Lioks

The presence in the model of a link between a source and a demand centre implies either an aqueduct exists or that the existing network can carry such a supply. Specified for each link are a lower bound on the flow in that link, an upper bound and a peak week upper bound. These are used to ensure that operational requirements, as well as physical limitations, are reflected in the allocations of water. In addition, power and chemicals unit costs (to enable the derivation and listing of cost information) and a 'dummy' unit cost (to facilitate further the enforcement on the allocations of operational requirements) are specified.

Links which currently exist are identified by a ' 1 ' in Table 1.

2.2.8 Demand centres

The area supplied by the Severn Trent Water Ltd, South Staffordshire Water Company and East Worcestershire Waterworiss Company has been split into twenty four demand centres. These are either identifiable centres of population or areas which have, effectively, a separate water supply. The demands used in a particular simulation are based on the projected normal average demands for the year being studied. A more accurate representation of reality is introduced by identifying pentads in the duration of the historical record where 'peak week demands' were likely to have applied or did apply and imposing higher demands at these times. These higher demands are calculated by using a peak week factor for each demand centre, based on recent demand figures. The demands can be further affected by the behaviour of reservoirs. It is assumed that a demand can and will be reduced if the storage in a reservoir important in supplying the demand centre is unduly low. Each reservoir has an associated list of demand centres dependent on it (directly or indirectly) and if the reservoir enters one of the two lower output states then demands at all the associated demand centres are reduced. Reductions are 5,10 or 20% of average annual demand, depending on the reservoir state and the importance of the source.

The demand centre numbers and names currently used in the model are:

Demand Centre No.		Name
2		Shrewsbury
2		Telford
3		Ludlow
4		Montgomery
5		South Staff WC
6		Wolverhampton
7		Birmingham
8		Nuneaton
9		Coventry
10		Rugby
11		South Warwickshire
12		Gloucestershire

13	Worcester
14	Kidderminster
15	East Worcester WC
16	Sherwood
17	Nottingham
18	North West Derbyshire
19	North East Derbyshire
20	Derby
21	Leicester
22	Rutland
23	Upper Trent
24	Newark

2.2.9 Rivers and inflows

The data on river flows and reservoir inflows is in the form of pentad averages derived from daily naturalised flows, either as measured or simulated by the HYSIM catchment model or correlated with another site or generated by another Rainfall/Runoff model. Residual flous are only calculated at a limited number of important gauging points on rivers used for public supply. The flows are affected by reservoir releases and spillages, abstractions, and effluent returns. Effluents are assumed to be a constant proportion of direct supply river abstractions.

2.3 The main segment

The main segment of the program performs most of the data input, all the simulation and most of the manipulation and listing of results. Fig 3 is a flow diagram of the important steps. The detail of the program is easy to follow as efforts have been made to use comment statements throughout and to use meaningful variable names. This is made more comprehensive, without losing generality, by using EQUIVALENCE statements to enable common attributes to be referenced individually or together as an array. EQUIVALENCE statements have also enabled reservoir curves with more than one function to be accessed with different names when the separate functions are in use.

2.4 The allocation routine

2.4.1 The allocation model

The water available from all sources is allocated among demand centres by using a linear programme solution sub-routine. Although the technique is nominally one of cost-minimisation, the constraints are often such as to make the set of feasible solutions fairly small. The main criterion for choosing linear programming rather than a specially developed more heuristic technique was the ease with which new links, sources and demand centres could be incorporated without knowledge of the techniques used.

The basic form of the linear programming of the problem is made up of three types of constraint:
(i) $\quad \sum q_{i j} \leq O i \quad$ for each i
$\mathrm{j} D(1)$
(ii) $\quad \sum q_{i j} \geq D j \quad$ for each j
j S(j)
(iii) $\mathrm{q}_{\mathrm{ij}} \leq \mathrm{UB}_{\mathrm{ij}}$) for each i, j such that the link
$\mathrm{q}_{\mathrm{ij}} \geq \mathrm{LB}_{\mathrm{ij}}$) $\quad \mathrm{i} j$ exists
where $q_{i j} \quad$ is the flow in the link $i-j$
$\mathrm{O}_{\mathbf{i}} \quad$ is the maximum output from source i
$D_{j} \quad$ is the demand at demand centre $j \quad o$
$\mathrm{UB}_{\mathrm{ij}}, \quad \mathrm{LB}_{\mathrm{ij}}$ are the upper and lower bounds on the flow in the link ij
$D(i) \quad$ is the set of demand centres supplied by the source i
$S(j) \quad$ is the set of sources supplying demand centre j
Minimising a simple cost function, $\sum \mathrm{c}_{\mathrm{ij}} \mathrm{q}_{\mathrm{ij}}$, with respect to these constraints yields the required solution in most cases. If mere is insufficient water to meet any of the demands, however, there will be no solution to the above problem and, automatically, a new problem will be solved. The new constraints are as follows.
$\underset{\mathrm{j} \boldsymbol{D}(\mathrm{i})}{\mathrm{q}} \mathrm{q}_{\mathrm{ij}} \leq \mathrm{Oi} \quad$ for each i
(ii) $\quad \Sigma \mathcal{q}^{+}+S_{j} \geq D_{j} \quad$ for each j
i $\mathrm{S}(\mathrm{j})$
(iii) $\mathrm{q}_{\mathrm{ij}} \leq \mathrm{UB}_{\mathrm{ij}}$) for each i, j such that the link
(iv) $\underset{\mathrm{Dj}}{\mathrm{Sj}}-\mathrm{M} \leq \mathrm{O} \quad$ for each j

The objective function is

$$
\underset{i j}{\sum_{i} c_{y} q_{i j}+\quad \sum_{j} a_{j} S_{j}+b M}
$$

where S_{j} is the shortage at demand centre j
\mathbf{M} is a dummy variable
$\mathrm{a}_{\mathrm{j}}, \mathrm{b}$ are arbitrary numbers such that $\mathrm{b} \gg \mathrm{a}_{\mathrm{j}} \gg \mathrm{c}_{\mathrm{ij}}$ for all i, j

This problem can be seen to be similar to that above except that shortfalls at demand centres can be made up by shortages S_{j}. In addition M is defined by constraint type (iv) to be an upper bound on shortages. A solution to this problem will attempt to do two things; the total shorffall in the system will be kept to a minimum and any unavoidable shortfall will be spread among as many demand centres as possible, and evenly in relation to the size of the demands.

In addition to these basic forms of constraint, the model has a facility to incorporate additional constraints, explicitly specified by the user. Non-standard situations which can be dealt with using this facility include limitations on the mix of water from different sources at a particular demand centre and those cases where supplies from several sources are treated at a common site whose capacity is less than the sum of the maximum flows from those sources.

In order to speed up the solution of the Linear Program problem, the problem which is actually solved is the 'DUAL' of the problem specified above. This can be described as a transposition of the original form.

Runs of the model with river flow sequences for forty seven years have shown that as few as two hundred different allocations are required, with most of these being repeated many times. It is important that each allocation should only be derived once, but since there are many thousands of possible allocations it is not feasible to derive them before the simulation is carried out. A system has been developed where allocations are derived in the model run but are stored so that they can be reused if identical conditions reoccur. They are also written to a file as they are created, in order to store them from run to run. In order to facilitate this process each combination of conditions, that is each allocation, is given a unique identifier. Fig 4 is a flow diagram of the steps, performed each pentad, which make up these controls.

