NRA South West 121

ENVIRONMENTAL PROTECTION

River Water Quality

Classification 1990

NOVEMBER 1991 WQP/91/003 B L MILFORD

National Rivers Authority South West Region

GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

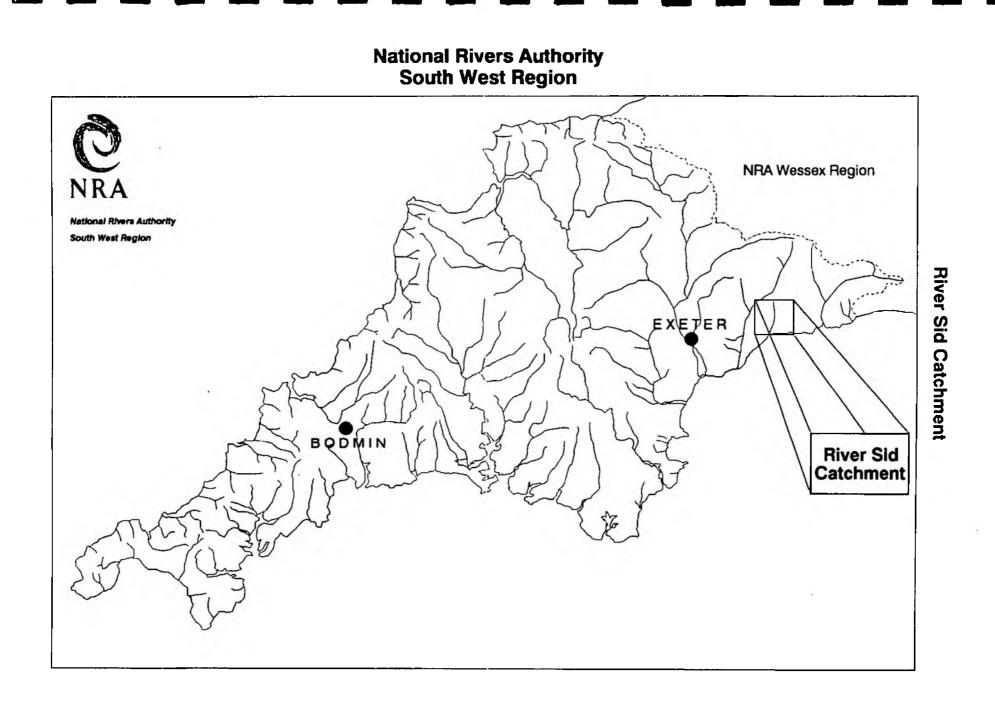
Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ



RIVER WATER QUALITY IN THE RIVER SID CATCHMENT

LIST OF CONTENTS

Page No. 1 Introduction 1 2 River Sid Catchment 1 3 National Water Council's River Classification System 2 4 1990 River Water Quality Survey 2 5 1990 River Water Quality Classification 3 6 Non-compliance with Quality Objectives 4 7 Causes of Non-compliance ٨ 8 Glossary of Terms 5 **9** References 5 10 Appendices: 10.1 River Quality Objectives including Monitoring points 10.2 Basic Determinand Analytical Suite 10.3 National Water Council (NWC) River Classification System 10.4 NWC Criteria for Non-Metallic Determinands - Regional Variation 10.4.1 NWC Criteria for Metallic Determinands - Regional Variation 10.5 1990 River Water Quality Classification - tabular format 10.6 1990 River Water Quality Classification - map format 10.7 Calculated Determinand Statistics used for Quality Assessment 10.8 Compliant/Non-Compliant River Reaches 10.9 Number of Samples Results exceeding quality standards 10.10 Percentage Exceedance of Determinand Statistics from Quality Standard

10.11 Identification of Possible Causes of Non-Compliance with River Quality Objectives

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Sid catchment.

2. RIVER SID CATCHMENT

The River Sid flows over a distance of 10.2 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at one site at approximately monthly intervals. The sites at Stoney Bridge, Sidbury and the A3052 Bridge at Sidford were sampled on fifteen occasions during 1990 because of no recent water quality data.

