NRA 504.454

DRAFT WORKING PAPER 3

ENVIRONMENTAL ASSESSMENT OF DENVER MRF IMPACT OF FRESHWATER FLOW ON WATER QUALITY OF THE GREAT OUSE ESTUARY

1. INTRODUCTION

- 1.1 The water quality data collected by NRA in the Great Ouse estuary, including its tributaries and effluent sources, have been reviewed to assess the current water quality of the estuary. The data have been used to set up boundary conditions for the Great Ouse estuary water quality model which predicts water quality conditions that are broadly in agreement with the observed conditions.
- 1.2 The model is used to predict water quality in the estuary as a result of changes to the Ely Ouse flow at Denver. The results demonstrate that the estuary water quality declines as total freshwater flows reduce, provided tributary and effluent quality remains constant. The results indicate that it does not make much difference whether the fresh water in the estuary comes from the Ely Ouse or the Bedford Ouse. Changing the Ely Ouse discharge from the Tail Sluice to Denver Sluice has a negligible effect on estuary water quality.
- 1.3 The model predictions may be used to indicate the order of deterioration in water quality associated with a reduction in freshwater flow. In autumn water quality seems more sensitive to freshwater flow than during the remainder of the year.

2. SAMPLING POINTS

- 2.1 The waters of the Great Ouse estuary have been sampled routinely at the nine points shown on Figure 1 and listed in Table 1. Samples have not been collected at Welney Bridge since 1990. In addition, samples are routinely taken of the tributaries and effluent discharges listed in Table 1. Since 1989 the samples of the estuary have been collected on about six days each year at both high and low tide. Summaries of the data obtained from February 1989 to June 1992 are included in Tables 2, 3 and 4 for the estuary, tributaries and effluent discharges respectively. The estuary sampling points do not include Welney Bridge.
- 2.2 In addition to the routine sampling, continuous water quality monitors are maintained at Freebridge and Salters Lode. They are also shown on Figure 1 and listed on Table 1. These continuous monitors measure dissolved oxygen, temperature, conductivity and water level. Unfortunately only 5½ months of dissolved oxygen data have been retrieved from the Freebridge monitor and none from the Salters Lode monitor. The dissolved oxygen data obtained from the Freebridge monitor have been analysed and the processed data are presented in Appendix A.

ESTUARY WATER QUALITY

Chloride content

3.

3.1 The data of Table 2 show how the average chloride content of the estuary waters reduces along the estuary. The data show that chloride concentrations in excess of 100 mg/l are rarely reported in the analyses of New Bedford River water samples taken from Mepal Bridge. Further downstream, the proportion of samples when chloride concentration is less than 100 mg/l reduces. At times of low freshwater flow chlorides are higher than at times of high freshwater flow. The frequency of occurrence of high chloride concentrations at Downham Bridge and in the New Bedford River are discussed in the Working Paper on saline intrusion.

Dissolved oxygen, BOD and ammonia

- 3.2 In the section of the Great Ouse estuary that passes through Kings Lynn from Wiggenhall St Germans to The Point (Figure 1), Table 2 indicates that the amount of dissolved oxygen (DO) in the water averages between 78 and 73%. The shape of the DO profile is illustrated on Figure 2. The data suggest the values measured at Freebridge are marginally higher than those measured upstream or downstream. Upstream from Wiggenhall St Germans there is a steady increase in the average amount of DO present. The highest average DO content of 87% is found at Mepal Bridge in the upper part of the New Bedford River.
- 3.3 Within the estuary, the concentrations of BOD follow the opposite trend with the peak average value of 3.8 mg/l occurring at Wiggenhall St Germans as shown in Figure 3 with lower values upstream and downstream. A generally similar pattern is evident for ammonia with a peak average concentration of 0.30 mg/l at Freebridge as Figure 4 shows.
- 3.4 If the DO measured during the routine sampling at Freebridge is compared with the data from the Freebridge continuous quality monitor, significant differences are evident. Table 5 shows that three of the four routine samples collected at times when the continuous monitor was operating contained significantly more DO than the monitor recorded.

- 3.5 The results over the period when data are available from the two methods cannot be directly compared. However the monitor records less DO on average and has lower maxima and minima. This tends to suggest a systematic difference between the routine samples and the automatic monitor, with the automatic monitor frequently recording less DO than the routine laboratory analyses. We have assumed the routine samples to be accurate, but that the automatic monitor can be used to indicate the variability of DO from day to day.
- 3.6 The analysis of the continuous monitor data in Appendix A indicates that during the 5½ month period of data analysis, the average DO content was 65.7% saturation. A DO of less than 45% saturation was recorded 1 hour in 10 during this period. DO levels below 45% saturation are particularly evident in October 1991 (3.8 hours/day on average) and July 1992 (8.2 hours/day on average), but occurred for only 7 hours during the whole of March, April and May 1992. Assuming that these monitor results are typical of the whole year would imply that the 10 percentile DO NRA propose to use to assess the river and estuary Fisheries Ecosystem (Ref 1) will be 20% saturation less than the long-term average. Applying this to the routine samples, for example at Wiggenhall St Germans which has an average of 73% saturation, the 90 percentile value will be around 53% saturation.

Nutrients

3.7 The concentration of total oxidized nitrogen and particulate orthophosphate are highest at Brownshill and reduce all the way down the estuary as Tables 2 and 3 illustrate. The concentration of both nutrients are higher in the Bedford Ouse at Brownshill than in the Ely Ouse at Denver or the other tributaries listed in Table 3. The profile of both nutrients along the estuary is plotted against the chloride content in Figure 5 showing the importance of low nutrient seawater for diluting nutrients in the fresh water entering the estuary.

Bacterial numbers

3.8 The numbers of bacteria at each sampling site in the Great Ouse estuary varies markedly between high tide and low tide as Table 6 indicates. At The Point and Cork Hole, which are seaward of Kings Lynn, the highest numbers are reported at low tide. From Wiggenhall St Germans to Downham Bridge the highest numbers are

Denver

found at high tide. The distribution of bacteria in the estuary at high and low tide is shown in Figure 6.

3.9 The distribution of bacterial numbers between high tide and low tide reflects the influence of the discharge from Kings Lynn sewage works which causes high numbers of bacteria downstream at low water and high numbers upstream at high water. The influence of the Kings Lynn effluent at high tide is evident as far upstream as Downham Bridge. In the New Bedford River, at Mepal and Welney, bacterial numbers are higher at low tide, suggesting additional sources.

Seasonal water quality changes

3.10 The samples collected between 1981 and 1991 from the five main tributaries at Brownshill have been analysed seasonally. In the first stage of this analysis the average for all samples collected in each individual month was obtained. The results for individual months have then been grouped to obtain the average concentration in each month of a typical year. The results are presented in:

Table 7 for the Bedford Ouse at Brownshill

Table 8 for the Ely Ouse at Denver

Table 9 for the Flood Relief channel at SaddlebowTable 10 for the Middle Level Drain at St GermansTable 11 for the River Nar at the Kings Lynn bypass

3.11 The seasonal results show marked variations in the majority of parameters. Temperature and BOD are usually highest in the summer months when dissolved oxygen, ammonia and oxidized nitrogen are at their lowest concentrations. These seasonal results have been used to provide input for the Great Ouse estuary water quality model.

Denver

GREAT OUSE ESTUARY WATER QUALITY MODELLING

Model boundary conditions

4.