The routine used to solve the Linear Program problem requires the coefficient matrix to be set up explicitly. Much of this matrix is the same from allocation to allocation and can be set up at the start of the run. A flow diagram for this is shown in Fig 5. The rest of the matrix is set up at the time of solution, as it depends on the outputs and demands, as well as whether a shortfall in supply is present. A flow diagram of this part of the solution process is shown in Fig 6. The solution is performed by a subroutine from the National Algorithms Group (NAG) library by subroutines. Details of the routine, called HOIADF, can be found in the NAG Manual, or in the NRAM correspondence file.

The routine H01ADF is not now supported in the latest NAG library, therefore NAG have provided the source code of the routine, and it has been included as a subroutine at the , ind of the model code.

2.5 The parameter list

The parameter list is designed to be a complete and convenient list of all the physical, legal and operational parameters used in a particular run. It will enable people not used to the structure of the model to see the assumptions made without studying the data files. The parameters listed are as follows:-
(i) Output control curves. These are given in graphical form for each direct supply reservoir.
(ii) A table of output levels for all direct supply reservoirs. These give the maximum output permissible in each of the three defined bands of storage.
(iii) Direct supply abstractions. Gives the daily maximum and annual average maximum abstractions, the factor which controls any change in maximum abstraction, and the effluent return factor for each direct supply river abstraction.
(iv) Maintained flow targets and groundwater abstractions. Gives the total maximum direct supply output, the maximum discharge from the Shropshire Ground water Scheme, and the maintained flow targets at up to three points on the river Severn.
(v) Demands and peak week factors. Gives the annual average demand for each demand centre used in the model, together with the peak week factor assumed.
(vi) Demand reduction factors. For each reservoir assumed to affect demands, gives the reduction factor associated with each output band and a list of the demand centres affected by the reservoir. The direct supply reservoirs are listed first followed by the others.
(vii) Link bounds and costs. The links are identified by demand centre name and source name and grouped by demand centre. Listed for each one are its peak week upper bound, normal upper bound, lower bound, unit cost (power and chemicals) and dummy unit cost. Note that the real unit cost is used solely to calculate the costs of supply for selected years (see Results File 2), whereas the "Dummy" unit cost is used by the allocation routine. By manipulating the Dummy cost it is possible to force a non optimal allocation, and see the true cost displayed in the results.

The unit cost values are currently set at 1980/81 prices ie. they have not been updated as the remainder of the model has been.
(viii) Control curves for ancillary reservoir functions. For each reservoir where some functions are controlled by curves which do not coincide with the output control curves, the independent curves are given, again in graphical form.
(ix) Refill abstraction details. For each pumped refill reservoir, gives the pumping station(s) with their maximum abstractions, higher and lower prescribed flow, and any assumed dirty water cutoffs.
(x) Compensation releases. Gives, for each impounding reservoir, upper and lower compensation release rates and notes on any special rules.
(xi) Miscellaneous river abstractions. Gives details of spray irrigation, British Waterways Board and CEGB abstractions from the Severn.
(xii) Major bulk water supplies. Gives details of supplies to other water companies from sources within the Severn-Trent region, and details of supplies from other water companies to the Severn-Trent region.

2.6 The simulation results

Examples of the output described in sections 2.6.1 to 2.6.5 are given in Appendices 1-5.

2.6.1 Results file 1

Results file 1, gives in concise tabular form, a pentad record of supply, demand and reservoir information. Each table consists of a matrix with 73 columns and a row for each year of the run, each element being a single symbol (or a space). Associated with each table is a table of frequencies of occurrence of each symbol for each year and for the run as a whole. The tables give information on the following aspects.
(i) Reservoir volumes; digits 1 to 7 indicate whether the reservoir is full, in one of the five 20% bands or empty.
(ii) Reservoir output states; digits 1, 2, 3 indicate which output band the reservoir is in.
(iii) Demand reduction factors at demand centres; a blank indicates no demand reduction in force and digits 1 to 4 indicate $5,10,15$ and 20% reductions.
(iv) Demand shortfalls; a blank indicates no shortfall at that demand centre, digits $1-9$ cover 2% bands up to 18% shorffall. Greater shortfalls than this are indicated by an exclamation mark.

2.6.2 Results file 2

Results file 2 gives the costs of supply for selected years. The annual average supply and the total cost of power and chemicals is given for each link in each of the years, together with the total average supply and total cost for that year. The averages over the run of supplies and costs for each link are also given.

2.6.3 Results files 3,4 \& 5

Again for the selected years, these files give pentad records of selected reservoir volumes, reservoir releases, river flows and refill abstractions. The files cover (i) the Dove and Derwent reservoirs, including the Chamwood group, (ii) the Sevem and Wye reservoirs, excluding those in the Avon (iii) the Avon reservoirs and those in the Trent catchment not covered by (i).

2.6.4 Results files 6-15

Provision has been made for ten files to be used for lists of certain aspects of the allocations used in the selected years. Up to five of the files can be used for details of supplies allocated to chosen demand centres. the choice of which demand centres and how they are to be grouped together being under the control of the user. The other five files are available for details of how the supply from chosen sources is allocated among demand centres. The choice of sources and their arrangement between files is again under the control of the user. This output is handled by a subroutine (ALLOCOUT) which sets up all file headers and column headings automatically. This is achieved by using long and short versions of names input via a BLOCK DATA segment and the matrix of connections set up for the allocation derivation routine.

2.6.5 Resnits file 23

For the years where a detailed output is requested this file summarises the average use of water for each source and quotes this as a percentage of annual licensed quantity. Averages for the period of the whole run are also provided.

2.6.6 System state informstion

If no simulation results are requested, information is given on the allocations used in each pentad of the run. This information consists of the states of all parameters, such as reservoir output bands, river flows, and demand level, which determine the allocation used, together with the unique identifier of that allocation. In addition a waming is given whenever an allocation is worked out which involves a shortfall in supply. This information enables an experienced user to identify anomalies in the results.

2.7 Recent Developments

The original Regional Resource Allocation Model has been substantially changed to:-
(i) reflect recent changes to the water resource/supply system.
(ii) to correct a number of anomalies.
(iii) to more accurately represent river regulation operations on the River Severn.
(iv) to improve run time efficiency.
(v) to update the Sevem Data Bank to 1990.

Also a limited amount of validation has been undertaken on the Severn data bank.

The model that has resulted from these changes has been renamed the NRA Resources Allocation Model (NRAM).

Details of the changes and data validation are described in the River Sevem Control Rules - Progess Notes Nos. 2-6 (which are in the NRAM correspondence file) and to a limited extent in comment statements within the code.

3.1 General procedure

Shown in Fig 7 is the general flow of operations performed in completing a run of the model. If major changes are required, thorough checks should be carried out early in the flow of operations and the first runs of the model with the new data should be carried out on short flow sequences. This will prevent waste of time and computing resources.

3.2 Block data segments

Block data segments are used to initialise variables within a program, and avoid the necessity of reading large amounts of data from files. The variables are initialised in DATA statements and transferred in common blocks.

3.2.1 NAMES

This block initialises arrays with long (16 character) and short (4 character) versions of all source and demand centre names. Common-block CB7 is used to transfer the values to the main segment. Changes to this segment will be required if the name of an existing location is to be changed or sites are to be added or deleted from the model.

3.2.2 ABSTDAT

This block initialises the variables with controlling parameters for river and aquifer abstractions. These are
(a) upper limits and effluent return factors for direct supply river abstractions
(b) upper limits and controlling flow levels for refill abstractions from rivers
(c) upper limits on aquifer abstractions for supply and river regulation.

Transfer of these parameters (except the effluent return factors which use CB10) is accomplished by common block CB8. Changes to this segment will be required if licences or effluent retum factors change, or if abstractions are added to or deleted from the model.

