NRA ANGLIAN 262

DTM_ info + returns sc A 2

THE RIVER COLNE ESTUARY SUBTIDAL BIOLOGICAL SURVEY 1992

M W JOHNSON

Marine Biologist

August 1993

CONTENTS

1 Summary

2 Introduction

3 Survey Details

4 Results

5 Discussion

6 References

7 Figures

8 Appendices

1 SUMMARY

The October 1992 subtidal survey of the River Colne has revealed the estuary to be of poor to moderate biological quality.

A comparison with the neighbouring Blackwater estuary which is generally of good quality showed the Colne invertebrate community to be inferior with regard to diversity and its dominance by oligochaete worms.

Quality is poorest in the upper reaches where organic inputs from Colchester stw are thought to be responsible. Dredging to maintain navigation channels was also found to impact the fauna around Haven Quay.

2 INTRODUCTION

This report details information gathered from a subtidal benthic survey of the River Colne estuary during October 1992. Although intertidal surveys have previously been carried within the estuary, this represents the first investigation of subtidal biological conditions within the estuary.

The Colne estuary receives a variety of discharges, the most notable of which is Colchester stw effluent. Although a fully treated effluent, it can cause deoxygenation problems in the upper estuary. Other consented discharges include, Fingringhoe stw, Thames and Colne gravel washings, and Brightlingsea stw.

No major fin fishery exists in the estuary. However there are extensive oyster lays located within the Pyefleet channel. The fishery is run by Colchester Oyster Fishery Ltd.

The lower section of the estuary receives protection as a biological Site of Special Scientific Interest. This includes tidal creeks, saltings, intertidal mud, sand spits and stretches of open water. The Essex Wildlife Trust also manage reserves at Fingringhoe Wick, Rat Island and Colne Point.

3i) DETAILS OF SURVEY

In October 1992, a series of 10 subtidal sites were sampled throughout the Colne estuary (Fig. 1 and 2). Samples were collected using a $0.1m^2$ Day Grab operated from the NRA survey vessel, Sea Vigil. A total of three replicates were taken at each site for subsequent biological analysis. A small subsample from each site was also taken for particle size analysis.

Grab samples were sieved on deck through a 0.5mm mesh sieve, and preserved in 4% formalin. Laboratory analysis included washing the samples thoroughly to remove formalin traces, and sorting using a low power binocular microscope. Sorted samples were identified to species wherever possible and enumerated. Laboratory analysis was undertaken by Unicomarine Ltd.

Particle size analysis was undertaken by Hull University using the technique of Laser Diffraction.

Site location and depth was by Sea Vigil's GPS and echo sounder respectively.

3ii) STATISTICAL ANALYSIS

The large data matrix produced from benthic macroinvertebrate surveys necessitates the use of multivariate statistics to analyse multispecies distributions. Basically a comparison is being sought between assemblages which may differ in species composition, but also in the numbers of individuals of those species present.

The raw data matrix was processed using the 'Primer' suite of programmes developed by Plymouth Marine Laboratory. There are four basic stages in the analysis process:-

(1) Transformation of the data

Given the potentially wide variation of numbers of particular species, a means of condensing the data is needed. The root root transform was chosen since it lessens the importance of numerically dominant taxa compared to untransformed data.

(2) Similarity Matrix

Each sample is compared with every other sample resulting in a percentage similarity matrix. The Bray Curtis measure of similarity was chosen because this measure is not affected by joint absences of species.

(3) Classification

A dendrogram is produced from the similarity matrix. The 'Group average sorting' technique was chosen. This technique joins groups of samples together at the average level of similarity between all members of one group with all members of the other.

(4) Ordination

Multi Dimensional Scaling (MDS) produces an ordination of N stations in a specified number of dimensions (Kruskal and Wish 1978). This complements cluster analysis in that samples are grouped together using an independent technique. Therefore should the two analyses give similar groupings, then a relationship can be inferred between the samples.

4. RESULTS

A total of 47 taxa were recorded from the 10 subtidal sites throughout the River Colne estuary. The data matrix is presented in Appendix 1, with numbers expressed as individuals per grab.

Figures 3 and 4 show total numbers of taxa and total numbers of individuals per site. Species richness was lowest at site 1 (3 species) and highest at Site 9 (26 species). Invertebrate abundance was also lowest at site 1 (150 individuals m^{-2}) and highest at site 2 (27,000 per sq. metre).

The three most upstream sites (sites 1, 2, and 3) were dominated by oligochaetes, notably, *Tubifex costatus*, with polychaetes, *Nereis diversicolor* and *Streblospio shrubsolii* being sub dominant at sites 2 and 3. The middle estuary sites (sites 4,5 and 6) were again dominated by oligochaetes. However a species shift was noted with *Tubificoides pseudogaster* becoming the dominant species. *Streblospio shrubsolii* was co dominant at site 4. Towards the outer estuary, at sites 7, 8 and 9, the polychaete, *Tharyx sp.* became the dominant species, with oligochaetes only occasional.

Substrate composition was variable throughout the estuary. The most downstream sites (sites 6, 7, 8, 9, and 10) were dominated by silt, as was site 1 (Haven Quay). The remaining sites (sites 2, 3, 4 and 5) between Rowhedge and Marsh Farm, Wivenhoe contained a greater percentage of sand and cobbles although silt was also present. Organic carbon content was generally highest where silt was the dominant substrate. Thus highest levels were recorded at site 1 (Haven Quay), Site 7 (U/S Alresford Creek), and Site 9 (Colne at Geedon Creek).

STATISTICAL ANALYSIS

The cluster analysis of the River Colne invertebrate data produced 2 principle clusters at a 35% or greater level of similarity (Fig. 5).

Group 1 linked sites 8, 9 and 10 (ie. all sites in the outer estuary). Group 2 linked sites 2, 3, 4, 5, 6 and 7. These sites were situated from Rowhedge to Alresford Creek. Site 1 (Haven Quay) was a slight outlier from this second group.

The MDS ordination plot (Fig 6) independently reinforced the results from the cluster analysis and showed similar site groupings. Site 1 was again an outlier from group 2.

FAUNAL CONSTITUENTS OF THE MAIN GROUPS

Group 1

Invertebrates that were most characteristic of this group were the polychaetes, Tharyx sp., Nephtys hombergi, and Chaetozone setosa. Tharyx sp. was the dominant organism at sites 8 and 9, occurring at densities of 3795 and 1080 individuals per square metre respectively. The most common invertebrate at site 10 was Chaetozone setosa but this only occurred at an abundance of 61 m^{-2} .

Species diversity was moderate, averaging 22 species per site.