- 4.1 The main boundary conditions for the Great Ouse estuary water quality model are the flow and quality of water entering the estuary from each tributary and effluent source. Tributary water quality is assumed to vary seasonally as indicated on Tables 7 to 11 for each tributary. Effluent water quality is assumed to remain constant throughout the year at the average quality given in Table 4.
- 4.2 Modelling was carried out for four representative months, January, April, July and October. These four months enable the effect of the seasonal changes in water quality and temperature to be taken into account as well as the presence of the British Sugar effluent which discharges from September to February. The sea water quality and water temperature assumed for each of the tests are listed in Table 12.
- 4.3 The flows for the Ely Ouse were calculated for three conditions, drought, dry and average for each of the four months used in the modelling. Drought conditions were defined as close to the lowest monthly average flow in the past 30 years. Dry conditions chosen to be approximately a 1 in 5 year drought were selected from around the sixth lowest monthly average flow in the past 30 years. In most cases a suitable month could be selected from the past 10 years, as these would best reflect current catchment conditions. Flows in the same months were chosen for the Bedford Ouse, Middle Level and river Nar to ensure consistent conditions. Average conditions were defined from the long-term monthly average flows for each tributary. The months selected and the tributary flows used are listed in Table 13. For effluents the consented dry weather flows listed in Table 14 have been used.

Model test conditions

4.4

The model was first used to predict estuary water quality for the chosen drought, dry and average months. Additional tests were then carried out for residual flows in the Ely Ouse of 318 tcmd in October and January only and 114, 50 and 0 tcmd in all four months. These tests used drought year flows for the other tributaries. Tests using the higher dry year flows in other tributaries were carried out to check the sensitivity of the results to these flows. Sensitivity tests were also carried out to examine

Denver

whether the estuary water quality would be changed by discharging the residual flow through Denver Sluice rather than the Tail Sluice which is used at present. The final set of tests examined the sensitivity of estuary water quality to the effluent load arising from Kings Lynn sewage works.

- 4.5 The input data used for each of the 35 test conditions is listed in Appendix B. This appendix also gives a summary of the model output, listing the maximum BOD and ammonia concentrations and the minimum DO levels predicted by the model for the estuary. These maxima and minima occur approximately midway between Denver and Kings Lynn and represent high tide conditions.
- 4.6 The model predictions of DO are shown in Figure 7. This shows that there are important seasonal variations in the DO level as well as a major influence due to freshwater flow. The seasonal variations arise from three factors; effluent discharge, water temperature and tributary water quality.
- 4.7 The seasonal effluent from British Sugar increases the oxygen demand during the autumn and winter. High water temperatures in summer cause the oxygen demand to be exerted more rapidly causing lower DO levels in summer than in winter. In addition, the reducing solubility of oxygen in water as its temperature rises leads to lower concentrations of dissolved oxygen for a given percentage saturation. The final effect is that in autumn, the percentage saturation of oxygen in the waters of the Bedford Ouse and Ely Ouse as they enter the estuary are at their lowest as Tables 7 to 9 indicate.
- 4.8 These three effects all combine to give the minimum percentage saturation of DO in autumn as illustrated on Figure 7 and the maximum dissolved oxygen percentage saturation in April for the same total freshwater flow. The reduction in solubility of oxygen with rising water temperature means that the minimum concentration of dissolved oxygen will normally occur in summer.
- 4.9 The model results show a noticeable decrease in the minimum DO content as freshwater flows fall. This effect becomes more marked as freshwater flows decline.

Denver

Comparison of observations with model predictions.

- 4.10 The model predictions are based on the dry weather effluent flows permitted by their various discharge consents. In most cases, the discharge consent is a realistic assessment of the dry weather flow, but at Kings Lynn sewage works, Anglian Water Services report their current dry weather flow is 26 Mld compared with their 53.1 Mld consent. NRA have indicated that this discrepancy has arisen because of reductions in the volume of cannery effluent. Sensitivity tests using this reduced flow show an increase of ** in dissolved oxygen percent saturation.
- 4.11 The model predictions shown on Figure 7 are compared with the average DO reported during October 1991 and April and July 1992 by the Freebridge continuous monitor. There is good agreement with the monitor reporting an average oxygen content close to the model prediction. However, these model predictions assume the effluent flow from Kings Lynn sewage works was twice the quantity reported by Anglian Water Services. Taking this into account, the continuous monitor reports lower DO than the model predictions or the routine samples. Overall, the model predictions seem consistent with the results of the routine monitoring.

11

۲

IMPACT OF CHANGES IN DENVER MRF ON ESTUARY-WATER QUALITY

Overall impact

- 5.1 The impact of changes in the Denver MRF on estuary water quality, may be predicted using the estuary water quality model. The results for each of the four months tested are shown on Table 15. The changes are largest in October when reducing the MRF to zero from the 318 tcmd at present increases the ammonia concentration by 0.11 mg/l and reduces the DO by 5.2% of saturation These changes are expressed as a proportion of the existing minimum estuary water quality in Table 16.
- 5.2 The results in Table 16 may be used to estimate the reduction in flow that would cause a 5% or 10% deterioration in water quality during months when abstractions have already reduced the Ely Ouse flow to the current MRF. The Ely Ouse flows associated with a 5% or 10% deterioration in the quality associated with the current MRF are listed below.

	5% deterioration	10% deterioration
 January	15_tcmd	0 tcmd
April	45(0) tcmd	0 tcmd
July	50(0) tcmd	0 tcmd
October	240(105) tcmd	165(0) tcmd

Note: bracketted figures are based on dissolved oxygen alone

5.3

In all months except January, the deterioration in percentage terms is more marked for ammonia than for dissolved oxygen. This is because the rate coefficient for ammonia is more sensitive to water temperature than the other rate coefficients. The importance of freshwater flow to limit deterioration in October water quality is particularly noteworthy.

5.4

The changes in water quality resulting from changes to the Denver MRF must also make allowance for the deterioration in water quality associated with reducing flows from their natural value to the proposed MRF value and the proportion of time when no abstraction of Ely Ouse water is necessary.

Choice of discharge point

1

5.5 Several tests were carried out to check whether releasing Ely Ouse flows at Denver Sluice instead of the Tail Sluice would have any impact on water quality. The results in Table 17 show a very minor effect with releases through Denver Sluice causing marginally lower dissolved oxygen. The differences are less than 0.5% in the dissolved oxygen percent saturation and less than 0.01 mg/l of ammonia. This indicates that water quality considerations should not normally influence the choice of sluice for residual flow releases.

Sensitivity to flows in other tributaries

- 5.6 From the water quality point of view, in the Great Ouse estuary with the current effluent discharges, the most important feature affecting estuary water quality is the total freshwater flow entering the estuary. This is evident from Figure 7. There are two pairs of runs which may be compared to examine the difference in water quality for similar freshwater flows arising from a different balance between Ely Ouse and Bedford Ouse flows. These runs are compared in Table 18.
- 5.7 The comparison for April conditions indicate that the test with a greater proportion of Ely Ouse water resulted in more DO and less ammonia. Conversely in October, the test with the higher total flow which would be expected to have had more DO and less ammonia because of the increased freshwater flow, did not. This is presumably because of the higher proportion of Ely Ouse water in the estuary which in this month depressed water quality.
- 5.8 These two pairs of results indicate that small variations in estuary water quality will arise if the balance between Bedford Ouse and Ely Ouse flows changes. The change can be in either direction depending on the water quality of these two tributaries at the time.