3.2.3 RESSUPDAT

Initialises the output levels, output control curves, demand reduction factors and demand centres affected for each direct supply reservoir. Common block CB5 is used for the transfer of this data. Changes to this segment will be needed if output levels, control curves or demand reduction factors change, or if demand centres are added to or deleted from the model.

3.2.4 RESOPDAT

Initialises those parameters needed to describe the operation of reservoirs other than the control of direct supply. These include capacities, maximum releases, compensation releases, prescribed flows etc together with those reservoir curves which do not coincide with output control curves. The capacities are transferred on their own, in common block CB9, while the rest of the data is transferred in common block CB6. Changes will be needed in this segment if any reservoir operating procedures are altered, or if reservoirs are added to or deleted from the model.

3.3 Datafiles

3.3.1 Stecring file

This holds information to control the results from the model and the length and initial values of the run. The information should be set out as follows:
(i) Three title lines, of up to 72 characters each, on each results file
(ii) First and last years of the simulation
(iii) A $0: 1$ switch indicating if all simulation results are to be suppressed
(iv) Three $\mathrm{O}: 1$ switches to control the listing of each of results files 3,4 \& S
(v) The number of years for which pentad results are required
(vi) A list of those years for which pentad results are required
(vii) The initial volumes in store in the reservoirs
(viii) The number of files of allocations to demand centres that are required
(ix) For each fie, and on separate lines
(a) the number of demand centres for which allocations are required on that file
(b) a list of those demand centres
(x) The number of files of allocations from sources that are required
(xi) For each file, and on separate lines
(a) the number of sources for which allocations are required on that file
(b) a list of those sources.

Up to and including (vii) the data is read at the start of the run in REGSIM. The rest of the data is read in ALLOCOUT, again at the start of the run. This file will require alterations whenever changes in the type of results are required, or changes in the length of the run or in the initial conditions are required.

3.3.2 Demand file

This file holds information relating to the demand centres within the Severn and Trent Basin areas, together with information on the bulk supplies to or from other water companies, and major private abstractors. The file should be made up as follows:
(i) The year that the demand values relate to.
(ii) For each demand centre, the demand centre number, the demand and the peak week factor.
(iii) A profile, over the year, of irrigation abstractions from the River Sevem.
(iv) A factor, for each year of the historical record, by which to multiply the profile in (iii).
(v) A second factor for each year of the historical record, by which to multiply the profile in (iii). Whilst the First Factor is based on climatic conditions for each year, this second factor is necessary to correct double counting in the flow naturalisation process, and is based on the potential spray inrigation that actually could have occurred (ie. annual licensed totals). Further details are given in the River Severn Control Rule - Progress Note No. 4 and its Appendix.
(vi) A profile over the year of the BWB abstractions for the Gloucester to Sharpness Canal.
(vii) A factor, for each year of the historical record, by which to multiply the profile in (vi).
(viii) The CEGB abstraction at Ironbridge (summer and winter values).
(ix) The abstractions by Welsh Water plc from the Wye, upper and lower figures.
(x) Supplies to Yorkshire Water plc from the Derwent Reservoirs - one figure for each of the three output levels and the extra entitlement when the reservoir storage is above the flood drawdown curve.

3.3.3 Lioks data file

This file holds flow constraints and cost information for each link in the system. It can also be used for specifying additional constraints. The file should be structured as follows:
(i) For each link making up the system, and on separate lines
(a) Source number and demand centre number
(b) Dummy cost and unit cost
(c) Upper bound, peak week upper bound and lower bound
(ii) -1-1: to end the list of links
(iii) For each multiple constraint required
(a) The number of links in the constraint
(b) SNO DNO COEFF REL RHS
repeated for each
link in constraint
where SNO is the source number
DNO is the demand centre number
COEFF is the coefficient for that link
REL is $-1,0$ or 1 to signify $a>=$ or $<$ constraint RHS is the right hand side

For example: Upton to Leicester + Dove to Nuneaton $>4 \mathbf{M l} / \mathrm{d}$ is specified as:
(a) 2
(b) $\begin{array}{lllllllll}19 & 21 & 1 & 4 & 8 & 1 & -1 & 4\end{array}$

This file is read in at the start of the run by DUALMATRIX. The unit costs are transferred to REGSIM as a parameter of DUALMATRIX. Changes will be needed in this file if any bounds or costs change, if links are to be added to or removed from the model, or if changes to the multiple constraints are required.

NOTE Each time a change is made to the links file it is suggested that a new allocations file is used to prevent the model 'locking' itself with an old allocation that cannot actually meet all the demands, or perhaps other problems may occur.

3.3.4 Flow files

The flow data used by the model is held in two files, one covering the Severn catchment and the other the Trent. Each is made up of seven columns and there is one line for each pentad with the years separated by a single line carrying the year. The columns are as follows:
(i) Severn catchment:- Elan inflow, Redbrook flow, Vyrnwy inflow, Clywedog inflow, Bewdley flow, Haw Bridge flow, Stareton flow.
(ii) Trent catchment:- Tittesworth inflow, Marston flow, Yorkshire Bridge flow, Longbridge Weir flow, Ogsion inflow, Chamwood inflow, Hamstall Ridware flow.

Currently the data bank is complete for the 14 components over the period 1932 to 1978. From 1979 to 1990 data for the five records relating to the River Severn exist ie. Vyrnwy inflow, Clywedog inflow, Bewdley flow, Haw Bridge flow and Stareton flow. Data for Redbrook from 1979 to 1982 are included. Data for Redbrook from 1983 to 1990 and Elan Reservoir Inflows from 1979 to 1990 are missing.

To enable the model to continue running over periods where there is missing data, records of existing years have been substituted in the files. Latest details of substitutions and changes are listed as comments at the end of the data files.

The Charnwood data bank incorrectly represents inflow to Cropston, Swithland, Thornton and Blackbrook reservoirs up to 1975. For 1976 to 1978 only Cropston and Swithland are correctly included. The model has been amended so that 1932-1975 inflows are reduced by the catchment area of Cropston and Swithland relative to the total catchment area for the four reservoirs. This fault has been dealt with by reducing the 1932-75 inflows by factoring by the ratio of the Cropston and Swithland catchment areas to the total area for the four reservoirs.

The integrity of three of the data records which have been derived using HYSIM has been questioned, due to the occurrence of many zero values during dry spells. These are Ogston, Tittesworth and Chamwood inflows. Altemative records have been derived and proved for Tittesworth and Charnwood using a fairly simple rainfall/runoff model developed by T Harrison for Water Resources purposes. Monthly totals of reservoir inflow have been derived using historical rainfall, with the values residing in the files:-
\$DISK2:[FFS.DEVTH.STATS.RP12.DATA
\$DISK2:[
Use of the program CHARTNDAT (within [.STATS.RP12.FOR]) will convert monthly data to pentad values. However, at the moment, these altemative records have not replaced the originals and the limited progress that had been made updating the Ogston record is lost'somewhere in Richard Douglas' filing system.

Some flows are transformed to give flows at points with records of insufficient length or quality. The transformations are as follows:-

Princes Drive flow $=($ Stareton flow -12.1$) * 0.855$
Stanford inflow $=($ Stareton flow -12.1$) * 0.1$
Brownsover flow $=($ Stareton flow -12.1) $* 0.23+2.1$
Derwent Valley inflow $=1.17$ * Yorkshire Bridge flow
Blithfield inflow $=0.79$ * Hamstall Ridware flow
Blythe flow $=2.85$ * $\left(\right.$ Stareton flow - 8.0) ${ }^{* *} 0.7$
Bourne flow $=0.07$ * $($ Blythe flow ** 1.2 $)+2.4$
Dolwen flow $=3.028$ * Clywedog inflow $-7.298 \mathrm{E}-4$ * (Clywedog inflow) ** 2
Lower Parting flow $=\frac{(10075+334-9895)}{9895} * 0.95 *$ Hawbridge flow + Hawbidge flow

3.3.5 Demand profile

The demand profile is on a file in yearly blocks, each block preceded by the year to which it pertains. Each of the 73 numbers in a block is either a ' 2 ' signifying an average demand pentad, or a ' 4 ' signifying a peak demand pentad.