Throughout the Sid catchment one secondary tributary of the River Sid was monitored.

2.1 SECONDARY TRIBUTARY

The Roncombe Stream flows over a distance of 4.5 km from its source to the confluence with the River Sid, (Appendix 10.1) and was monitored on twenty occasions during 1990 because of no recent water quality data.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Sid catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Class	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

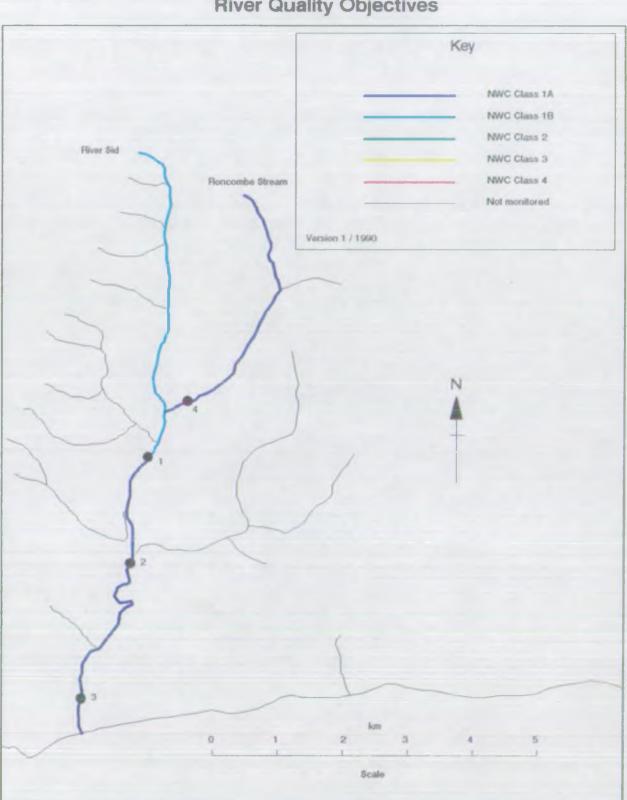
Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.


8. GLOSSARY OF TERMS

RIVER REACH A segment of water, upstream from sampling point to the next sampling point. RIVER LENGTH River distance in kilometres. RIVER QUALITY OBJECTIVE That NWC class, which protects the most sensitive use of the water. 95 percentiles Maximum limits, which must be met for at least 95% of the time. 5 percentiles Minimum limits, which must be met for at least 95% of the time. BIOLOGICAL OXYGEN DEMAND A standard test measuring the microbial uptake of (5 day carbonaceous ATU) oxygen - an estimate of organic pollution. рH A scale of acid to alkali. Fraction of ammonia poisonous to fish, NH³. UN-IONISED AMMONIA SUSPENDED SOLIDS Solids removed by filtration or centrifuge under specific conditions. USER REFERENCE NUMBER Reference number allocated to a sampling point. INFERRED STRETCH Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

9. REFERENCES

Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Sid Catchment River Quality Objectives

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 OBiochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/l N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/1 Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/l P Silicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/l SO4 Sodium (total) as mg/l Na Potassium (total) as mg/l K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

NWC RIVER QUALITY CLASSIFICATION SYSTEM

River Class		Quality criteria	Ren	arks	Current	t potential uses
		Class limiting criteria (95 percent	ile)			
1A Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than D.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	greater (ii) Visible	BOD probably not than 1.5 mg/l evidence of pollution be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
18 Good Quality	(i) (ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/l Ammonia not greater than 0.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	greater (ii) Average greater (iii) Visible should (iv) Waters cannot because of high or beca physica camalis eutroph (v) Class 1 are ess	BOD probably not than 2 mg/l ammonia probably not than 0.5 mg/l evidence of pollution be absent of high quality which be placed in Class 1A of the high proportion quality effluent presen use of the effect of l factors such as ation, low gradient or ication A and Class 1B together entially the Class 1 of collution Survey (RPS)		Water of less high quality than Class 1A but usable for substantially the same purposes
2 Fair Quality	(i) (ii) (iii) (iv)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	greater (ii) Similar (iii) Water m signs o humic o	BOD probably not than 5 mg/l to Class 2 of RPS of showing physical f pollution other than colouration and a little below weirs	(i) (ii) (iii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries Koderate amenity value