Group 2

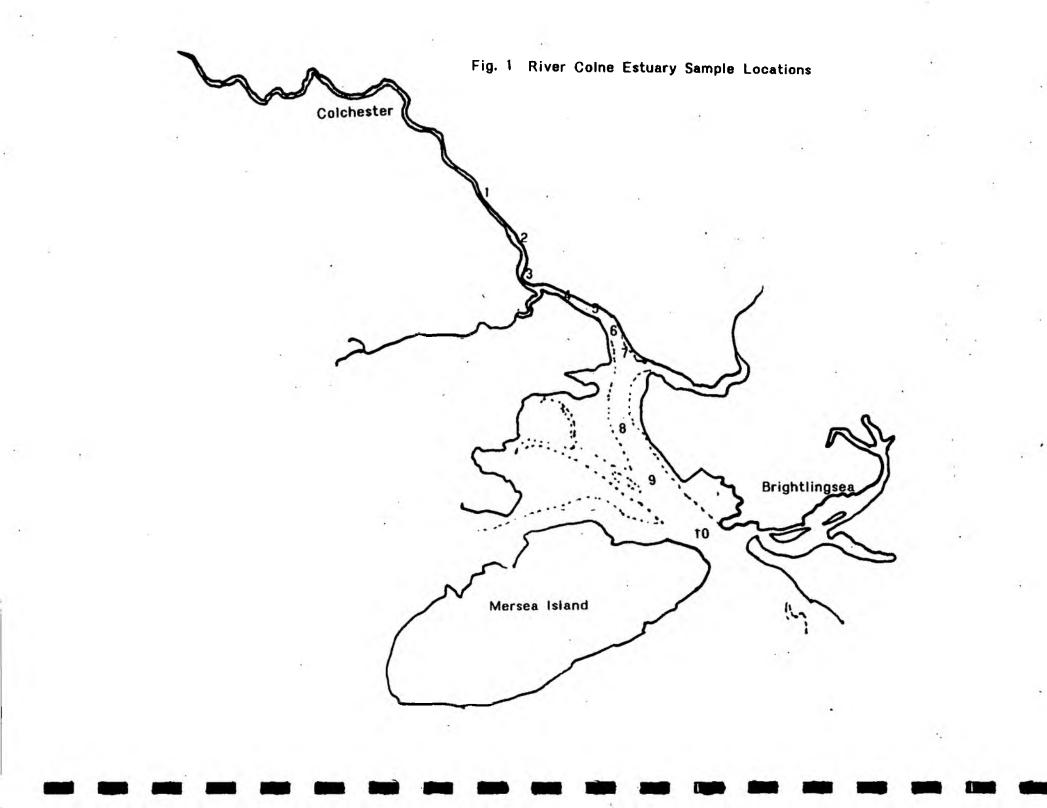
This group incorporated sites 1 to 7. Species that characterised these sites were the polychaete worms, Nereis diversicolor and Streblospio shrubsolii and tubificid worms (either Tubifex costatus or Tubificoides pseudogaster).

Species diversity was poor, averaging only 9.5 species per site.

5 DISCUSSION

The 1992 subtidal survey of the River Colne has revealed the estuary to be of poor biological quality, particularly in its upper reaches. Invertebrate diversity was poor to moderate at the majority of sites.Furthermore, productivity of pollution tolerant tubificid worms was high, particularly at sites 2 and 3 (ie. locations in closest proximity to the Colchester stw outfall). At site 2 (Rowhedge), tubificid worms accounted for more than 90% of the total invertebrate community.

A number of factors are involved which determine which invertebrates colonize particular areas. Reduced salinities obviously preclude fully marine species from colonizing the upper sections of estuaries. As such diversity is generally lower in these areas as a result. Similarly dredging to maintain navigation channels can periodically affect communities. Within the Colne estuary, dredging is an ongoing exercise concentrated around Haven Quay and St Edwards Quay (Colne Harbour Master-pers comm.)


It would appear that site 1 (Haven Quay), with only three species and 45 individuals recorded from the three grab samples, has been affected by recent dredging. The large oligochaete populations which were recorded from site 2 and 3 suggest that there has been no recent dredging disturbance and that these two sites are suffering from elevated organic loadings.

Further down the estuary, diversity generally increased with productivity decreasing. However no sites within the estuary could be considered anything more than of moderate biological quality. A comparison with other south east coast estuaries reveals the Colne estuary to support the fewest number of species per grab. That is, the Colne supported 8 per grab, whereas the estuaries Deben, Stour and Blackwater all supported in excess of 20 species (Fig.7). An examination of the overall invertebrate community in the Colne estuary has shown it to be dominated by oligochaete and polychaete worms (>99%) with other groups (molluscs, crustacea *etc.*) poorly represented (<1%). Conversely the neighbouring Blackwater estuary supports a more balanced community with molluscs, crustacea and "others" accounting for 3%, 6%, and 8% respectively (Fig.8).

6 REFERENCES

1. Kruskal and Wish (1978). Multi Dimensional Scaling. Sage Publications, Beverly Hills, California.

7 FIGURES

Fig. 2 RIVER COLNE SUBTIDAL SURVEY : OCTOBER 1992

Site No.	Site Name	Position	Depth	Substrate
1	Haven Quay	51 52 52N 000 56 28E	3.1	Brown over black sit/mud
2	Rowhedge	51 51 86N 000 56 99E	3.6	Muddy gravel
3	Rowhedge Quay	51 51 25N 000 57 17E	3.4	Mud/Sand/Pebbles
4	100m D/S Colne Barrage	51 51 05N 000 58 01E	3.4	Sand/Pebbles
5	Marsh Farm Wivenhoe	51 50 87N 000 58 62E	3.3	Muddy/Gravel
6	Alresford Grange	51 50 62N 000 58 92E	3.3	Shelly/Mud
7	U/S Alresford Creek	51 50 28N 000 59 04E	3.1	Brown fluid mud overlying black
8	Fingringhoe Pier	51 49 60N 000 58 92E	2.9	Mud/Cockle shells
9	Colne at Geedon Creek	51 48 99N 000 59 29E	6.2	Brown overlying black mud
10	Colne at Pyefleet	51 48 39N 000 59 98E	6	Clay/mud

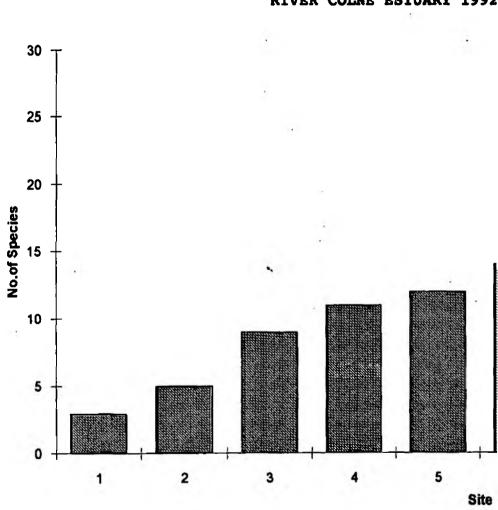
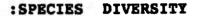
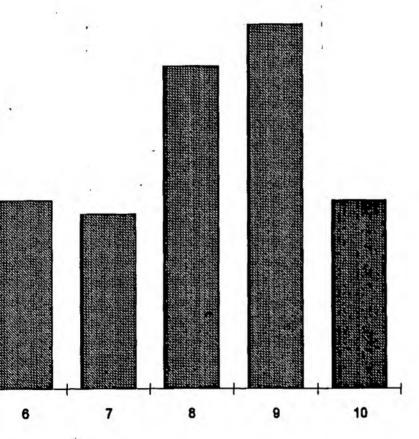
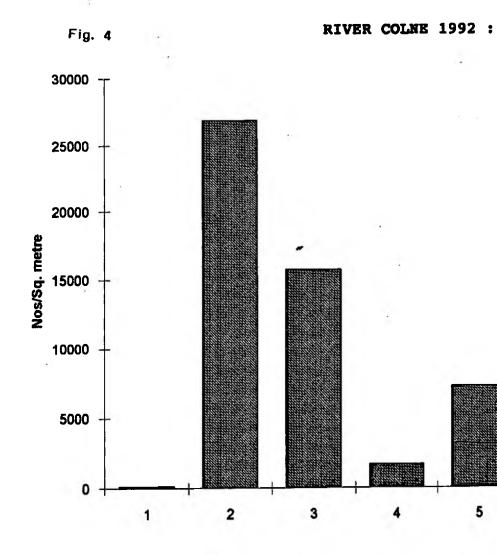
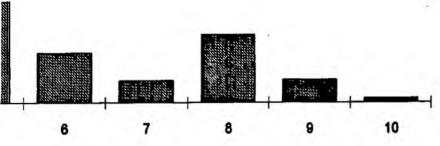