3.4 Rumning the Programs

Access to the code is gained through user TH, on the Microvax 3100. Fortran files are in the directory. [.REGSIM.FOR] and parameter and data files are in the directory [.REGSIM.DATA].

For ease of handling all the code and parameter files associated with NRAM have been split into three groups.

1) The four block data files used by NRAM and PARLIST are grouped together under the filename PARAM2.FOR.
2) All Fortran code other than the block data mentioned above associated with the model is grouped under the filename REGSIM3.FOR.
3) All Fortran code other than the block data mentioned above associated with the Parameter Listing is grouped under the filename PARLIST3.FOR.

Any edit of 1 or 2 will then necessitate a rebuild of REGSIM using the command @BUILDNRAM.

Any edit of 1 or 3 will necessitate a rebuild of Parlist using the command @BUILDPARLIST.

To run PARLIST use the command @PARLIST. If the run is successful a parameter listing will automatically be produced.

To run the NRAM model use the command @THREGSIM. The results files may then be printed.

Each source code or data or output file is listed below and cross referenced to the appropriate descriptive sections in the text.

FILE

THREGSIM.COM
PARLIST.COM
BUILDNRAM.COM
BUILDPARLIST.COM
PARAMS.FOR
REGSIM.FOR
PARLIST.FOR
RUNA1990.DAT
DEMA1990.DAT
LINKA90.DAT
SEVERN90.DAT
TRENT.DAT
DEMPROF90.DAT
ALLOC90A.DAT
ALL OUTPUT RESULT FILES

Section in Text
3.1
3.1
3.1
3.1
3.1/2.5
3.1/2.3
3.1/2.5
3.3.1
3.3.2/2.2.8
3.3.3.2.2.7
3.3.4/2.2.9
3.3.4/2.2.9
3.3.5/2.2.8
2.4
2.6

TABLE 1

OEMAND CENTRE NUMBER	SOURCE NUMBER																									
	1	2	3		4	5	6			8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1															1		1									
2															3											
3																			1							1
4																										1
5											1				1			1							1	1
6															1			1								
7	1																	1								
8	1				1							1									1					
9						1						1			1						1					
10													1	1												1
11																					1		1			1
12																1						1				1
13																					1					1
14															1				1							
15															1					1	1					1
16							1								1											
17						1			1						1											
18						1																				1
19							1																	1		1
20						1			1															1	1	1
21					1	1			1	1											1					1
22																										1
23			1												1											
24															1											

TABLE 2 USE OF COMMON BLOCKS

	CB1	CB2	CB3	CB4	CB5	CB6	CB7	CB8	CB9	CB10
REGSIM	1	1			1	1	1	1	1	1
MAMES							1			
ABSTDAT								1		1
RESOPDAT						1		.	.	-
RESSUPDAT					1				-	
DUALMATRIX		1	1	1						
DUALPREP	1	1	1	1						
DUALSOLV				1						
ALLOCOUT		1					1			

FIG 1 ORGANISATION OF PROGRAM COMPONENTS
Cman/152

FIG 3 MAIN SEGMENT - GENERAL

FIG 4 ALLOCATION DERIVATION CONTROL

```
READ LINK INFOR-
```

MATION FILE

SET UP CONNECTION MATRIX
WITH 'l' WHERE A LINK EXISTS and zero elsewhere

READ FORM OF EXTRA
CONSTRAINTS

NUMBER LINKS IN CONNECTION MATRIX

SET UP COEFFICIENTS OF THE MAXIMUM OUTPUT CONSTRAINTS

> SET UP COEFFICIENTS OF THE STANDARD FORM OF THE DEMA: SATISFACTION CONSTRAINTS

SET UP COEFFICIENTS FOR TME FLOW LIMITATION CONSTRAINTS

SET UP COEFFICIENTS OF
the Extra constraints

SET UP, IN THE RIGHT HAND SIDE OF THE DUAL, THE OBJ. FUNCTION OF THE PRIMAL

FIG 5 LINEAR PROGRAMME - START OF THE RUN PROCEDURE

FIG 6 LINEAR PROGRAMME - SOLUTION PROCEDURE

FIG 7 RUNNING THE MODEL - GENERAL PROCEDURE

A九木林

1932－B1 SIMULATION， 1979 IS 1989，1980 IS 1990，1981 IS 1990（A）．

US ING 1989／90 DEMANDS， 1990 LINKS \＆SYSTEM CONSTKAINTS

OUTPUT EILE 1 ：－SUmmary tables of various geatures of all reservoirs and demand centres

SECTION 1 :- RESERUOIR VOLUMES

EACH digit fron 1 to 7 inclusive covers a range of volumes as EOLLOWS :-

$$
\begin{aligned}
& 1-100 x \text { FULL } \\
& 2-80 x-99 x \\
& 3-60 x-79 x \\
& 4-10 x-59 x \\
& 5-20 x-39 x \\
& 6-1 x-19 x
\end{aligned}
$$

DERWENT VALEEY

YEAR
/ JAN / FEB/ MAR / APR / MAY / JUN / JUL/ AUG/ SEP/ OCT/ NOU/ DEC/ 1932 2122222222222222221211122211222222222222233333333333332222222222222222 19332222222112221111222222222222222232233333333333444444445544444444444444455 19345544444444444444333444433333333334444444444444444455555544444433333322222
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

1970

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981 222222211111122212222112222222222223333333334444444444433332222222222222 222222222221111111122222222222222222332222222222222233333322222222222222 222222211111121111112112222222222222232233333333344444445555555555444444 4433332222222222322233333333333333333322223333333344444332222222222222222 222222211111112221122322222222222222222222222222233333333333333222222222 222233333322222112122112222222223333333333344444444444444444432222222222 22222211111111111111222222222222222333333222222333333322532222222222 2222222212222211221112222222222222223333232322333333333332222222233222222 2222222111222222222222222222222222333333333333333333333333333332222222 2222122322222222222222222 22222211122222222222222222222222222222222233333333333 14444432223333333322 22222221111122.1122222222222233322222222222222222222 - 23333333332222222222 22222222222222111111211122222222222222233333333444444445555555544444443 32122221112222222222232222222322222222222222222223333333333333333333333 22222222222222222211222222222222233333333344444 44455555555544333222222 2222222211121222222221112222222222222333333333333333332222333332222222222 22212222211112111111122222222222222233333333333333333333333332222222222 222222211122122222224222222222222242233333333333333322222222222222222 222222221122232221222222222222222222222222222222222233333333332333333333 332222222211112221222222222222222222222222222222222333333322222222222 2222222122222222112122222221122222222222222233333333444444444444444544443 333222212222122222222222222223333333222221222222222233233333333333222222 222222211121211112222222222333333333333333433322222222333322222222222222
 222322222222222222222222222222233333333334444444555555555655565555444433 333322112221121222222222222222222333333222222222222222322222222222122222 22222221122222222222222212222222222222222222222222233333222222222222222 222422211122222222211112222222222223333333333333322232333333333322322222
 2233332233333322222222222222222222222222222222223333333333333444433332222
 2222222111111122221111122222122222222222222232222222223222222222222222222 2222222222111222222222222111222222222333332222222232222222222222222222 2221222222222221111222222211222222222222222222223333222222222222222222222 2222222222222221111111212222122222222222233333333333333334322222222222
 2222222221122222112222222222222222222222333322223333333333333333222222222 222222211122112221111222222222111121222222222222333333333344443333222222 2222222222211122222222222222222222223332222222222233333333222322222222222 22222221111222112222222222233333333333333333333333332222222222222222222 22222222222222222221121222223222222333333333444444444555555555555555555 333222222222222222222222222222222333333444444455555444433333333333333 3332222111111221121222111112222222222222722333333333333333333332222222222 22222221221112111112222222222222222222222222222233332333333333222222221 2222222222222222222222222222222233333333333444444555555555655565555444433 223222222224222222222222222222233333333333444444555555555655565555444433 22322222222222222222222222222223333333333344444555555555655565555444433