APPENDIX 10

3 Poor Quality	 DO greater than 10% saturation (ii) Not likely to be anaerobic (iii) BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration 	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present. Way be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up
4 Bad Quality	Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
x	DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing
_			

- (a) Under extreme weather conditions (eg flood, drought, freeze-up), or when dominated by plant growth, or by aquatic plant decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or annonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results.
 (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Annonia figures are expressed as NH4. **
 - (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

* EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

** Annonia Conversion Factors

(mg NH4/1 to mg N/1)

Class	18	0.4	89	NH4/1	:	0.31	ng	N/1
Class	1B	0.9	ng	$NH_{6}/1$:	0.70	ng	N/1
		0.5	ng	NH4/1	:	0.39	ng	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/1 0 Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1

- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/1 0 Total ammonia not greater than 0.70 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 O Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O

Determinand

4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Statistic

Dissolved oxygen5 percentileBOD (ATU)95 percentileTotal ammonia95 percentileNon-ionised ammonia95 percentileTemperature95 percentilepH5 percentileSuspended solidsarithmetic mean

NWC RIVER CLASSIFICATION SYSTEM

۱

I

1

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

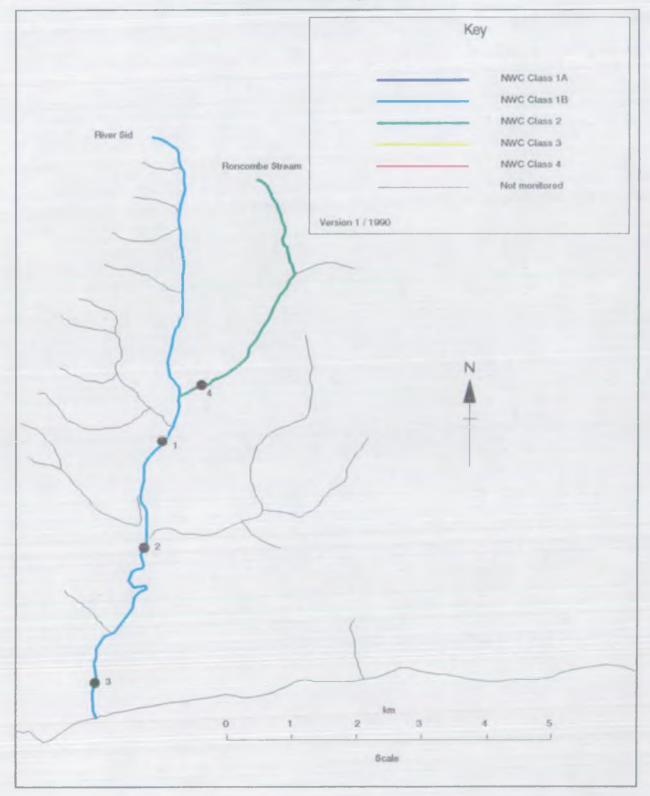
Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class l Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>

NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT : SID (03)