Fig. 3


RIVER COLNE ESTUARY 1992

INVERTEBRATE ABUNDANCE

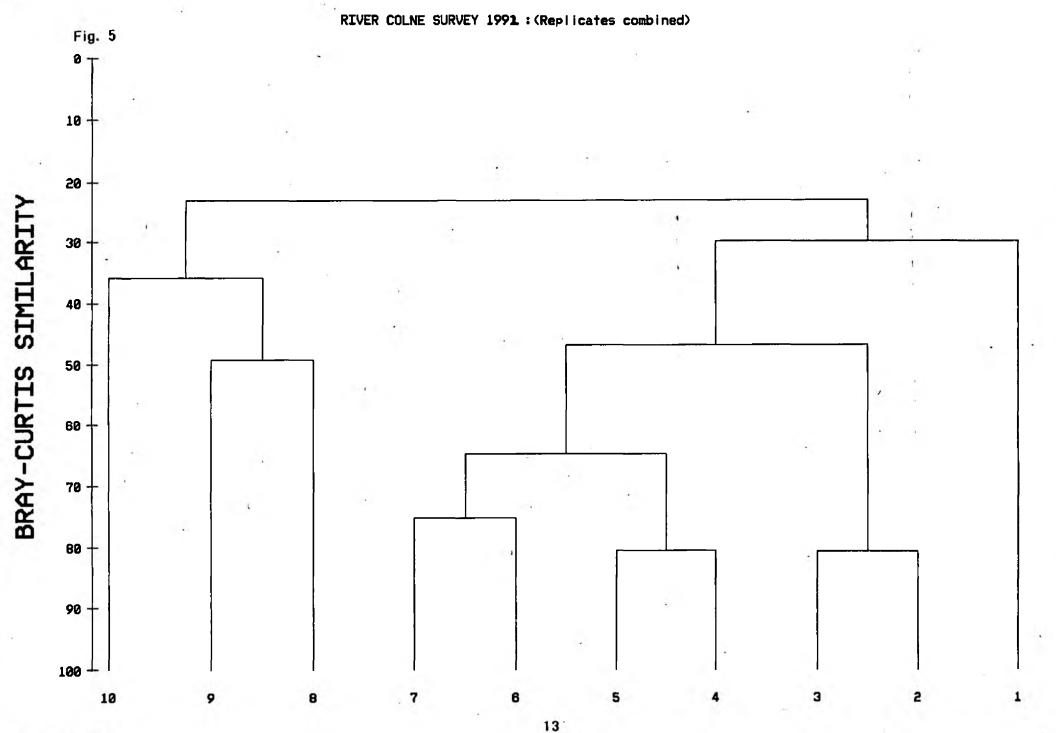
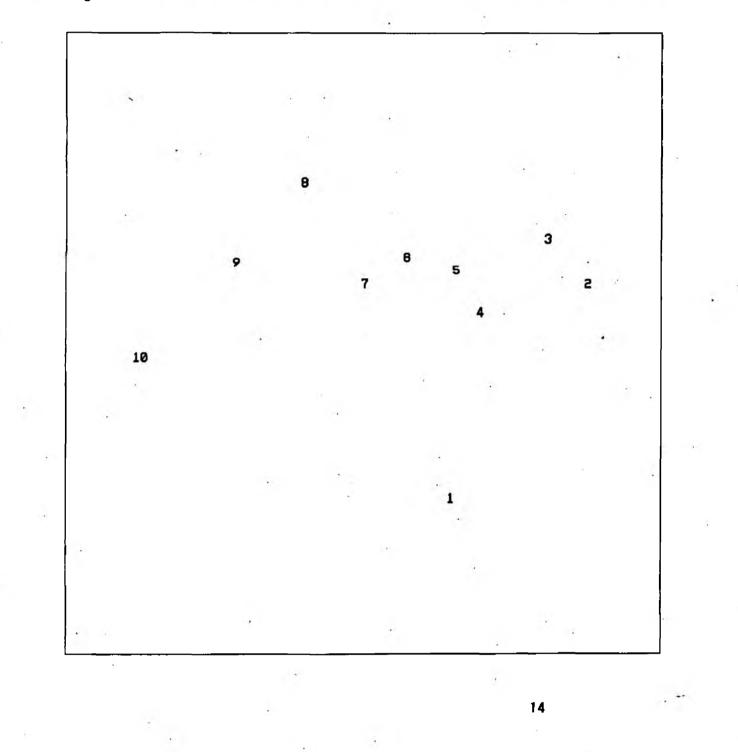



Fig. 6

RIVER COLNE 1992 MDS PLOT (REPLICATES COMBINED)

NRA SUBTIDAL SURVEY 1989 - 1992 Mean number of species/ grab 30 25 20 No. of species 15 10 5

COMPARISON OF SUBTIDAL DIVERSITY WITH OTHER EAST COAST ESTUARIES

DEBEN

0

STOUR ESTUARY COLNE

.