FREQUBNCIES OE OCCURENCE						
1	2	3	4	5	6	7
7	53	13	0	0	0	0
6	28	12	23	4	0	0
0	5	19	41	8	0	0
9	39	13	12	0	0	0
8	58	7	0	0	0	0
14	26	10	13	10	0	0
0	33	33	7	0	0	0
9	50	14	0	0	0	0
5	32	18	18	0	0	0
14	45	14	0	0	0	0
6	48	19	0	0	0	0
3	41	29	0	0	0	0
1	71	1	0	0	0	0
3	44	21	5	0	0	0
7	55	11	0	0	0	0
9	32	9	15	θ	0	0
4	45	24	0	0	0	0
2	39	12	10	10	0	0
7	44	22	0	0	0	0
12	36	25	0	0	0	0
4	54	15	0	0	0	0
3	51	19	0	0	0	0
5	59	9	0	0	0	0
6	38	9	19	1	0	0
3	47	23	0	0	0	0
ε	42	22	1	0	0	0
9	55	9	0	0	0	0
0	32	12	11	16	2	0
6	56	11	0	0	0	0
3	65	5	0	0	0	0
7	41	25	0	0	0	0
3	58	12	0	0	0	0
0	42	27	4	0	0	0
6	59	9	0	0	0	0
13	59	1	0	0	0	0
6	61	6	0	0	0	0
7	62	4	0	0	0	0
9	46	17	1	0	0	0
15	42	16	0	0	0	0
4	50	19	0	0	0	0
14	41	14	4	0	0	0
3	58	12	0	0	0	0
6	41	26	0	0	0	0
3	34	9	9	18	0	0
0	33	23	11	6	0	0
14	35	24	0	0	0	0
10	50	13	0	0	0	0
0	32	13	10	16	2	0
0	31	14	10	16	2	0
0	31	14	10	16	2	0

GACH DIRECT GUPPLY RESERUOIR HAS IHREE OUTPUT STATEB. THESE STATES HAVE ASSOCIATED WITH IHEK MAXIMUM OUTPUTS AND DEMAND REDUCTION EACTORS. DETAILS CAN BE EOUND DN THE PARAMETER EILE

YEAR

/ JAN / FEB / MAR / APR / MAY / JUN / JUL / aUg 1932 111 1933 111111111111111111111111111111222111211111111111 19341111111111112111111111111111122222222222222222 1935 111111111111111111111111111122111111111111111111 193611111111111111111111111111112211111111111111111 1937 111 193811111111111111111122222233333332222222222222111
 1940 1111111111111111111:1111111112222222222222111111 1941 11 1942111111111111111111111111122211111111222112112111 1943 11111111111111111111111112211122111122222221111111 19441111111111111111111111111122222222211111111111 1945 1111111111111111111111111111121111111111111111111 19461111111111111111111111111222222211122111111111 1947 111 1948 11111111111111111111111111112211111111111111111111

SBP / OCT / NOU / DEC / 111111111111111111111 11111111111111111111111 211111112211111111111 11111111111111111111111 11111111111111111111111 1111111111111111111111 11111111111111111111111 1111111111111111111111 111111111111111111111 11111111111111111111111 22211112111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111112111111112 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 1111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 12222223332222111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111112222211221111 11111111111111111111111 1111111111111111111111 1111111111111111111111 1111111111111111111111 11111111111111111111111 111111132221111111111 11111111111111111111111 1111111111111111111111 11111111111111111111111 11111111111111111111111 11111111211122222111111 222222111111111111111 111111111111111*1111111 11111111111111111111111 111222222322221 i1111111 11122222232222 :11111111 11122222232222111111111
frequencies of occurence 13

73	0	0
69	4	0
50	23	0
71	2	0
71	2	0
73	0	0
45	21	7
64	9	0
59	14	0
73	0	0
60	13	0
62	11	0
63	10	0
72	1	0
63	10	0
72	1	0
71	2	0
61	12	0
65	0	0
73	0	0
73	0	0
73	0	0
73	0	0
73	0	0
67	6	0
60	13	0
73	0	0
49	21	3
67	6	0
71	2	0
66	7	0
72	1	0
66	7	0
73	0	0
73	0	0
73	0	0
73	0	0
73	0	0
66	7	0
73	0	0
73	0	0
73	0	0
55	18	0
61	12	0
46	27	0
73	0	0
73	0	0
30	22	1
50	22	1
70	22	1

?

THE DEMAND REDUCTION EACTORS ASSUMED IO APPLY ARE DENOTED AS fOLLOUS :-
blank - NO REDUCTION
1 - 5X REDUCTION
2 - 10x REDUCIION
3 - 15X REDUCTION
4 - 20x REDUCTION

BECTION 4 :- DEMAND BHORTEALLB

NO ACTION IS TAKEN IN THE MODEL tO REMEDY A ghorteall. they are FLABBED AS EOLLOWS :-

$\begin{array}{ll}11 \\ 21 & 1 \\ 21 & 1\end{array}$
$\triangle P P E N D 1 X 2$.
1932-81 SIMULATION, 1979 Is 1989,1980 ts 1990,1981 is 1990(A).
USING 1989/90 DEHANDS, 1990 LINKS 2 BYSTEM CONSTRAINTS
output file 2 :- annual auerage flow and cost for each link in bach year

A. SUPPLY LINKS

DEMAND CENTRE
SOURCE
FLOW
POI (HL/D)

GROUNDWATER 33
SHREWSBURY GHREWSBURY
TELEDRD
LUDLOM
LUDLDW MONTGOMERY SOUTH EIAFES WC SOUTH STAFES WC goUTh Stafes wC 8OUTH GTAFES WC SDUTH STAFES WC WOLVERHAMPTON WOLUERHAKPTON
birhinahan
girh inghan
NUNEAION
NUNEATON
NUNEATON COUENIRY
COUENTRY COUENTRY COVENTRY RUOBY RUGBY RUGBY BOUIH HARUICKS 8OUTH WARWICKB 8OUTH WARWICKB GLOUCESTERSHIRE GLOUCESTERSHIRE GLOUCESTERSHIRE WORCESTER NORCESTER KIDDERMINSTER KIDDERMINBTER EASI HORCS HC BABT WORCS WC EABI HORCB HC EABI HORCB WC 8HERWOOD 8HERWOOD NOTI INQHAN NOTI INGHAK NOII INGHAM NORTH WE8I DERBS NORTH WEAT DRRBB

236885
188340
328500
872350
229220
561735
132130
389090
104025
667585
0
60955
64240
97820
630355
47085
348210
915055
107310 92710