Denver

		Position relative to Denver			
Location	Description	Site	(km)		
Cork Hole	Sample point	S1	35.0		
The Point	Sample point	S2	25.0		
Kings Lynn stw	Effluent	ES	23.5		
Porvair	Effluent	E4	23.1		
Dow Chemical	Effluent	E3	22.7		
River Nar	Tributary	T5	20.5		
Freebridge	Sample point, WQ monitor	·\$3 ·	19.6		
British Sugar	Effluent	E2	18.7		
Tail Sluice	Tributary	T3	18.3		
Middle Level	Tributary	T4	15.0		
Wiggenhall St Germans	Sample point	S4	14.2		
Watlington stw	Effluent	E1	12.0		
Wiggenhall St Mary	Sample point	S5	11.2		
Stow Bridge	Sample point	S6	6.6		
Downham Bridge	Sample point	S7	2.3		
Salters Lode	WQ monitor	S8	0.6		
Denver Sluice	Tributary	T2	0.0		
Welney Bridge	Sample point	S9	-9.7		
Mepal Bridge	Sample point	S10	-25.0		
Brownshill	Tributary	T1	-36.0		

LOCATIONS ON THE GREAT OUSE ESTUARY

Distances are measured positive downstream of Denver Sites are shown on Figure 1

Denver

[]

WATER QUALITY OF GREAT OUSE ESTUARY JANUARY 1989 - DECEMBER 1991

	BOD mg/l	DO % Sat	Chloride mg/l	Ammonia mg/l	Oxidized nitrogen	Ortho phosphate
	-b -		-		mg/l	mg/l
Cork Hole						
No. of samples	39	39	36	38	38	36
maximum	4.25	103	19600	0.38	1.31	0.72
average	1.86	82.4	17999	0.09	0.39	0.08
minimum	<1.0	16.9	1900	<0.02	0.24	0.021
The Point						
No. of samples	37	39	36	37	37	35
maximum	8.83	96.5	19047	0.97	11.33	7.49
average	2.92	75.3	8344	0.26	2.49	0.67
minimum	<1.0	43.2	227	<0.02	0.26	0.06
Freebridge						
No. of samples	40	51	43	51	40	38
maximum	12.9	134	19000	0.76	12.07	1.51
average	2.90	78.2	8150	0.30	2.79	0.53
minimum	1.0	47.9	42.7	0.06	0.32	< 0.06
Wiggenhall St						
Germans						
No. of samples	38	40	40	40	40	38
maximum	8.2	119	16153	0.55	11 .3 3	1.88
average	3.78	72.9	3859	0.25	4.15	0.79
<u> </u>	1.25	41.1	60.5	0.038	<0.5	0.15
Wiggenhall St						
Магу						
No. of samples	38	39	40	40	40	38
maximum	8.35	123	15304	0.64	12.45	2.06
average	3.44	76.9	3204	0.26	4.52	0.88
minimum	1.4	41.9	59.6	0.039	< 0.5	0.14
Stow Bridge						
No. of samples	36	39	40	39	39	37
maximum	10.0	147	11830	0.71	14.18	2.17
average	3.31	79_3	1951	0.25	5.38	1.00
minimum	1.4	40.8	62.0	0.043	<0.5	0.34
Downham Bridge						
No. of samples	36	35	39	38	38	36
maximum	8.05	115	6200	0.59	13.97	2.28
average	3.36	82.1	937	0.24	5.94	1.17
minimum	1.3	39.8	57.5	< 0.04	<0.5	0.46
Mepal Bridge	40	40				
No. of samples	49	48	64	51	51	48
maximum	10.2	145 87.2	1102	1.03	15.89	3.3
average minimum	2.92 0.8	87.2 59.0	95.9 49.1	0.16 0.028	7_51 2.69	1.97 0.77
	0.0		47.1	0.028	4.09	0.77

1

12

١

- TRIBUTARY WATER QUALITY JANUARY 1989 - DECEMBER 1991

	BOD mg/	DO % Sat	Chloride mg/i	Ammonia mg/l	Oxidized nitrogen mg/l	Ortho phosphate mg/l
Bedford Ouse (Brownshill)	77	26				
No. of samples maximum	37 9.5	35 156	37	- 37	- 37 -	37
	2.89	98.5	128	0.37	20.1	6.34
average		73.0	79.2	0.13	8.31	2.07
minimum	0.8	/3.0	48.2	<0.023	3.19	0.42
Ely Ouse (Denver)						
No. of samples	169	158	203	176	174	168
maximum	8.79	222	2890	3.9	17.0	3.30
average	3.07	95.8	128	0.22	6.05	1.06
minimum	0.95	9.2	36.6	<0.023	< 0.5	0.3
Middle Level Drain (St Germans ps)						
No. of samples	35	32	34	34	34	33
maximum	20.36	130.3	759	0.70	18.2	1.57
average	3.76	86.5	266	0.12	4.07	0.70
minimum	1.02	51.7	134	<0.023	< 0.2	< 0.06
River Nar (bypass bridge)						
No. of samples	37	37	38	38	38	37
ກາວຕໍ່ການກ	5.76	145	54.0	0.47	8.66	0.14
average	2.50	89.6	37.8	0.10	4.89	0.05
minimum	1.45	43.0	29.5	< 0.023	0.86	<0.021

Denver

7

EFFLUENT WATER QUALITY JANUARY 1989 - DECEMBER 1991

					<u> </u>
	BOD mg/l	Chloride mg/l	Ammonia mg/l	Oxidized nitrogen mg/l	Ortho phosphate mg/l
British Sugar		1			
No. of samples	51	49	50	53	19
maximum	6105	9280	83.0	4.85	3.45
average	2761	784	27.70	0.69	1.27
minimum	6.3	87.0	<0.04	0.08	0.26
Porvair					
No. of samples	31	29	31	31	12
maximum	5095	35700	10.6	11.74	1.25
average	434	5383	1.62	7.28	0.68
minimum	109	155	<0.04	1.04	0.02
Dow Chemical					
No. of samples	79	75	78	76	37
maximum	480	9172	170.2	16.15	33.4
average	161	3533	4.57	8.87	7.36
minimum	5.8	72.7	0.01	< 0.5	< 0 .02
Watlington sewage works					
No. of samples	45	45	45	15	15•
maximum	17.38	321	4.31	33.4	7.40
average	5.86	100	1.34	28.15	6.34
minimum	<6.0	58.7	<0.2	21.9	4.91
Kings Lynn sewage works					
No. of samples	54	54	54	18	18•
maximum	>2478	1892	47.65	0.66	11.40
average	479	630	27.26	0.60	7.04
minimum	>5.8	154	0.17	<0.6	4.50

14

*Dissolved fraction only

1

.....

	Routine sampling	Continuous monitor
Number of samples	39*	16228
Number of days sampled	20*	169
Period of samples	6.2.89 - 3.12.91	1.10.91-31.10.91
•		1.3.91-9.6.92
		24.6.92-31.7.92
Period average	78.2	65.7
Maximum	(109)	91.7 (116.1)**
Minimum	(51.1)	22.5 (00.0)**
Detailed comparisons		
14.5.92 0610	94.6	66.4
14.5.92 1420	98.6	74.1
3.6.92 0955	78.6	50.6
3.6.92 1815	66.0	82.7
Ачегаде	84.45	68.45

COMPARISON OF DISSOLVED OXYGEN MEASUREMENTS AT FREEBRIDGE

• Data in this table based on 39 individual samples analyses provided by NRA. Table 2 contains 51 samples in the period 1989-91.

** Daily average (max/min hourly value)

TABLE 6

BACTERIAL NUMBERS IN THE GREAT OUSE ESTUARY 1991

		High tide		Low tide				
	E Coli	Faccal streptococci	Total coliforms	E Coli	Faccal streptococci	Total coliforms		
Cork Hole	38	25*	136	2570	864	8780		
The Point	6664	1037•	29880	20140	6954	36600		
Freebridge	10190	1215•	34380	10920	5492	38800		
Wiggenhall St Germans	29160	3605•	48860	4404	3604	1 7780		
Wiggenhall St Mary	31280	6533•	44660	4842	3368	16086		
Stow Bridge	7544	4591*	23420	3524	2160*	12776		
Downham Bridge	5770+	1850•	11592	3002	1922*	11134		
Welney Bridge	1188	490*	8942	3690	2833*	11804		
Mepal Bridge	454	140*	2444	348	300*	2180		

Values shown are arithmetic averages of the 5 samples for each site and tide state.