BLACKWATER

ORWELL

15

Fig. 7

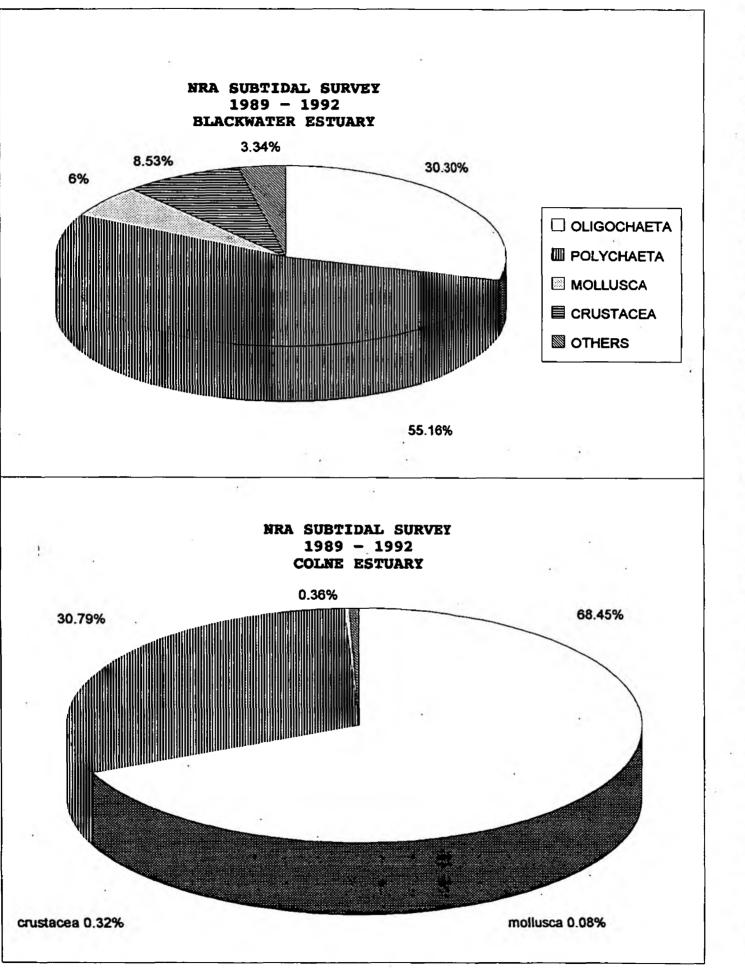


Fig. 8

8 APPENDICES

NRA Colne survey 1992 - o			~~		~~	~~				1 010	014		1 040	044	
Species	S1	s2 1B	\$3	S4	S5	S6 2C	S7	58 10	59 3C	\$10 4A	S11 4B	S12 4C	513 5A	S14 5B	S15 50
Species	<u>1A</u>	10	10	2A	<u>28</u>		<u>3A</u>	<u>3B</u>	36		4D		DA	DO	_
ud Anthozoan A		-	-	-	-	-	· ·		-			-	-	•	-
Eteone longa	-	•	-	-	-	-	-	-	-		-	-	-	-	-
Phyllodoce mucosa	-	-	-	•	•	•	-	-	-	•	-	-	-	-	-
Autolytus langerhansi	-	-	- 1		-	-		-	-	407	-	-		-	-
Nereis diversicolor	•	1	-	174	249	105	171	103	214	107	63	68	14	32	61
Nereis succinea	-	-	-	-	-	-	-	e •	-	-	-	-	-	-	-
Nereis virens	-	-	-	-		-	-	-	-	-	•	-	-	-	-
ud Nephtys (juv.)	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Nephtys cirrosa	-	-	-	-	-	-	-	-	-	•	-	-		•	-
Nephtys hombergii	-,	-	•	-	-	-	-	-	-	•	-	-	1	-	-
Marphysa sanguinea	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-
Polydora ligni	-	-	-		-	-	-	-	-	-	-	-	-	6	2
Pygospio elegans	-	-	-	-	-	-	-	-	-	-	-	•	-	-	•
Spiophanes bombyx	-	-	-	-	-	-	-	•	-	-	•	-	-		-
Streblospio shrubsolii	-	-	-	85	108	121	192	104	167	70	217	491	270	217	28
Chaetozone setosa	-	-	-	-	-		-	-	•	-	1	•	-	-	-
Tharyx marioni	-	-	-	-		-	-	-	•	-	1	-	3	-	-
Cossura longocirrata	-	-	-	-	-	-	-	- - (1)	-	-	-	-	- 1	-	-
Melinna palmata	-	-	-	2	•	-	· -	4	3	3	-	1	-	2	2
Ampharete acutifrons	-	-	-		-	•	-	-	-	-	-	-	-	•	-
Sabella pavonina	-	-	-	-	-	•	-	-	-		-	-	-	-	-
Tubifex costatus	19	6	8	3720	1760	2760	2312	574	973	17	107	21	6	94	80
Tubificoides benedenl		-			-	•	6	-	-	16	2	11	2	4	10
Tubificoides pseudogaster	-	-	10	_	-	-	-	-	-	19	•	244	147	497	43
Achelia echinata		•								•	-		-	-	
Anoplodactylus pygmaeus	-	-	-	_	-	-	-	-	-	-	-	-	•	-	-
Pycnogonum littorale	_	-	-			-	-	-	-	-	2	-		-	-
Vesopodopsis slabben						•	•			-			<u></u>	•	
Neomysis integer	-	-	_	1.20	-	-	_	-	-	_	-			-	1
ud gammaridae		-	-		-	_		-	-		-	-		•	
		-	-		_			_	_		_	_		_	_
Atylus swammerdami	-	-	-	-	-			-	-	-	-	-	-	-	-
Atylus vedlomensis	-	-	•	•	-	•		-	-	-	-	•	-	•	-
Gammarus salinus	-	-	-	-	-	-	1	-	•		I	•	•	-	-
ud Corophium sp.	-	-	-	-	•	-	-	-	-	-	•	•	•	-	-
Corophium volutator	-	-	-	-	•	-	-	-	-	-	-	•	-	-	-
ud Caprellid	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
Eurydice pulchra	-	-	-	-	-	-	-	-	•	-	-	•	-	1	-
Bodotria scorpioides	-	-	•	• 😔	-	-	-	-	-	-	-	•	•	2.0	-
Eudorella truncatula	-	-	•	-	-	-	-	-	-	-	-	-	•	-	-
Diastylis rathkei	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
Crangon crangon	-	•	-	1	•	1	-	-	1	-	-	-	-	-	-
Carcinus maen a s	_	-	-		-		1	-		-	-	-	_	-	-
Crepidula tornicata				<u> </u>			<u> </u>								
	-	-	-	-	-		4	-	-	-			-	_	_
Cerastoderma edule		-	-	-	-	•		-	-	-	-	-			-
Ensis ensis	-	-	-	- 7	-	•	-	•	•	-	-	-	-	-	•
Macoma balthica	•	-		•	-	•	-		•	2	-	-	-	1	-
Phoronis muellen		-	•	•	•	-	-	-		-	-	-	-	•	
lotal species	1	2	_2	5	3	4	7	- 4	5	9	7	6	7	9	- 8
lotal individuals	19	7	19	3982	2117	2987	2684	785	1358	236	392	836	443	854	87:

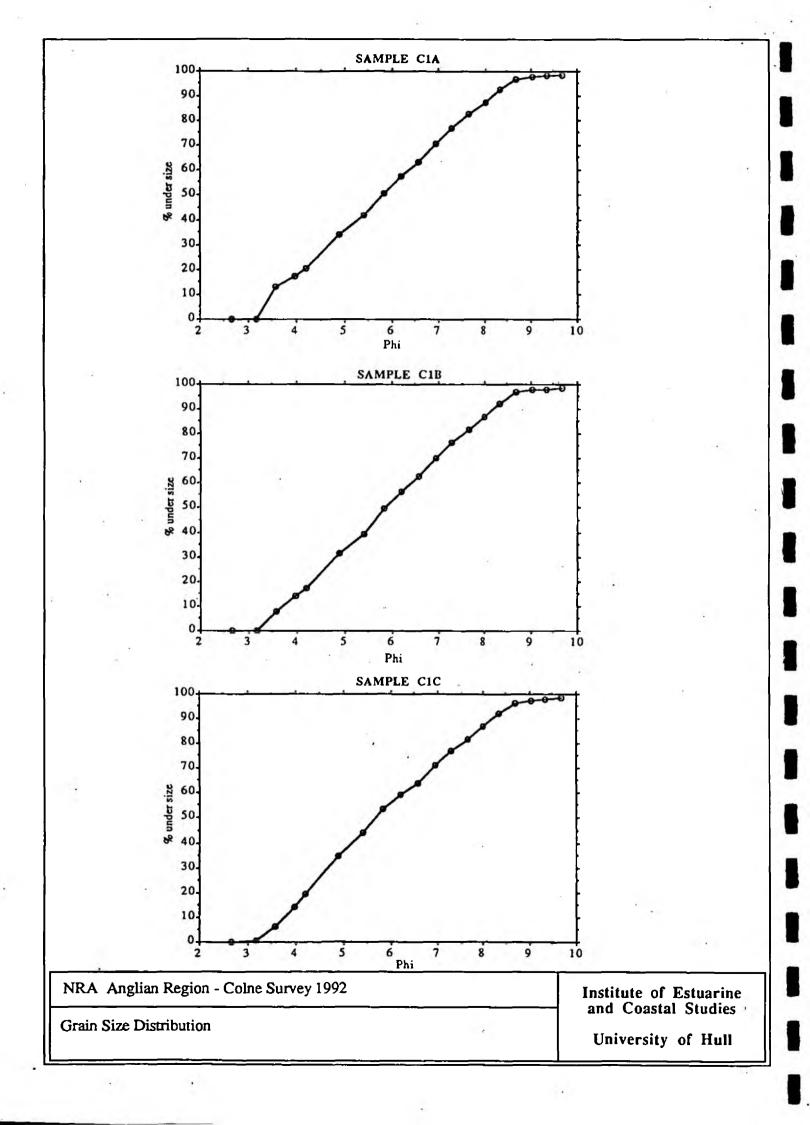
.