NORIH EAST DERBS	08810N	34	259515
NORTH EA8T DERBS	HOMESFORD	30	309520
NORIH EAGT DERBG	LOCAL gources	11	00665
DEREY	DERWENT UALLEY	73	167900
DEREY	CHURCH WILNE	5	41610
DEREY	HOMEBEDRD	11	117895
DEREY	LIITLE EATON	44	342005
DERBY	LOCAL SOURCEs	2	21900
LEICESTER	DOUE 8CHEME	176	1791420
LEICESTER	derment valley	44	102200
LEICB8IER	CHURCH UILNE	0	4745
LEICBETER	CHARNWOOD	10	04315
LEICESIER	UPTON \% WORCS	0	0
LEICESTER	LOCAL SOURCES	12	133225
RUTLAND	LOCAL gOURCES	13	143445
UPPER IRENT	IITIESUORTH	22	162790
UPPER TRENT	GRDUNDWATER	151	1381890
NEWARK	GRDUNDWATER	16	147460

TOTALS :-
2347
19863665
B. HISCELLANEDUS ELDUS

debtinhtion
ORIGIN
ELOW
(ML/D)
POWER COBT
(4/ANNUM)

CARS INBTON
anbergate
0
A. SUPPLY LINKS

GROUNDWATER
BHELTON GROUNDHATER
trimpley
LOCAL SOURCES
LOCAL SOURCES
BLITHFIELD
oroundwaitr hampton loade LITTLE EATON LOCAL SOURCES BROUNDWATER HAMPION LOADE blan valley TRIMPLEY DOUE SCHEKE SHUSTOKE UPTON 1 WORCS SHUSTOKE DRAYCOTE GROUNDHATER UPTON : WORCB DRAYCOTE

GTANFORD

LOCAL SOURCES UPTON : HORCS HILLES HEADOW LOCAL gOURCES HYELANDE MYTHE LOCAL SOURCES UPIDN : MORCS LOCAL SOURCES GROUNDHATER trimpley GROUNDHATER DMBERSLEY UPTON HORCB LOCAL BOURCES OBSION GROUNDWATER DERUENT UALLEY CHURCH WILNE GROUNDHATER DERUENT VALLEY LOCAL BOURCES OOBTON HOKESFORD LOCAL SOURCES dBRUENT VALLEY
SHREWSBURY 33
SHREWBBURY 13
TELEORD 59
LUDLOW 8
LUDLOW 5
MONTOOMERY 18
SDUIH GIAFPE WC 63
gOUTH SIAFES WC 180
8OUTH STAEES WC 111
SOUTH STAFES WC 2
SOUTH ETAFES WC 6
WOLUERHAAPTON 78
WOLUERHAMPTON 36
BIRA INGHAM 312
BIRHINGHAK 0
NUNEAION 4
NUNEATON 33
NUNEATON 0
coventry 9
COVENTRY 9
COUENIRY 30
COURNIRY 48
RUCBY 6
RUGBY B
RUGBY 5
gOUTH WARWICKB 22
GOUTH WARWICKG 22
SOUTH WARHICKS 16
OLOUCESTERSHIRE 34
GLOUCEETERSHIRE 89
OLOUCESTERSHIRE 20
WORCESTER 38
HORCESTER 9
KIDDERAINSTER 43
KIDDERHINSTER 6
EABT HORCE UC 62
EAST HORCS WC 0
EABT WORCS HC 4
EABT WORC8 \#C 7
SHERMOOD 11
SHERHOOD 69
NOTT INBHAM 25
NOTI INOHAM 42
NOT I IMOHAM 109
NORTH WEST DEREB 16
NORIH WEST DBRBS 9
NORTH EASY DEKBS 34
NORTH BART DERBS 29
NORTH EAST DEREG 11
DERBY 73

2202
19924985
B. HISCELLANEOUS ELOWS

ORIGIN
FLOW
(ML/D)
-
AMBERGAIE
0
0

. .
, .

\qquad

1932-81 8IHULATION,1979 18 1989,1980 18 1990,1981 18 1990(A).

USING 1989/90 DEMANDE, 1990 LINKS : SYETEM CONSTRAINTS

DUTPUI EILE 4 :- PENIAD RECORD OE ELOGS , VOLUHES , ETC. IN THE SEUERN - UYE GYGTEM

	$\begin{aligned} & \text { PDA } \\ & \text { NOA } \end{aligned}$	UYRN λ VOL	UYRN A REL \star	UYRN \star BANK \star	CLYu VOL	CLYM A REL	SHRY A AB8I	DOLH * RESPL	日EWD	HAWB RESPI	ALOWPARTA	INLPRTA	88UREGA	ACTUALA	REG		STORM ${ }^{\text {A }}$	TOTAL *
	1	47265	25	905	43800	${ }^{135}$	Aast ${ }_{0}$	1348	R ${ }^{\text {a }}$	RE8EL	A FLOH *		ARECHENTA	RELEASE*	IND		LossESk	Lossesa
	2	48780	45	905	44815	135	0	1348 737	12772	12849	13567	12937	0	0		0	0	0
	3	49000	45	905	45160	135	0	518	6561	1919	12073	11441	0	0		0	0	0
	4	49335	45	905	45470	135	0	506	2642		9623	8993	0	0		0	0	0
	5	49860	45	905	45880	135	0	541		4291	4484	3854	0	0		0	0	0
;	6	49620	45	905	45950	135	0	384	4350	5306	5552	4922	0	0		0	0	0
	7	48875	45	905	45515	135	0	270	3589	4635	4836	1206	0	0		0	0	0
	B	49960	45	905	45460	135	0	375	2425	3293	3420	2790	0	0		0	0	0
	9	52795	25	1005	47395	135	0	1044			4302	3672	0	0		0	0	0
	10	52425	45	1005	47585	135	0	392			994	9319	0	0		0	0	0
	11	52310	45	1005	47340	135	0	304	2844	1662	11262	10632	0	0		0	0	0
	12	51800	45	1005	46970	135	0	256	3127	4571	4864	4234	0	0		0	0	0
	13	50870	45	1730	46560	135	0	240	1790	2637	4763	4133	0	0		0	0	0
	14	49925	45	1730	46110	135	0	225	1495	2249	2321	2099	0	0		0	0	0
	15	49605	45	1730	45830	135	0	291	1647	2717		1691	0	0		0	0	0
	16	49755	45	1730	46220	18	0	206	3476	3963	4139	2190	0	0		0	0	0
	17	52075	25	1830	48065	18	0	694	7460	10182	10700	3509	0	0		0	0	0
	18	51875	45	1830	48235	135	0	457	6088	8712	10700	10070	0	0		0	0	0
	19	51825	45	2555	48045	135	0	325	2920	4607	4806	8486	0	0		0	0	0
	20	51060	4.	2555	481is	18	0	82	2076	3315	4806	4176	0	0		0	0	0
,	21	50675	45	2555	48470	18	0	193	1439	2597	2549	2069	0	0		0	0	0
.	22	49805	45	2555	48670	18	0	133	1566	2945	2908	2428	0	0		0	0	0
	23	49740	45	2555	48820	18	0	114	1127	1963	1875	1395		0		0	0	0
\%	24	47625	45	2555	48910	18	0	90	950	1732	1652	1172	0	0		0	0	0
	25	47015	45	3280	49215	18	0	174	896	1668	1571	1091	17	0		0	0	0
,	26	45835	45	3280	49355	18	0	110	1463	2467	2402	1922	0	0		0	0	0
	27	45115	45	3280	49770	18	0	215	909	2008	1928	1448	4	0		0	0	
	28	44695	45	3280	49530	135	0	306	1164	2139	2062	1582	0	0		0	0	0
	29	43980	45	3280	49265	135	0	296	1814	2799	2752	2272	0	0		0	0	0
	30	42905	45	3280	49440	18	0	123	1085	2150	2072	1592				0	0	0
	31	41860	45	4005	49520	18	0	86	912	1683	1281		1	0		0	0	0
9	32	40690	45	4005	48980	135	0	289	1181	1323		11015	1	0		0	0	0
	33	39325	94	3760	47445	326	0	364	874	1300		679	0	0		0	0	0
	34	37960	94	3515	46280	256	40	302	872	1496	1067	679	396	420		1	0	24
	35	36645	94	3270	45395	190	10	216			1067	887	368	390		,	0	22
	36	35170	94	3025	43605	363	40	216 373	868 678	1654 1266	1236	1056	306	324		1	0	18
	37	33660	94	3505	41370	500	40	605	842	1089	818	638	469	497		1	0	20
											448	448	642	634		1	0	39