* 6 samples

1

+ 4 samples

Ingroig the charmal high AMM value 1.65 gives this

		R.OUSE/E	ROWNSHILI	STAUNCH)	ww celin
faxim 10	um Value: PH	BOD	DO	DO(%SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO	AMM
1	8.260	3.500	14.400	105.000	10.000	94.000	1257.000	1,650	16.600	1.200	1.060
2	8.200	2.600	13.400	108.000	10.500	71.000	1180.000	0.620	18.600	0.990	0.620
3	8.850	6.350	15.400	126.000	12.000	67.000	1080.000	0.420	16.800	0.940	0.420
4	8.730	9.500	13.100	119.000	14.500	93.700	980.000	0.280	17.700	0.960	0.280
5	8.900	9,600	15,400	156.000	17.000	74.550	970.000	0.270	12.800	1.370	0.270
6	8.990	9.040	14,900	155.000	22.000	79.560	878.000	0.340	10.100	1.750	0.340
7	8.600	8.500	12.800	158.000	27.000	107.000	941.000	0.180	10.800	2.590	0.180
8	8.330	3,300	9.800	100.000	21.500	87.110	999.000	0.120	7.200	2.100	0.120
9	8.280	6.000	10.400	108.000	18.500	96.470	908.000	0.580	18.500	2,290	0.580
10	8.310	4.300	11.500	114.000	18.000	96.360	1007.000	0.500	13.000	2.970	0.500
		3,100	11.200	95.000	10.500	92.090	933.000	0.370	17.400	2.640	0.370
11 12	8.120 8.270	3.100	13.400	117.000	8.500	93.980	946.000	0.340	20.100	1.040	0.340
		R.OUSE/E	ROWNSHIL	STAUNCH							
Avera MO	ge Value: PH	BOD	DO	DO(%SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO	AMM
1	8.027	2.163	12.295	96.287	4.812	66.500	976.083	0.589	12.618	0.853	0.412
2	8.040	1.533	12.033	95.200	5.714	57.867	908.250	0.290	12.273	0.613	0.290
3	8.256	3.544	11.838	101.381	7.708	55.704	934.467	0.169	11.667	0.813	0.169
4	8.284	3.972	11.869	103.400	9.571	60.678	872.429	0.143	10,974	0.793	0.143
5	8,539	5.900	13.200	129.000	13.357	59.906	853.667	0.091	9.828	1.112	0.091
6	8.346	5.543	10.717	110.900	16.475	58,166	800.188	0.087	7.081	1.201	0.087
7	8.201	3.950	8.798	98.583	19.600	67.930	854.000	0.058	6.089	1.667	0.058
8	7.928	2.400	8.300	87.900	17.167	68.852	853.600	0.051	6.016	1.538	0.051
9	8.024	2.119	8.435	88.754	16.204	71.450	834.524	0.193	7.699	1.883	0.193
0	7.919	1.717	8.879	85.756	13.361	66.151	819.214	0.133	8.043	1.844	0.133
1	7.949	1.755	10.025	85.280	8.208	70.202	847.375	0.202 0.219	9.094 12.785	1.875 0.855	0.202
2	8.006	2.124	11.224	91.986	5.958	59.726	913.400	0.219	12.785	U.855	
	26M06 - um Value:	R.OUSE/B	ROWNSHILL	STAUNCH							
10	рн	BOD	DO	DO(%SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO	AMM
1	7.800	1.400	9.700	78.000	1.000	50.000	859.000	0.129	9.090	0.460	0.129
2	7.940	0.800	10.800	85.000	0.000	46.000	650.000	0.130	9.690	0.330	0.130 0.025
3	8.060	1.700	10.400	84.000	5.500	34.000	806.000	0.025	8.500 8.100	0.300 0.550	0.025
4	7.950	1.900	9.800	91.000	5.000	42.000	805.000	0.015		0.900	0.005
5	7.990	2.300	9.300	103.000	4.000	29.000	632.000	0.005 0.015	5.937 4.286	0.620	0.003
6	7.800	2.400	7.300	77.000	13.500	. 36.000	726.000	0.015	4.440	1.190	0.005
7	7.770	0.500	4.900	51.000	16.500	53.000	762.000 756.000	0.005	3.194	0.310	0.020
8	7.680	1.900	7.700	78.000	14.000	57.000		0.020	3.877	0.870	0.015
9	7.670	0.900	6.500	79.000	12.000	58.000 41.000	780.000 670.000	0.005	3.400	0.430	0.005
0	7.610	1.100	7.300	65.000	10.000	41.000		0.115	5.800	0.490	0.115
1	7.800	0.500	8.700	73.000	5.000 4.000	43.000	770.000 816.000	0.010	7.694	0.680	0.010
2	7.700	1.400	9.800	80.000	4.000		010.000	0.010	1.077	0.000/	

11

Bedford Ouse Brownshill Table 7

ř.

R02BF51M01	_	TEN	MILE	R./DENVER	SLUICE	
RULDI JINVI				,		
Maximum Value						

	'51MO1 - ium Value:	TEN MILE	K./DENVE	K SEUTCE		1				_	
5	PH	BOD	DO	DO(%SAL)	ТЕМР	CHLOR	CONDUCT	AMM	TON	ORTHO	
 l	8.210	3.610	12.600	105.000	7.500		1130.000	0.870	17.600	0.600	
2	8.360	3.920	12.900	102.000	9.000		1260.000	0.761	17.200	0.630	
3	8.770	6.360	14.550	128.000	11.000		1074.000	0.740	13,700	0.710	
4	8.820	7.330	17.400	162.000	13.000		1150.000	0.480	19.500	0.530	
5	9.160	10.700	21.350	201.000	20.500		1010.000	0.460	12.300	0.770	
5	9.080	9.800	19.400	222.000	24.000	9,9.080	890.000	0.213	9.500	1.640	
7	9.120	6.200	18.700	210.000	25.000		813.000	0.250	7.000	0.990	
B	8.810	8.790	13.600	168.000	26.000		1240.000	0.309	6.400	1.430	
9	8.760	8.050	18.800	189.000	22.000		8000.000	0.306	8.400	1.350	
0	8.580	8.500	14.000	139.000	17.500		1420.000	0.580	13.300	1.330	
1	8.270	2.800	11.600	93.000	12.000		1150.000	0.874	14.300	1.140	
2	8.160	2.500	11.500	92.000	9.500	89.900	1140.000	0.950	16.400	1.140	
		TEN MILE	R./DENVE	R SLUICE]					
	ige Value: PH	BOD	DO	DO(&SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	or t h o	
ID 	rn 										
1	7.924	1.957	10.836	84.275	4.658	67.357	1006.286	0.462	11.453	0.381	
2	7.978	2.048	11.074	87.102	5.071	64.604	975.667	0.422	11.312	0.389	
3	8.096	2.375	11.712	97.106	7.164	60.982	943.000	0.297	10.008	0.457	
4	8.301	3.701	12.654	111.350	9.826	60.570	910.896	0.110	9.853	0.384	
5	8.551	5.311	13.953	138.232	14.592	58.681	775.542	0.079	7.400	0.435	
6	8.524	4.735	12.000	127.794	17.119	60.145	756.000	0.054	6.291	0.606	
7	8.354	3.301	9.919	110.123	20.058	120.421	696.429	0.082	4.913	0.612	
8	8.368	3.190	10.176	112.733	19.983	95.408	799.929	0.064	4.240	0.756	
<u>9</u>	8.320	2.939	9.860	100.353	16.646	110.897	900.018	0.080	4.885	0.822	
Ó	8.085	2.469	9.345	88.272	12.373	68.873	861.229	0.147	6.836	0.727 /	
1	7.970	1.911	9.463	79.679	7.912	69.976		0.293	8.728	0.756	
2	7.852	1.732	9.991	78.594	5.174	69.364	915.833	0.499	9.158	0.595	
02BF		TEN MILE	R./DENVE	R SLUICE						· · · · · · · · · · · · · · · · · · ·	
linin	um Value:		•	1.						00000	
10	РН	BOD	DÔ	DO(%SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO	
1	7.740	1.300	8.800	69.000	0.000	36.600	890.000	0.230	6.410	0.160	
2	7.660	1.100	8.300	72.600	0.000	49.000	834.000	0.160	7.256	0.150	
3	7.860	0.700	8.500	71.900	2.600	37.000	755.000	0.012	7.660	0.230	
4	7.830	1.700	9.500	82,000	7.000	47.000	749.000	0.012	6.000	0.230	
5	7.820	2.400	9.200	88.000	10.000	46.000	610.000	0.012	4.444	0.260	
6	7.950	1.910	7.650	72.800	13.000	49.000	670.000	0.012	3.070	0.260	
7	7.530	1.600	4.000	42.000	16.000	47.000	500.000	0.015	2.055	0.250	
8	8.100	1.390	6.650	73.400	16.000	50.000	662.000	0.012	0.576	0.220	
9	7.620	1.250	3.700	9.200	12.000	44.000	650.000	0.012	0.250	0.310	
ō	7.550	0.950	5.950	64.000	5.000	39.800	710.000	0.012	3.700	0.200	
1	7.630	1.000	7.300	64.000	3.000	52.000	760.000	0.120	4.740	0.210	
2	7.630	0.500	7.200	57.200	1.500	52.000	760.000	0.223	6.210	0.270	