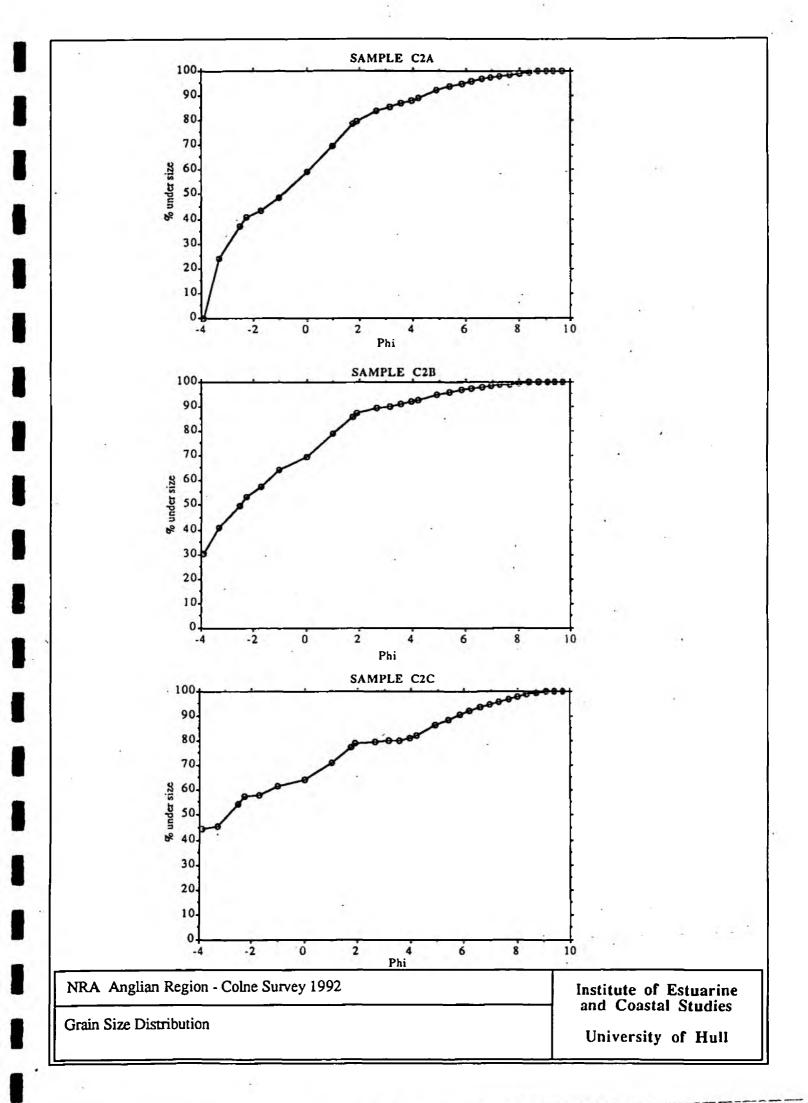
NRA Colne survey 1992 - dat

Species	S16 6A	S17 6 B	S18 6C	S19 7A	s20 7B	S21 7C	522 8A	S23, 8 B	S24 8C	S25 9A	S26 9 B	S27 9C	S28 10A	\$29 10B	S30 10C
ud Anthozoan A	-	-		•	-	-	1	• **	-		-	4	•	· ·	-
Eteone longa	-		•	-	•	•	-	- "	-	•	•	-	-	•	-
Phyllodoce mucosa		-	-	-	-	-	-	1	1	-	-	-		•	-
Autolytus langerhansi	-	-	-	-	-		-	2	-	-	-	2	-		-
Nereis diversicolor	8	28	•	7	-	-	-	-	1	-	-	-	-	en 🚽	-
Nereis succinea			-		-	-	1	- '	-	-	-		-	ι.	-
Nereis virens	-	-	-	l _	-	-	-	-	-	-	-	-	1		-
ud Nephtys (juv.)	19200	-	-	_		-	1	-	-	11	-	7		-	-
Nephtys cirrosa		1.0	_	_	4	_		1	-		•	-	-	i .	3
Nephtys hombergii	3	2	13	27	- 8	6	1	•	1	18	18	12	11	8	Ĭ
Marphysa sanguinea	-	-	-	-	-	-		2	1		-			8 E	-
Polydora ligni	4	2	-	-	_ *	5	28	21	5	-	1	-		· -	-
Pygospio elegans	6	· .	5	- I	-			-	-	-	-	-	-	÷ -	
Spiophanes bombyx		1	-	_	-		_		-	_	-		-	· .	1.
Streblospio shrubsolii	81	94	230	72	17	7	_		_	-	1	-	-	· ·	
Chaetozone setosa	13	1	-	2	4		42		22	_	8	13	3	14	16
	15	11	79	134	38	34	570	300	280	103	49	175	4	2	13
Tharyx marioni	•		19	1.04	30	54	510	- :	-		1		-		
Cossura iongocirrata	-	- 10	13	-	-	-	26	15	17	4	-	-			_
Melinna palmata	I	10	10		-	-	20	15	3	2	-	4	_	4	_
Ampharete acutifrons	-	•	-	-	-		4	-	3	_	•	4		· ·	-
Sabelia pavonina	-	-		-	-	•			1	-			-	2 E	-
Tubifex costatus	-	27	3	58	-	-	2	4		-	2		-		-
Tubificoides benedeni	-		2	2	-	1	11	42	13	-	-	2	-	-	-
Tubificoides pseudogaster	80	280	75	26	11	7	1	-	•	-	2		•		-
Achelia echinata	-	-	-	• •		-	-	-	•	-	-	1		1	-
Anoplodactylus pygmaeus	-	-		-	-	-	-	•	-	-	-		•	2	-
Pycnogonum littorale	•	-	•	-	-	-	-	<u> </u>		-		1	•		-
Mesopodopsis slabben	1	1	3	1	-	-	14	3	1	-	-	-	-	-	-
Neomysis Integer	-	÷. •	-	-	-	-	-	-	-	-	-	-	-	1 -	-
ud gammaridae	-	-	-	-	-	-	-	-	-	-	-	2	-	5	-
Atylus swammerdami	-	-	-	-	-		-	-	-	-	-	1	-	1	-
Atylus vedlomensis		-	-	-	-	-	-	-	•	í -	-	1	1	•	- 1
Gammarus salinus	-	-	-	-	-	•	-	-	-	-	-	· •	-	-	-
ud Corophium sp.	-	-	-	-	-	-] -	-	-	-	-	-	•	· •	1
Corophium volutator	-	-	•	-	-	-	2	1	3	-	-	-	-	< i •	•
ud Caprellid	-	-	-	-	-	-		-	-	1	-	4	-	£-	1
Eurydice pulchra	-	-	-	-	-		-	-		-	-	-	-	-	-
Bodotria scorpioides	-	-	-	-	-		-	-	-	-	-	2	•		-
Eudorella truncatula	-	- 1	- 11	-	-	-	-	-	-		-	u .	-	Q	1
Diastylis rathkei	· -	•	-	-	- 1	-	-	•	-	-	-	1	-		-
Crangon crangon	-	2.	-	-	-	-	2	-	-	-	-	-	-		-
Carcinus maenas	-	1	-	-	-	-	5	2	1	-	-	1	-	-	-
Crepidula fornicata	-	·	•		-		3		•	- 1			-		•
Cerastoderma edule	-	-	-	-	. <u>.</u>	-	5	-	1	-			-	1 -	-
Ensis ensis	-	-	-	-	-	-		-	-	1	1.3	<u> </u>	- 1	1.1	•
Macoma balthica	-	-	-		1	-	<u>-</u>	-	1			2	-	÷ -	-
Phoronis muelleri						-	-			22	- 2	-25	11	7	-
		- 12	9	10		- 6	18	12	15	8	9	21	6	8	7
Total species	8				60					-			31	36	36
Total individuals	191	458	423	330	83	60	717	394	351	157	84	262	1 31	90	30