878	1181	551	551	463	491	1	0	26
881	1162	524	524	603	634	-1	0	36
832	1106	551	551	652	634	1	0	39
082	1145	508	508	538	570	1	0	32
799	1015	368	368	685	634	1	0	41
798	1013	366	366	686	634	1	0	41
766	1000	352	352	718	634	1	0	43
740	941	290	290	744	634	1	0	45
701	885	233	233	783	634	1	0	47
709	871	216	216	775	634	1	0	46
725	978	222	222	759	634	1	0	46
052	2246	1659	1658	632	634	1	0	38
811	1237	598	598	673	634	1	0	40
674	1298	675	475	810	634	1	0	49
1031	1512	918	918	0	159	1^{10}	159	159
079	1506	901	901	490	519	1	0	29
5456	12730	12740	12740	0	130	1	130	130
9208	17216	17446	17446	0	0	0	0	0
6200	13091	13230	13120	0	0	0	0	0
9377	22644	23261	23131	0	0	0	0	0
13323	23765	24469	24339	0	0	0	0	0
0671	18120	18510	18380	0	0	0	0	0
7401	14802	15026	14696	0	0	0	0	0
4749	10052	10126	9896	0	0	0	0	0
4971	9748	9822	9592	0	0	0	0	0
5859	10946	11068	10838	0	0	0	0	0
3739	6562	6459	6229	0	0	0	0	0
1111	7529	7471	7241	0	0	0	0	0
2537	4689	4749	4269	0	0	0	0	0
5561	10514"	10895	10415	0	0	0	0	0
7387	15291	15885	. 5405	0	0	0	0	0
12324	23504	24528	24048	0	0	0	0	0
5217	10420	10761	10281	0	0	0	0	0
4961	17617	10456	17826	0	0	0	0	0
5350	19981	20944	20314	0	0	0	0	0
4073	11010	11528	10898	0	0	0	0	0

APPENDIX 4.

1932-81 SIMULATION,1979 18 1989,1980 IS 1990,1981 IS 1990(A).

USING 1989/90 DENANDS, 1990 LINKS 8 8Y8TBN CONSTRAINTS

OUTPUT FILE 8 :- PENTAD RECORD OE ALLOCATIONS OF HATER FROM THE FOLLOUING SOURCES
SHELTON HANPTON LOADE TRIMPLEY OMEERSLEY UPTON WORCS

LIST OE THE ABBREVIATED NAMES USED IN THIS OUTPUT

GHREMSBURY	8HRN	elan valley
IELEORD	TELf	Virnuy
Ludiow	LUDL	Ittesuorth
hontgomery	mgay	DOUE SCHEKE
SOUTH STAFES WC	ssuc	deruent valley
holverhampton	nolv	OG8ION
birkingham	BHAK	Church wilne
NUNEATON	NNTN	Charniood
couentry	couy	blithfield
rugby	RGEy	shustoke
SOUTH WARWICKS	SWAR	draycote
gloucestershire	Gloc	STANFORD
worcester	WORC	grounduater
KIDDERKINSTER	KIDD	WYELANDS
EAST WORCS UC	EWWC	SHELTON
SHERHOOD	SHud	HAMPTON LOADS
NOTT INSAAM	NGHK	trimpley
NORTH WEST DERBS	NWDE	Ombersley
NORIH EAST DERES	NEDE	UPTON 1 WORCS
DERBY	DRDY	MYTHE
Leicester	LEIC	WILLEE MEADOH
RUTLAND	RTLD	hombatird
UPPER IRENT	UTRT	litile baton
NEWARK	NEWK	LOCAL BOURCES

1976

h tht

$\begin{aligned} & \text { PDA } \\ & \text { NOt } \end{aligned}$		8HLT SHRW	\star	HHPI 3SWC	HMP T WOLV	*	trmp LUDL	IRMP gham	TRMP KIDD		OMBS EWUC	
1	*	13	*	144	36	*	8	0	6	*	0	*
2	*	13	*	133	36	*	8	0	6	*	0	\star
3	*	13	\star	133	36	*	8	0	6	*	0	*
4	*	13	*	133	36	\star	8	0	6	*		*
5	\star	13	\star	133	36	\star	8	0	6	*	0	*
6	*	13	\star	133	36	k	8	0	6	*	0	*
7	*	13	*	144	36	\star	B	0	6	\star	0	\star
B	\star	13	*	144	36	\star	8	0	6	*	0	*
9	\star	13	\star	144	36	*	8	0	6	\star	0	*
10	\star	13	A	144	36	\star	8	0	6	*	0	*
11	*	13	A	144	36	\star	8	0	6	\star	0	\star
12	*	13	\star	144	36	\star	8	0	6	*	0	

[^0]| UP | UPUC | UPUC | UPUC | UPWC | UPUC | \star | H | \star | HLMD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ni | cour | SHAR | WORC | EuMC | LEIC | * | OC | \wedge | gwar |

0	47	22	38
0	47	22	38
0	47	22	38
0	47	22	38
0	47	22	38
0	47	22	38
0	47	22	38
0	47	22	38
0	47	22	38
0	47	22	38
0	47	22	38
0	47	22	38

4	0	\star	88	*	22	\star
4	0	*	88	*	22	*
4	0	*	88	*	22	*
4	0	*	88	\star	22	*
4	0	*	88	*	22	*
4	0	+	88	*	22	+
4	0	*	88	+	22	*
4	0	h	88	*	22	*
4	0	*	88	*	22	\star
4	0	*	88	*	22	*
4	0	*	86	\star	22	*
4		*			22	

1932-B1 8IMULATION, 1979 IS 1989, 1980 IS 1990,1981 IS 1990(A).

USING 1989/90 DEMANDS, 1990 LINKS BYSTEM CONSTRAINTS

OUTPUT EILE 6 :- PEN:AD RECORD OE ALLOCATIONG UBED IN THE EOLLOWING OBMAND CENIRES NUNEATON COUENTRY RUGBY SOUTH WARWICKB LEICESTER

SHREWSBURY.	8HRW	alan valley	ELAN
telegrd	Tble	UYRNHY	UYRN
LUDLU	LUDL	TITIESMORTH	TITI
MONTGOMERY	mgay	dove gehene	dove
South stafes wc	sswC	derment valley	DBRU
nolverhampton	Hoze	OBETON	0885
birn inginam	BHAM	CHURCH WILNE	CWLN
NUNEATON	NNTN	CHARNWOOD	CHWD
COVENTRY	cour	BLITHEIELD	EFLD
RUGEY	SOBY	ShUSTOKE	SHUS
SOUTH WARUICKS	SWAR	DRAYCOIE	DCTB
GLOUCESTERSHIRE	GLOC	STANEORD	STAN
HORCESTER	HORC	ORDUNDGATER	GUTR
KIDDERHINSTER	K10D	UYELANDS	UYEL
EAST WORCS WC	EUHC	SHELTON	SHLT
SHERHDOD	SHWD	HAKPTON LOADE	HHPT
Not I Inghan	NGHM	trimpley	TRAP
NDRTH UEST DERBS	NWDB	OMBERSLEY	OHBS
MORTH EAST DERBS	NEDB	UPTON * WORCS	UPUC
DEREY	DRBY	hythe	MYTH
Leicester	LEIC	HILLES MEADOW	WLMD
RUtland	RTLD	HOHESEORD	HMED
UPPER IRENT	UTRT	LITTLE EATON	Leat
NEWARK	NEWK	LOCAL SOURCES	LCLS