-

: .

T

,

17

1

1

1

1

.

.

•

Ely Ouse Demer Table 8

Maxim MO	nm Value: PH	BOD	DO	DO(&SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO
1	8.370	4.150	12.900	96.000	7.000	2055.600	1120.000	0.950	19.700	0.670
2	8.300	4.580	13.300	102.000	8.000	1411.600	1180.000	0.610	17.700	0.480
3	9.180	12.720	16.800	141.000	12.000	1462.800	931.000	0.310	12.300	0.400
4	9.080	16.060	19.400	178.000	16.000	1701.700	950.000	0.268	12.400	0.480
		11.960	17.700	179.000	17.500	925.840	1100.000	0.250	12.300	0.470
5	9.240	8.400	20.000	203.000	26.500	1411.700	895,000	0.366	8.200	0.500
6	9.210		19,100	227.000	24.000	1402.800	845,000	0.190	6.200	0.560
7	9.190	9.270	14,100	173.000	25.500	2087.200	940.000	0.166	8.300	0.760
8	9.010	10.900			20.000	2057.000	910.000	0.160	7.500	0.880
9	8.870	4.500	13,800	152.000		2403 800	1020.000	0.230	11.900	1.220
10	8.750	6.300	12,800	127.000	16.000	2493.600	1125 000	0.390	15.400	1.480
11	8.560	4.400	12.500	111.000	11.000	2403.000	1020.000	0.490	15.200	0.710
12	8.280	4.240	11,900	103.000	10.000	2294.000				
	56M13 - ge Value:	FLOOD RE	LIEF CHAN	NEL/SADDLEE	SOW BRIDGE					0.0.551/0
MO	PH	BOD	DO	DO(&SAL)	TEMP	CHLOR	CONDUCT	amm	TÓN	ORTHO
	7.995	2.418	10.943	85.289	4.370		1016.667	0.449	10.966	0.318
-	8.015	2.292	11.230		4.710	233.505	1035.833	0.334	11.951	0.324
2	8.201	3.557	11.936	102.561	8.528	294.463	882.800	0.174	9.362	0.278
3		5.851	13.225	120.430	11.005	256.610	846.875	0.090	8.832	0.267
4	8.437		12.745	125.245	14.318	209.185	768.000	0.054	6.915	0.234
5	8.547	7.451	11.761	130.820	18.182	226.927	723.562	0.114	5.027	0.244
6	8.499	4.415		107.556	20.719	206.256	693.562	0.087	4.212	0.365
7	8.417	3.759	9.581	111.800	19.386	443.609	759.375	0.049	3.317	0.419
8	8.573	4.322	10.190	103.925	16.333	356.917	772.722	0.079	3.960	0.550
9	8.380	3.052	9.844		12.275	600.732	783.750	0.072	4.627	0.668
10	8.292	2.746	9.741	93.870				0.141	6.908	0.800
11	8.165	2.408	9.771	82.503	7.735	480.386	931,500	0.296	9.078	0.505
12	7.999	2.471	10.092		6.000	327.778	931,500			
		FLOOD RE	LIEF CHAN	INEL/SADDLEI	SOW BRIDGE					
Minim MO	um Value: PH	BOD	DO	DO(%SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO
1	7.540	1.500	9.580	73.000	1.000	52.000	976.000	0.061	2.975	0.140
2	7.770	0.500	8.400	70.000	1.000	58.000	870.000	0.106	7.455	0.170
3	7.760	0.900	7.300	62.000	6.000	56.000	829.000	0.012	2.971	0.090
4	8.130	1.800	10.000	86.000	8.500	54.000	769.000	0.015	4.641	0.050
5	7,950	2.500	9.100	87.000	10.500	28.000	528.000	0.012	2.383	0.010
6	7.860	2.000	6.650	84.000	15.000	34.000	560.000	0.010	2.100	0.010
7	8.090	1.200	7.000	76.000	18.000	51.000	605.000	0.015	0.807	0.090
é	8.190	1.100	7.900	83.000	15.000	48.000	610.000	0.015	0.100	0.010
- Fi		1.600	6.700	65.200	12.000	46.000	692.000	0.010	0.250	0.250
	7.940	0.550	6.700		9.000	56.000		0.010	0.250	0.010
9	0 0 0 0	0.330		54.000		54.000		0.010	0.250	0.230
	8.050 7.760	0.700	6.100	49.000	4.000	54.000	//0.000	0.010	0.250	0.300

5

1 1

.