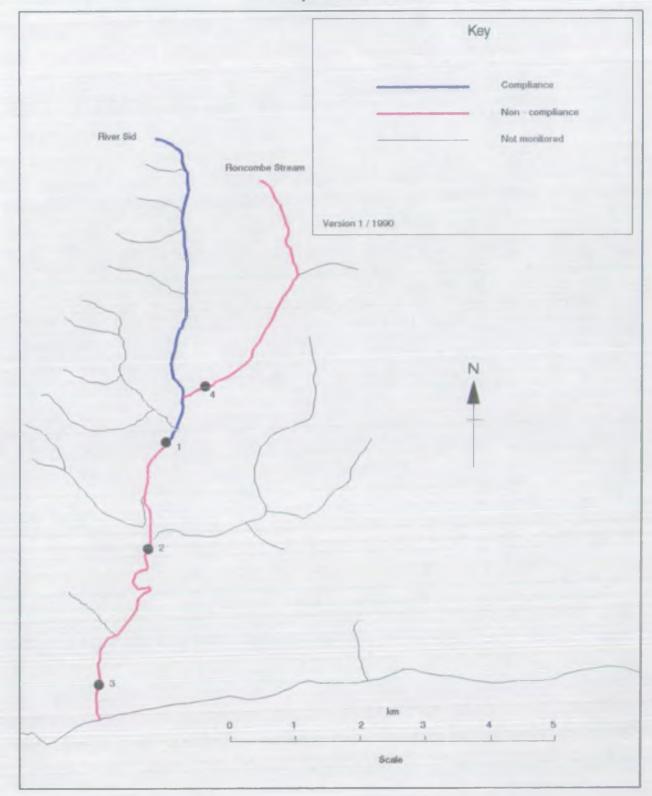

1990 Map Position Number			Reach upstream of	User Reference Number	National Grid Reference
[]]			(?)		
1	SID	<u>,</u>	STONEY BRIDGE SIDBURY		5Y 1400 9165
2	SID		A3052 BRIDGE SIDFORD	R03A002	SY 1375 8995
3 	ISID ISID		SIDMOUTH NORMAL TIDAL LINIT (INFERRED STRETCH)	R03A003	SY 1280 8780
	RONCOMBE STREAM RONCOMBE STREAM		COTFORD	R03A013	SY 1423 9222

Reach	Distance	River	85	66	87	88	89	90
Length	from	Quality	INNC	NWC	MAC	NHC	NWC	3MC
(km)	source	Objective	Class	Class	Class	Class	Class	Class
	(km)	i	Í	Ì	İ		İ	İ 1
	i i i	Ì	Ì	Í	Ì	ŀ	İ.	i i
	i		i	ì	i	Ì	İ	i i
	i I		i	İ	i		i	i i
5.0	5.0	18	2	3	2	18	1.8	18
1.8	6.8	18	1.	3	j 2.	2	1.	1B (
2.9	9.7	1A	1	j 3	j 2	2	1.	18
0.5	10.2	1A	i ia i	ίε	2	2	1.	18
	1.10		i	i			i i	i i
4.4	4.4	1.4	·	i			·	2
0.1	4.5	14	i	i	i i			2 1
	i			i				i
	·		·	·			·	·'

Appendix 10.5

ŝ.

Sid Catchment Water Quality - 1990



NATIONAL RIVERS AUTORITY - SOUTH WEST RELICH 1990 RIVER WRIER GEALTY CLASSIFICATION CALLARED DETENDIAND STRUISTICS USED FOR GUALTY ASSESSMENT CATCHERT : SID (03)

River	Reach upstreen of	User	90			Calculu	ted Dete	enninan	d Statis	ucs us	ed for Q	ality i	63655308	nt.									
1		Ref.	I NHC									1		1						1		1	1
1	l l	Nurber	Class	pH 1	Change -	pH (iper	Temp	erature	00	(\$)	BOD	(UEU)	[Total]	Auncoia	Union.	Amnia	S.\$	olids	Total	Copper	Tota	al Zinc
1	ł		I .I	Class	5kilø	ععمل ا	95 k ile	دهمل	95kile	Class	Stile (Class	95kile	Class	95 kile	Cust	95 kile		Maan	Cass	95kile		s 95%ile
1	1							I	1	l		1		1		1		1		1		1	
1	l		I			I		1		1	ł	1		1		1		1		1		1	
t	I	<u> </u>				l						1		<u> </u>		l		I		<u>L</u>			
SID	STONEY BRIDGE STIPLIKY	F03A001	1.13	18	7.6	1 x	8.6	1A	16.9	18	74.4	18	3.6	אנן	0.156	1 17	0.010	1	8.3	-	-	- -	-
SID	A3052 HRIDGE SILFORD	F03A002	1 19	18	7.5	IA	8.8	1A	17.0	17	85.4	118	3.8	1A	0.164	1A	0.010	1.	8.9	-	-	1 - I	-
SID	SIDMUTH	F03A003	100	1A	7.8	1A	8.9	I I A	17.4	1A	88.0	18	3.1	1	0.142	j 1. k	0.010	1 A	10.6	AL	24.8	1 14	26.6
i	İ		i I			I				1		1				Ì		ĺ		1		1	1
RENCEMBE STREAM	COLFORD	1034013	2	JA	7.6	<u>I</u> A	8.6		17.9	IA I	85.3	18	3.6	14	0.120	1	0.010	18	-11.6	1 14	9.9	2	608.5
i						I					j	1				ł		l		<u> </u>		1	ł