4

1976
**れ
PDA NNTN NNTN NNTN * COUY COUY COUY COUY \star RGBY RGBY ROBY A SHAR NOA DOVE SHUS UPNC \star SHUS DCTE GWTR UPWC \quad DCTE STAN LCLS \star UPWC

1	\star	4	33	0	\star	9	9	30	47	+	12	2	5	\star	22
2	*	4	33	0	\star	9	9	30	47	-	12	2	5	*	22
3	*	4	33	0	*	9	9	30	47	,	12	2	5	\star	22
4	\star	4	33	0	,	9	9	30	47	+	12	2	5	*	22
5	*	4	33	0	*	9	9	30	47	*	12	2	5	\star	22
G	*	4	33	0	*	9	9	30	47	+	12	2	5	*	22
7	*	4	33	0	\star	9	9	30	47	+	12	2	5	*	22
8	*	4	33	0	*	9	9	30	47	*	12	2	5	*	22
9	-	4	33	0	*	9	9	30	47	*	12	2	5	\star	22
10	\star	4	33	0	*	9	9	30	47	+	12	2	5	*	22
11	*	4	33	0	*	9	9	30	47	,	12	2	5	\star	22
12	*	4	33	0	\star	9	9	30	47	*	12	2	5	*	22
13	*	4	33	0	\star	9	9	30	47	*	12	2	5	*	22

	14	*	4	33	0	*	9	9	30	47	*	12	2	5	*	22
	15	*	4	33	0	*	9	9	30	47	*	12	2	5	*	22
	16	*	4	33	0	*	9	9	30	47	*	12	2	5	A	22
	17	*	4	33	0	*	9	9	30	47	*	12	2	5	*	22
	18	*	4	33	0	*	9	9	30	47	*	12	2	5	*	22
\checkmark	19	\star	4	33	0	*	9	9	30	47	*	12	2	5	*	22
	20	\star	4	33	0	*	9	9	30	47	*	12	2	5	\star	22
	21	*	4	33	0	\star	9	9	30	47	*	12	2	5	*	22
	22	*	4	33	0	*	9	9	30	47	\star	12	2	5	*	22
	23	*	4	33	0	*	9	9	30	47	*	12	2	5	*	22
	24	*	4	33	0	*	9	9	30	47	¢	12	2	5	*	22
-	25	*	4	33	0	*	9	9	30	47	*	12	2	5	\star	22
	26	*	4	33	0	,	9	9	30	47	*	12	2	5	-	22
	27	\star	4	33	0	*	9	9	30	47	*	12	2	5	*	22
-	28	*	4	33	0	*	9	9	30	47	*	12	2	5	*	22
	29	*	4	33	0	¢	9	9	30	47	*	12	2	5	*	22
	30	*	4	33	0	*	9	9	30	47	\wedge	12	2	5	*	22
-	31	*	4	33	0	*	9	9	30	47	\star	12	2	5	\star	22
				33	0	,	9	9	30	47	,	12	2	5	\star	22

F)

SWAR WLHD	SHAR LCL 8	$\stackrel{+}{*}$	LEIC DOVE	LEIC DERH	LEIC CWLN	LEIC CHWD	LEIC UPWC	$\begin{aligned} & \text { LEIC } \\ & \text { LCLS } \end{aligned}$	*
22	16	*	150	45	0	10	0	12	*
22	16	*	175	45	0	10	0	12	*
22	16	*	175	45	0	10	0	12	*
22	16	*	175	45	0	10	0	12	*
22	16	*	175	45	0	10	0	12	*
22	16	*	175	45	0	10	0	12	*
22	16	*	175	45	0	10	0	12	*
22	16	*	175	45	0	10	0	12	*
22	16	*	175	45	0	10	0	12	,
22	16	*	175	45	0	10	0	12	\star
22	16	*	175	45	0	10	0	12	*
22	16	*	175	45	0	10	0	12	*
22	16	\star	175	45	0	10	0	12	\star

SOURCE NAME AVGB OUTPUT AVGE DUTPUT PERCENTAGE UBE ANNUAL LICENCED MAY-DCI(ML/D) JAN-DEC(HL/D) ANNUAL LICENCE AVBE(ML/D)
ELAN VALLEY
UYRNGY
IITIESNORTH
DOUE SCHEME
DERUGNI YALLEY
311.0
0.0
29.6
164.0
160.8
311.0
0.0
32.3
164.0
85.44
0.00
73.81
53.25
66.08
364.0
208.0
43.0
308.0
345.0

CHURCH WILNE
CHARNHODD
BLITHEIEL
SHUSTOKE
DRAYCDTE
ETANEDRD
UYELANDS
SHELTON
HAMPIDN LOADE
TRIMPLEY
OMBERSLEY
UPTON WORCS MYTHE
HILLES MEADOW HDMESFORTI
Little eaton

45.0	45.0	42.86	105.0
45.1	44.0	26.85	164.0
25.0	25.0	121.95	20.5
65.0	65.0	102.20	63.6
42.0	42.0	102.44	41.0
14.9	15.1	30.14	50.0
9.1	7.9	88.13	9.0
34.0	34.0	75.56	45.0
13.0	13.0	33.68	38.6
144.0	144.0	79.21	181.0
14.0	14.0	23.26	60.2
0.0	0.0	0.00	41.8
111.0	111.0	111.00	100.0
88.0	88.0	80.73	109.0
22.0	22.0	88.35	24.9
39.1	39.1	71.27	54.8
47.0	47.0	85.45	55.0

SOURCE OUTPUT STATISTICE FOR THE WHOLE RUN
SOURCE NAME AUBE OUTPUT AUGE OUTPUT PERCENTAGE USE ANNUAL LICENCED

> AUBE OUTPUT AUGE OUTPUT PERCENTAGE USE HAY-OCI(ML/D) JAN-DEC(HL/D) ANNUAL LICENCE

ANNUAL LICENCED AUGE(Ki/D)

ELAN UALLEy	0.0	311.9	85.68	364.0
UYRNWY	0.0	0.0	0.00	208.0
TITTESWORTH	0.0	26.6	60.74	43.8
DOUE SCHEME	0.0	170.0	55.21	308.0
DERWENT VALLEY	0.0	159.1	64.93	245.0
OOSTON	0.0	44.5	42.43	105.0
CHURCH WILNE	0.0	46.1	28.12	164.0
CHARNWOOD	0.0	19.6	95.74	20.5
BLITHFIELD	0.0	62.6	98.46	63.6
SHUSTOKE	0.0	41.6	101.43	41.0
draycoie	0.0	14.7	29.37	30.0
STANFORD	0.0	8.3	92.74	9.0
WYELANDS	33.8	33.9	75.36	45.0
SHELTON	0.0	13.0	33.64	38.6
HAMPTON LOADE	0.0	147.0	80.83	181.8
TRIMPLEY	0.0	14.1	23.37	60.2
OMBERSLEY	0.0	0.0	0.00	41.8
UPTON \& WORCS	0.0	112.3	112.34	100.0
MYTHE	89.6	88.8	81.43	109.0
WILLES MEADOU	0.0	22.0	88.35	24.9
HOMESEORD	0.0	39.5	72.12	54.8
LITILE EATON	0.0	47.0	85.45	55.0

[^0]: UPUC UPUC \star AYIH A HLMD \star EUUC LEIC \star OLOC \star gwar \star