POZBES6M13 - FLOOD RELIEF CHANNEL/SADDLEBOW BRIDGE

Sa Relief Table 9 3 3

E

1

	RO2BF Maxim MO	um Value: PH	BOD	DO	DO(% SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO
			2.100	11.500	90.000	7,000	238.500	2430.000	0.696	14.400	-999.999
	1	8.300		12.300	99.100	7,000	208.000	2400.000	1.110	18.200	-999.999
	2	8.170	3.850			9.500	285.000	2180.000	1.010		-999.999
	3	8.510	6,900	13.350	109.000 123.000	11.500	349.000	2228.000	0.820		-999.999
	4	8.740	8.180	14.400		19.000	344.040		0.070		-999.999
	5	8,700	4.020	12.200	110.000	17.500	421.000	2170.000	0.238	12.600	-999.999
	6	8.720	20.360	13.700	130.300	25,500	547.000		0.292		-999.999
	7	8.980	10.300	14.400	169.000 85.000	19.000	596.690		0.270	6,600	-999.999
	8	8.690	8.150	8.100	86.400	14.000	759.000		0.058	2.420	-999.999
	9	8.310	7.160	9.300 10.200	99.000	16,000	544.500		1.000	12.100	-999.999
	10	8.450	8.000			10.000	233 200	2190.000	0.730		-999.999
	11	8.160	3.920	10.850	90.000 69.200	5.500	191.000	2340.000	0.610		-999.999
	12	8.280	2.350	8.700							
			- MIDDLE I	EVEL MD/W	IIGGENHALL S	ST GERMAN	PS				
	Avera MO	ge Value: PH	BOD	DÖ	DO(SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO
		8.200	1.450	10.080	81.160	6.100	186.980	2430.000	0.300	8.780	-999.999
	2	7.987	2.262	10.675	84.550	5.383	169.378	2236.667	0.517	12.613	-999.999
	3	8.226	3.168	11.470	94.280	6.800	206.719		0.244	8.108	-999.999
	4		5.220	11.308	97.333	8.667		1964.000	0.234	9.208	-999.999
	4 5	8.420	3.117	9.967	97.600	15.283		2160.000	0.038	4.669	-999.999
	-	8.453	7.788	9.850	99.000	15.700		1861.333	0.102	6.067	-999.999
	6	8.370		10.507	120.371	20.214		1805.000	0.111	1.265	-999.999
	7	8.323	6.419		76,900	18.300		1863.000	0.096	1.886	
	8	B.243	4.293	7.217	81.600	13.000		-999.999	0.051	1.335	
	9	8.100	4.505	8.600				1513.250	0,175		-999.999
	10	8.102	2.637	8.648	81.095	12.345 6.900		1835.000	0.270	4 4 2 9	-999.999
	11	7.954	2.422	8.210	67.000				0.354	5 475	-999.999
	12	8.015	2.075	8.250	65.100	5.250	1/7.800	2340.000			
			- MIDDLE	LEVEL MD/W	IGGENHALL S	ST GERMAN	PS				
	Minim MQ	um Value: PH	BOD	DÖ	DO(%SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO
1				9.300	76.700	5,000	140.400	2430.000	0.032	2.933	-999.999
	1 2	8.110 7.790	1.020 1.400	9.700	78.000	3.000	138.370	2140.000	0.012	4.176	-999.999
	2	7.850	2.060	9.700	80.000	5.000	156.100		0,012	5.248	-999.999
	4	7.960	2.800	9.000	73.000	6.000		1700.000	0.012	4.377	-999.999
	4 5	8.150	2,300	7.500	81.100	10.500	212.000		0.012	2.440	-999.999
	5	7.930	1.290	7.450	72.700	13.000	107.000		0.015	2,135	-999.999
			2.500	5,900	82.000	17.000		1490.000	0.025	0.050	-999.999
	7	7.960	2.300	4.900	53.000	17.500	129.000		0.040	0.100	-999.999
	8	7.920		7.900	76.800	12.000	144.000		0.044	0.250	
	9	7.890	1.850	7.200	65.000	8.800	119.000		0.012	0.601	
		7.630	1.000		50.000	3.000	135.000		0.100	2.473	
	10			5.600	-		164.600		0.097		-999.999
	10 11	7.460	1.400	9 000	£1 000						
. ,	10	7.460 7.750	1.800	7.800	61.000	5.000					
	10 11			7.800	61.000	5.000					
	10 11			7.800	61.000	5.000	104.000				

0	рн	BÓD	DO	DO(%SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO
1	8.230	3.150	14.500	105.000	6.000	62.687	792.000	0.486	11.800	0.105
2	8.330	2.020	15.550	121.000	9.000	44.918	755.000	0.280	10.200	0.090
3	8.450	5.760	15.100	134.000	11.000	58.000	714.000	0.162	10.000	0.070
4	8.570	6.000	18.200	173.000	14.000	49.000	730.000	0.150	9.500	0.060
ч 5	8.560	5.140	14.000	141.000	20.000	93.000	950.000	0.690	8.200	0.060
		4.000	23.200	258.000	27.000	40.200	614.000	0.120	6.600	0.120
6	8.590		13.400	147.700	21.000	39.000	950.000	0.400	6.100	0.060
7	8.370	3.700			25.500	94.000	606.000	0.052	5.500	0.040
8	8.630	4.000	13.000	145.000		80.000	762.000	0.190	6.200	1.050
9	8.520	4.400	15.200	145.000	20.000		697.000	0.180	8.400	0.360
0	8.500	5.360	12.500	120.000	16.500	49.230			10,500	0.130
1	8.190	2.250	12.100	101.000	11.000	68.000	719.000	0.250		0.120
2	8.170	3.200	12.500	97.000	11.000	55.000	810.000	0.450	9.400	
		R.NAR/BY	-PASS BRI	DGE KINGS L	YNN					
ivera 10	nge Value: PH	BOD	DO	DO(%SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO
		1.978	11.459	86.479	4.157	43.990	681.000	0.238	8.224	0.074
1	8.006		12.382	97.271	5.250	38.263	685.500	0.119	8.420	0.066
2	8.081	1.564			8.222	39.618	632.400	0.061	7.665	0.032
3	8.193	2.561	12.533	106.667		36.736	592.625	0.044	7.029	0.031
4	8.227	2.639	12.487	112.500	10.259		634.250	0.139	5.752	0.026
5	8.193	2.668	11.175	111.300	15.100	41.701	564.188	0.040	5.013	0.061
6	8.354	1.921	12.094	129.086	18.479	33.953	599.429	0.083		0.050
7	8.139	2.137	10.494	114.522	19.278	32.979 38.146	539.688	0.024	4.097	0.023
8	8.261	2.136	10.780	114.780	18.150 15.389	39.965	585.278	0.049	4.066	0.224
9	8.162	2.183 2.323	11.135 9.752	110.806 89.061	11,311	37.270		0.062	5.519	0.094
0	8.117		10.501	86.398	6.950	38.081		0.110	6.845	0.084
1	8.053	1.623			6.300	40.132		0.214	7.129	0.064
2 	8.002	1.785	10.670	85.400	6.300	40.132				
	58M11 - um Value:	R.NAR/BY	-PASS BRI	DGE KINGS L	YNN					4
0	PH PH	BOD	DO	DO(%SAL)	TEMP	CHLOR	CONDUCT	AMM	TON	ORTHO
1	7.820	1.450	7.500	58.800	2.000	32.000	648.000	0.060	7.167	0.050
2	7.760	0.800	10.100	84.000	3.000	34.000	625.000	0.015	6.880	0.030
3	7.910	0.800	10.000	86.000	6.000	32.000	572.000	0.012	5.305	0.010
4	7.890	1.300	9.300	75.000	6.000	29.000	535.000	0.012	4.827	0.010
5	8.080	2.200	9.250	88.000	12.000	30.000	535.000	0.012	4.065	0.010
5 6	7.970	0.700	4.450	43.000	13.500	28.000	515.000	0.012	0.863	0.010
р 7	7.390	1.100	6.700	71.000	18.000	28.000	491.000	0.012	1.346	0.020
8	7.980	1.000	7.500	75.000	14.000	28.000	492.000	0.02	1.094	0.010
9 9	7.790	1,000	6.000	64.000	9.000	31.000	510.000	0.0.0	0.974	0.010
0	7.860	1.190	7.189	67.400	7.000	29.000	520.000	0.02	3.711	0.020
	7.840	1.144	7 180	56 000	4.600		572.000	0.025		0.040
1	7.720	11988	7:159	56.000 51.700	4,500 0.500	26.000	614.000	0.025	5,480	0.010

÷ •

:.

ŗ

River Nar Kings Lyn Bypass Table 11

1.

		Mo	onth	
	January	April	Juły	October
Water temperature (°C)	4.2	9.8	19.2	11.8
Sea water quality		-		
BOD (mg/l) ammonia (mg/l) oxidized nitrogen (mg/l) dissolved ozygen (% sat)	2.2 0.13 0.50 91	2.2 0.05 0.50 91	2.2 0.06 0.50 85	2.2 0.14 0.50 86

SEAWATER QUALITY AND WATER TEMPERATURE USED FOR WATER QUALITY MODELLING

TABLE 13

HYDROLOGICAL CONDITIONS USED FOR WATER QUALITY MODELLING

		Мо	oth	
	January	April	July	October
Drought conditions (year)	1991	1973	1990	1989
Ely Ouse-Denver Sluice	6.33	7.50	0.6	1.43
Ely Ouse-Tail Sluice	2.00	0.0	0.7	2.25
Bedford Ouse	9.1	3.8	2.3	2.5
Middle Level	1.0	0.6	0.0	1.3
River Nar	0.6	0.8	0.3	0.4
Dry conditions (year)	1992	1990	1989	1985
Ely Ouse-Denver Sluice	13.24	10.82	2.30	0.62
Ely Ouse-Tail Sluice	0.24	0.14	1.75	4.48
Bedford Ouse	19.2	6.3	3.4	4.0
Middle Level	1.4	0.0	0.2	1.0
River Nar	0.5	0.9	0.5	0.7
Average conditions				
Ely Ouse-Denver Sluice	10.9	11.2	5.1	6.2
Ely Ouse-Tail Sluice	1 6.5	8.9	⁻ 2.0	4.3
Bedford Ouse	25.5	17.6	4.1	7.9
Middle Level	5.9	3.3	0.9	2.0
River Nar	1.5	1.5	0.8	0.8