. 1

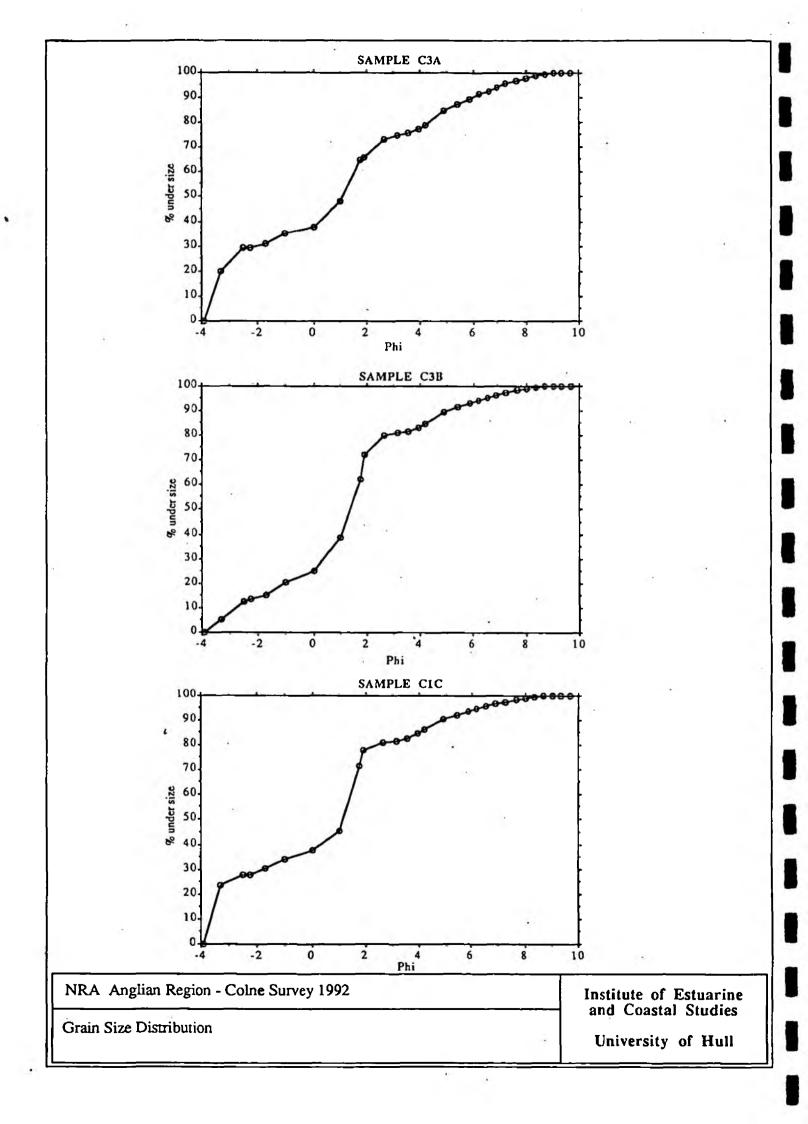
SAMPLE	MEAN	MEDIAN	% CLAY&	MEAN	SD	SKEW	KURTOSIS	% ORGANIC	LOI at	% COAL
	μm	μm	SILT	Ø	Ø			CARBON	400°	CONTENT
CIA	19.1	18.6	80.3	5.7	1.53	-0.14	1.68	3.15	7.00	3.00
C1B	17.9	17.7	83.5	5.8	1.48	-0.18	1.82	3.38	2.00	5.00
CIC	19	20	82.2	5.7	1,44	-0.04	1.67	1.62	4.00	4.00
C2A	1366.7	1877.8	11.4	-0.5	3.06	0.88	2.97	0.24	NEG	NEG
C2B	2728.4	5545.5	7.5	-1.4	3.02	1.15	3.61	0.41	6.00	2.00
C2C	1903.7	7421.2	18.3	-0.9	3.94	0.93	2.44	0.47	7.00	NEG
C3A	572.9	467.3	21.4	0.8	3.5	0.33	2.1	0.16	3.00	NEG
C3B	445.9	446.6	15.6	1.2	2.67	-0.4	3.14	0.31	5.00	NEG
C3C	726.3	471.5	14.1	0.5	3.13	0.29	2.4	0.63	5.00	NEG
C4A	273.3	405.9	21.7	1.9	2.96	0.72	2.66	0.63	1.00	NEG
C4B	1225.8	845.4	6.1	-0.3	2.99	0.34	= 2.48	0.24	3.00	NEG
C4C	1155.4	849.2	9.7	-0.2	3.27	0.58	2.7	0.08	8.00	NEG
C5A	838.9	477.7	18.2	0.3	3.69	0.35	1.94	1.1	1.00	NEG
C5B	1036.6	912.8	10.7	-0.1	2.85	0.72	2.81	NEG	4.00	NEG
C5C	526.7	458.3	13.6	0.9	2.85	0.1	2.78	NEG	NEG	2.00