. .

Sid Catchment Compliance - 1990

NATIONAL RIVERS MATHEMETY - SOUTH WEST PRETEN 1990 REVER WATER QUALITY CLASSIFICATION RUMER OF SHIPLES (N) AND RUMER OF SHIPLES EXCELLING QUALITY SUMDARD (F) CREMENT : SUD (03)

River	Reach upstress of	User	քዘն	OHNE	pH	upper	Taper	ature	B	(\$)	BOD (ATU)	Total i	amria	lunian.	Anartia	5.90	lics	1 Total	Copper.	Total	l Zinc
	I	Bat.			1.15		1		1		1		ł		1				1 >>		I	
]	1	Raber	N	7	N N	F	1 11	7	N I	7	11	Ľ	1		I N	– P j	N		I N	E	1	E
	ł	1 1			Í -		1		İ		1		Ì		i	Í			i		į	
	Í				İ		Í		Ì		Ì		Ì		i	i			i		İ	
	İ.	1			j		i		Ì		i		İ		i	i			i		i	
·					İ		,İ		1		Ì		ł.		1	i			i			
<u>20</u>	STREY BOTTLE STDELRY	1004001	2	1	23	-	1 22	-	22	-	23	_	1 23	-	21	- 1	n	-	1 1			-
510	A3052 BRIDGE SILFORD	[R03M002]	23	-	23	-	21	-	21	-	23	2	23	-	j 16	- 1	23	1	2		2	-
500	SILMOUTH	R03A003	31	-	j 31	-	1 31	-	ं ग	-	31	1	j 31	-	28	- i	31	2	1 31	-	n i	-
	i i	1 1			Ì		Ì		İ				i i		i	i			i			
HUNCOME STREPH		(R03A013)	20	-	20	•	20	_	20	-	20	1	20	_	19	ì	20	2	20	_	20	1
	1	i i			Ì		Î.		Ì		Ì		Ì		İ	i			i		Ì	

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT : SID (03)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD				
		Ref.		1	!		I I		ł			1
	ĺ	Number	pH Lower	pH Upper	Temperature	DO (%)	BOD (ATU)	Total	Un-ionised	Suspended	Total	Total
in -	i	i i		Ì	1	1	I İ	Anmonia	Ammonia	Solids	Copper	Zinc
	I	1 1		1	1	!			1			1
	I	1 1		1	1	!			1			
		11		l	_ {	·	I					
SID	STONEY BRIDGE SIDBURY	R03A001	-	-	-	-	-	-	- 1	-	-	
SID	A3052 BRIDGE SIDFORD	R03A002	C+01	÷		_	28			-	-	- 1
SID	SIDMOUTH	R03A003	-	-	-		3	-	-	-	-	! -
RONCOMBE STREAM	COTFORD		-			-	1 <u> </u>	-				22
							ii					i

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT : SID (03)

1990 Map	River	Reach upstream of	User	Reach	Possible causes of non-compliance
Position			Reference	Length	
Number		1	Number	(km)	۱
1			1 1		1
1 1					
					I I
- I			l!		II
2	SID	A3052 BRIDGE SIDFORD	R03A002	1.8	DROUGHT, UP-STREAM ABSTRACTIONS
3	SID	SIDMOUTH	RO3A003	2.9	1
l!			۱۱		
1 4	RONCOMBE STREAM	COTFORD	R03A013	4.4	FARMING ACTIVITIES
ł	l		li		·

ì