Denver

1

EFFLUENT FLOWS

Source	Flow Mld
Kings Lynn STW	53.1 (26.0)+
Watlington STW	0.75
British Sugar	3.0*
Dow Chemical	2.0
Porvair	0.4

* Discharge limited to September to February

+ Sensitivity test

1

TABLE 15

EFFECT OF ELY OUSE FLOW ON GREAT OUSE ESTUARY WATER QUALITY

Ely Ouse flow temd	Month	Model test	Minimum DO % sat	Maximum ammonia mg/l
318•	January	9	70.31	0.52
112	January	10	68.05	0.53
50	January	13	67.30	0.54
0	January	17	66.65	0.54
112•	April	11	70.07	0.46
50	April	14	69.37	0.48
0	April	18	68.83	0.50
112•	July	3	52.58	0.63
50	July	15	52.02	0.66
0	Juty	19	51.44	0.69
318•	October	4	53.68	0.45
112	October	12	51.18	0.51
50	October	16	49.91	0.54
· 0	October	20	48.50	0.56

All runs assume 'drought' flows given in Table 12 and the effluent flows given in Table 13. *Current Denver minimum residual flow

Denver

	Predicted change as % of current MRF predicted water quality									
Proposed MRF at Deaver	January	April	July	October						
112 tcmd (constant) dissolved oxygen ammonia	-3.21 +1.9	0 0	0	-4.66 +13.3						
50 temd (constant) dissolved oxygen ammonia	-4.28 +3.8		-1.07 +4.8	-7.02 +20.0						
0 tcmd (constant) dissolved oxygen ammonia	-5.21 +3.8	-1.77 +8.7	-2.17 +9.5	-9.65 +24.4						

TABLE 17

SENSITIVITY OF ESTUARY WATER QUALITY TO ELY OUSE DISCHARGE LOCATION

Model test	Ely Ouse discharge site	Month	Ely Ouse flow temd	Minimum DO % sat	Maximum ammonia mg/1
11	Tail Sluice	April	112	70.1	0.46
25	Denver Sluice	April	112	69.9	0.46
15	Tail Sluice	July	50	52.0	0.66
26	Denver Sluice	July	50	51.9	0.66
12	Tail Sluice	October	112	51.2	0.51
27	Denver Sluice	October	112	50.7	0.51

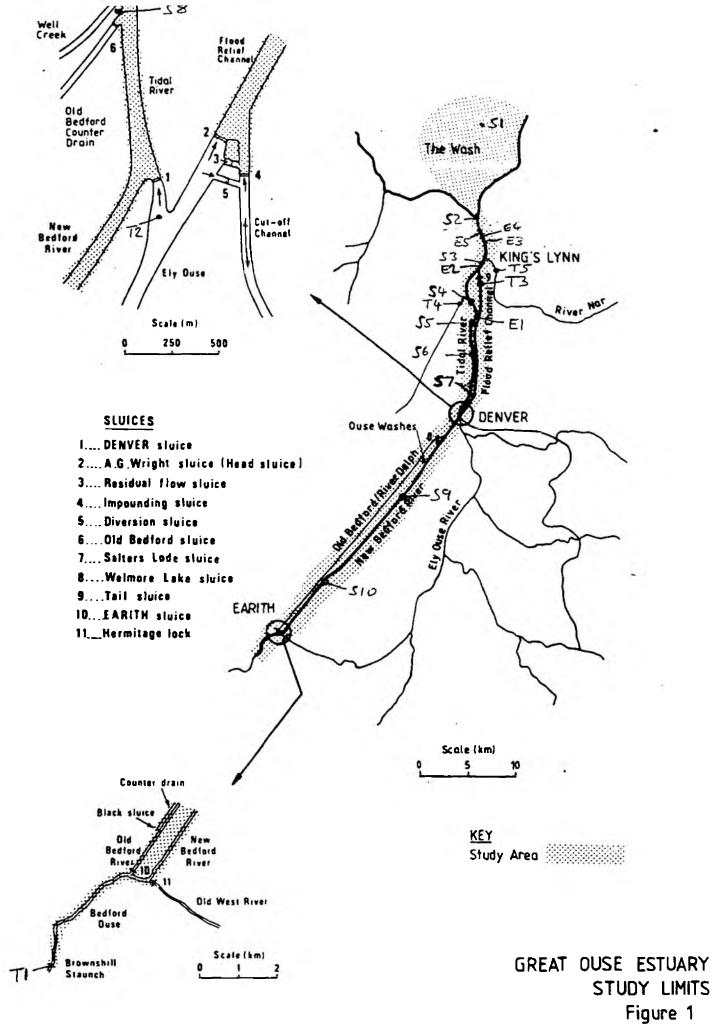

All tests for 'drought' flows in other tributaries

TABLE 18

EFFECT OF BALANCE BETWEEN BEDFORD OUSE AND ELY OUSE FLOWS ON ESTUARY WATER QUALITY

Run	Month	Total freshwater flow m ³ /s	Ely Ouse proportion %	Minimum DO % sat	Maximum ammonia mg/l
2	April	19.67	38.1	74.2	0.39
6	April	18.80	58.3	75.8	0.30
8	October	11.47	44.5	53.6	0.43
24	October	10.05	36.6	54.8	0.42

1

BINNIE PARTNERS 4134 Job number 1 1 Calc. sheet no. Rev. Job name Drawings nos. Denver MRF Estuary Water Quality DO % sat Structure Calculations by Date 12/93 Due Checked by Date 1 1 Section Reviewed by Date 1 1 Rides Sugar Kange Light Stu ¢0 94 Mean . 30 2.5 Dusdied Ox gen 70 X Saturation 5%2e 7 50 5 0 30 30 30 Distance of Desire (box Laure

1

Form 215A

BINNIE ZPARTNERS Job number 4134 Caic. sheet no. 1 1 Rev. Job name Dewer MRF Drawings nos. Estrony Water Quality Structure Calculations by Der Date 12 183 J Checked by Date 1 1 Section Reviewed by BOD Date 1 1 Rode **1**2. 2 Kens (20 59 dain 70 2 6.0 5.0 BoD my/t 40. VII 2 george may IJ. 3.7 20 1.5 Đ. Đ. 30 80 10 NIO 20 FO Distrument of I Domores (born) ALLO O

U

BINNIE PARTNERS Job number 4134 1 Rev. Calc. sheet no. 1 Job name Drawings nos. Denver MRF Structure Estuary water Quality Annonia Calculations by Due Date 412193 Checked by Date 1 1 Reviewed by Section Date 1 1 5.9 لالم مركبو توكي 0.8 on? OIL 74 H 95% de. 015 0.1 01 YPAN Ø.T 10 70 -20 ð 20 Distance dis Demonson (bas Figure 4

BINNIE ZPARTNERS Job number 4134 1 Calc. sheet no. 1 Rev. Denver MRF Estrang Water Quelity Nulicent Concertantions Job name Drawings nos. Structure Calculations by DukDate 412192 Checked by Cate 1 1 Section Reviewed by Date 1 1 2.0 Beat mat Ouse 20 Oxid red Vittores 7.0 Chlorida . Curre 60 120 Networt mentration teral la 6-0 666 13 + 20 - Bedfor Guss , Arthophophots @ EL OME 29 10 ø 0 10 qa 10 +10 120 10 Detaue of Dener kon Figure S