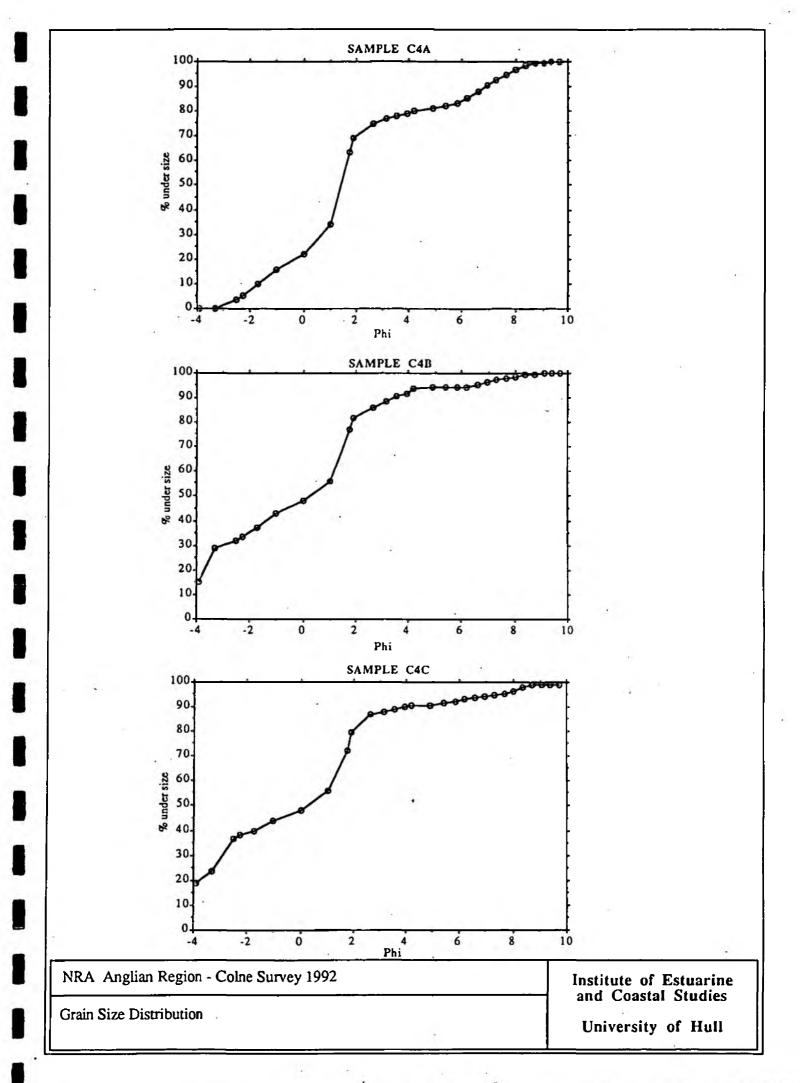

NRA ANGLIAN R. COLNE SEDIMENT DATA

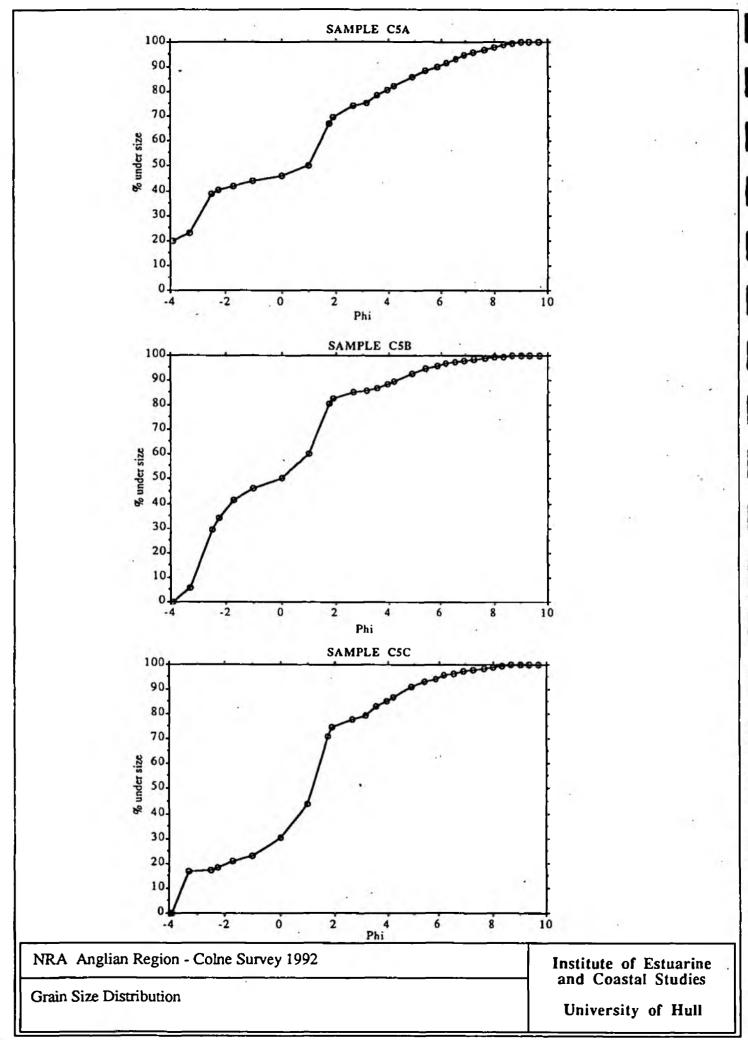

NB NEG=NEGLIGIBLE

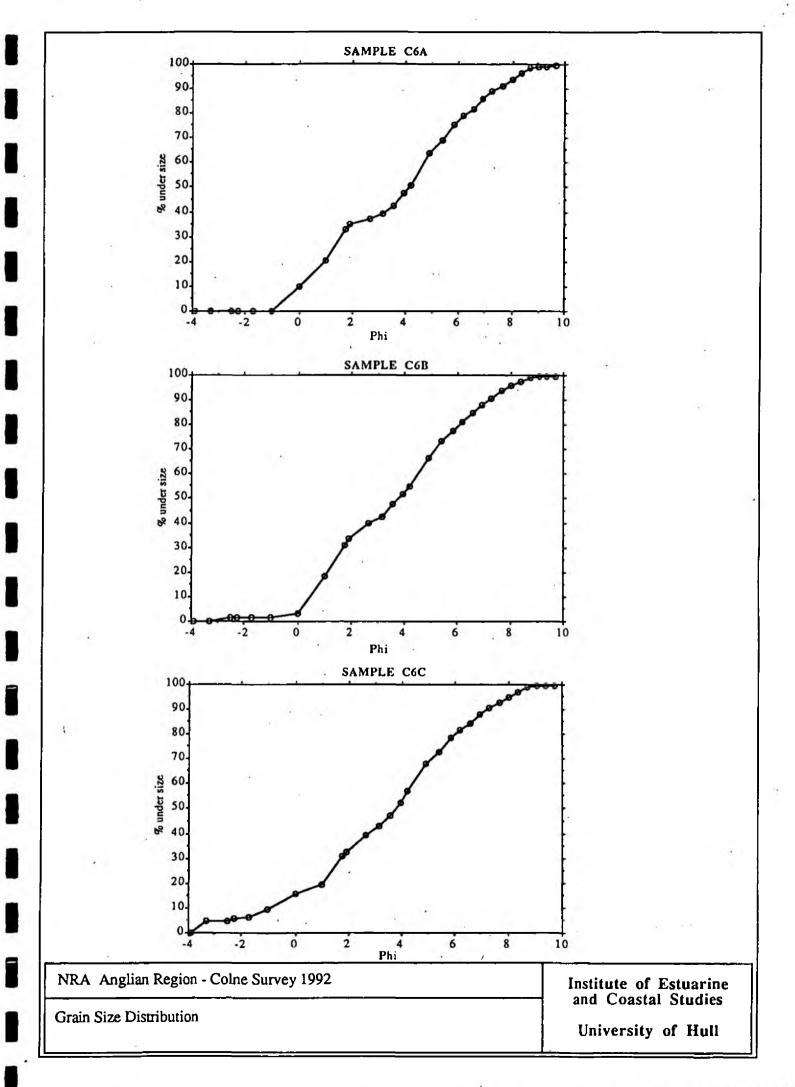
SAMPLE	MEAN	MEDIAN	% CLAY&	MEAN	SD	SKEW	KURTOSIS	% ORGANIC	LOI at	% COAL
	μm	μm	SILT	Ø	Ø			CARBON	400°	CONTENT
C6A	73.5	56.7	50.3	3.8	2.64	-0.08	1.73	0.73	3.00	NEG
C6B	81	73.1	45.8	3.6	2.6	-0.06	2.04	0.57	NEG	1.00
C6C	106.4	73.8	44.3	3.2	2.97	-0.48	2.59	0.94	NEG	NEG
C7A	17.5	18.7	88.2	5.8	1.34	-0.02	1.69	2.44	10.00	2.00
C7B	20.5	22	79.5	5.6	1.52	-0.07	1.93	2.03	NEG	3.00
C7C	19.1	19.8	81.7	5.7	1.48	-0.11	1.73	2.11	11.00	3.00
C8A	30.6	24.4	73.3	5	2.29	. 0.78	2.67	0.79	3.00	2.00
C8B	21.7	17.1	81.5	5.5	2.06	-0.99	3.28	0.86	2.00	NEG
C8C	21.5	20	84.3	5.5	1.91	-1.26	5.01	1.02	2.00	3.00
C9A	15.5	13.8	86.2	6	1.46	-0.3	1.7	2.51	3.00	2.00
C9B	15.1	15	90.5	6	1.38	-0.16	1.64	2.67	2.00	2.00
C9C	15.8	14.5	85.7	6	1.45	-0.27	1.7	2.67	8.00	4.00
C10A	16.3	15.8	87.5	5.9	1.51	-0.51	2.89	1.38	5.00	2.00
C10B	17.1	16.5	89.3	5.9	⁻ 1.55	-1.03	5.27	0.89	6.00	1.00
C10C	16.3	16.7	88.3	5.9	1.4	-0.08	1.64	1.42	8.00	3.00

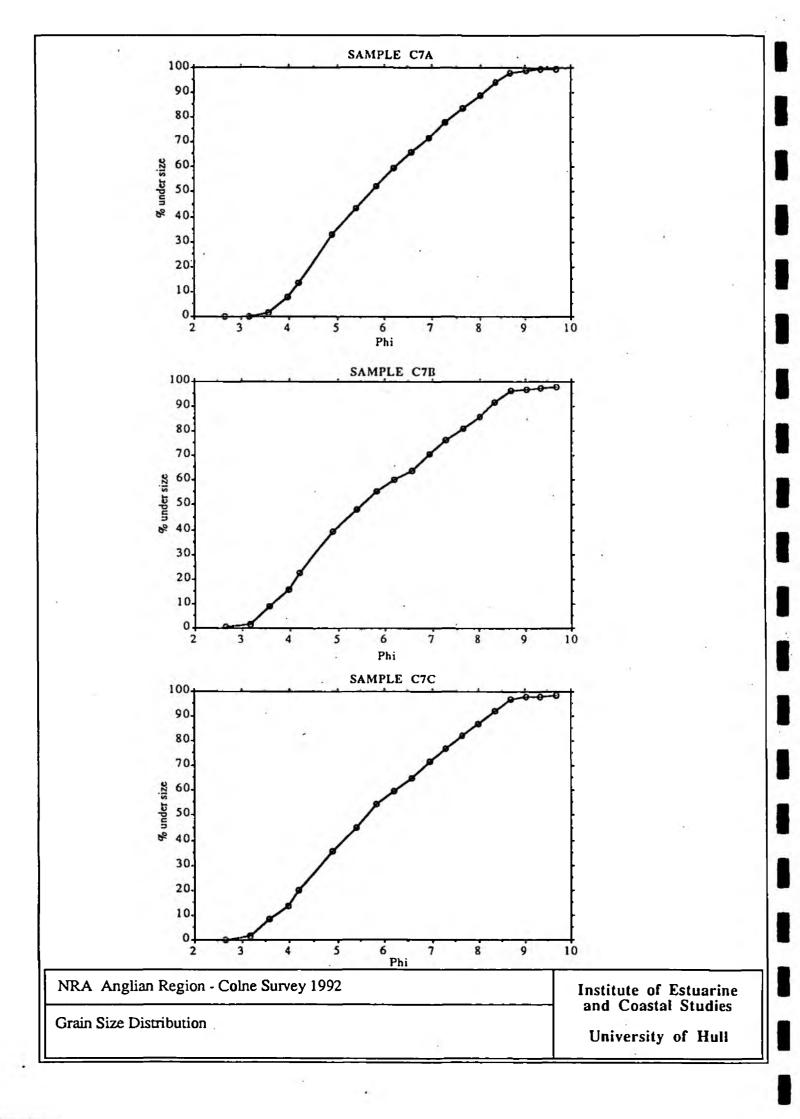
NRA ANGLIAN R. COLNE SEDIMENT DATA

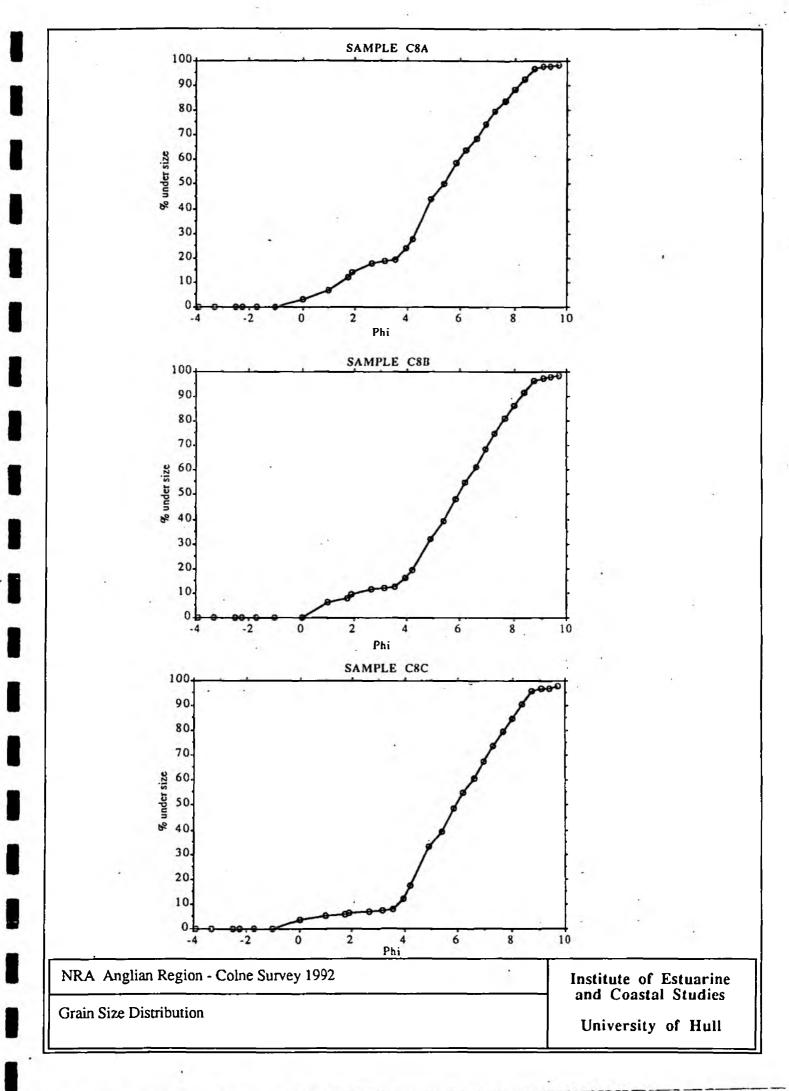

NB NEG=NEGLIGIBLE










.