Form 215A

BINNIE ZPARTNERS Job number 4134 1 Calc. sheet no. 1 Rev. Job name Drawings nos. Draver MRF Esterang Water Quality E Coli Isunden Structure Calculations by Date 17 193 Duc Ĵ Checked by Date 1 1 Reviewed by Section Date 1 1 Wetlington Kiras (...... Stal THE 30 26 20 1 31. 1624 Coll 100 1000/topal 10 71 Dixingent All Restart (BRA Form 215A

0

-

-

X

11 1

-

- 114

1

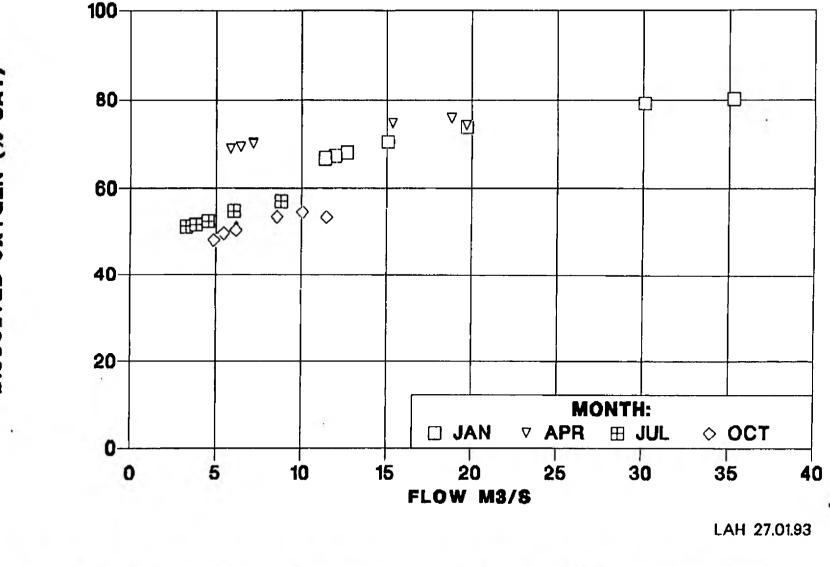
Π

. .

Γ

Π

Π


-

-

MINIMUM DISSOLVED OXYGEN (% SAT)

1 1

BASED ON NRA WATER QUALITY MODEL

DISSOLVED OXYGEN (% SAT)

Se Co

Preduc

Figure

innie DHIL Jrrey		iers		A Station River Station	 no.	DAILY	DISSOL	VED OXY TIDAL FREEBR	RIVER -			DOFREE 06-Jar	
	Level Station	type	-	SLACION M				Grid r Author	ef.		NRA_AN	GLIAN	
							1991 -						
Date 	Aug	Sep	Oct	Nov	Dec	Jan	Feb		• • • • • • • •		Jun	Ju] 	Dat
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31			72.7 70.3 72.2 62.7 58.4 55.5 56.1 57.0 54.1 51.7 52.2 45.6 33.9 22.5 32.5 67.9 73.7 65.6 64.6 62.1 60.4 60.0 59.8 60.6 62.6 59.7 55.0 56.5 60.2 59.9 65.0					67.7 67.3 68.8 70.8 69.4 70.7 70.4 70.0 67.9 68.1 64.1 67.1 66.6 62.3 62.6 65.3 68.2 63.7 57.7 56.8 56.3 55.3 54.8 54.5 53.9 51.3 56.6 60.0 59.2 59.5	61.5 68.7 69.3 69.3 69.3 71.9 75.4 77.5 80.9 82.2 78.3 74.6 77.2 68.2 69.9 73.6 77.2 78.5 77.1 77.1 80.7 84.2 83.3 84.6 80.1 74.8 74.4	69.9 72.2 76.5 78.3 77.9 84.4 82.7 75.1 73.1 75.9 79.7 84.7 91.7 84.7 91.7 84.7 91.7 84.3 86.4 88.4 88.4 86.3 86.3 86.3 86.3 86.3 85.7 87.4 91.1 79.2 73.7 69.5	57.8 58.3 59.0 67.4 71.3 65.9 60.5 56.9 60.5 56.9 60.5 56.9	60.2 50.6 48.0 59.8 63.6 56.7 43.6	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
	y values O O.O	0	31 1791.0		0	0	0	31 1948.6	30 2239 7	31 2472 6	16	31 1720 2	n Tota
ean (.).		-	57.77	-	-	-	-	62.86 70.80	74.62 84.59	79.76 91.74	62.71	55.49 74.20	Mean Max.
n Sual	values 65.7 (%					Max	(91.7))(%)	•	- Min	22.5	(%)	

1

.

[™] Binnie ™DHIL	e & Partn	ers	i.	DISSOLVE	D OXYG		BLE UREMENT		THAN 5()% (Hour		DOFREE 06-Jan	1002
Jrrey				Station River Station				TIDAL R FREEBRI		OUSE		oo-Jan	1992
	Level Station	t y pe	-	n	1			Grid re Authori		1	NRA ANG	GLIAN	
						YEAR	1991 -	1992					
Date	Aug	Sep	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Date
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\-11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\-21\\22\\23\\24\\25\\26\\27\\-28\\29\\30\\31\end{array} $			$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.3\\ 3.3\\ 5.0\\ 4.3\\ 10.5\\ 11.8\\ 12.0\\ 16.0\\ 23.3\\ 24.0\\ 19.5\\ 4.5\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$					0.00 0.00	0.00 0.00	0.00 0.50 3.50 1.25	10.25 8.00 11.00 8.00 0.25 0.50 3.25 2.75 2.75 2.75 2.50 2.25 0.50 0.75 1.75 5.50	7.50 1.75 11.00 14.00 2.00 0.50 2.75 21.50 22.50 24.00 18.75 19.75 19.75 19.50 17.50 16.75 14.25 8.00 11.50 16.75 13.00 9.50 7.75 6.00 1.25 1.00 1.00 4.25 6.00 8.25	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	ly values	•				 ^					••••••		
n otal Mean Max. _iin.	0 0.0 - -	0 0.0 -	31 186.0 6.00 24.00 0.00	0 0.0 - - -	0 0.0 - - -	0 0 - - -	0 0.0 - -	31 7.8 0.25 6.75 0.00	30 0.0 0.00 0.00 0.00	31 6.8 0.22 3.50 0.00	14 57.3 4.09 11.00 0.25	31 347.5 11.21 24.00 0.50	Max
Annua lean	1 values 3.6 (H	RS)				Max	(24.0)	(HRS)	;	Min	0.0	(HRS)	

rey				Station River Station		-	-	TIDAL RI FREEBRII		DUSE		05-Feb	
	evel ation	type	-	ព	I			Grid rei Authorii		:	NRA ANG	LIAN	
						YEAR]	991 -	1992					
ate	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Da
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 - 21			0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 7.8 7.8 11.8 20.8 23.8 18.8 4.3 0.0 0.0 0.0 0.0 0.0 0.0					$\begin{array}{c} 0.00\\$	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.00 4.25 5.25 0.25 0.25 2.50 1.25	4.00 0.75 6.75 10.50 0.25 0.25 1.00 14.00 18.75 23.00 16.75 16.25 14.75 16.00 17.25 12.75 14.00 8.25 3.75 5.50	
21 22 23 24 25 26 27 28 29 30 31			0.0 0.8 1.8 1.0 3.0 5.5 5.5 0.0 0.8 1.8					0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 1.50 0.00 0.25 2.50 1.25	0.50 0.25 0.00 0.25 0.75 1.25	11.75 8.00 6.00 4.25 3.00 1.00 0.25 1.00 3.25 4.50 7.50	2 2 2 2 2 2 2 2 2 2 2
nthly n tal an x. n.	va Tues 0 0.0 - -	0.0	31 117.3	0 0.0 - - -	0 0.0 - -	0 0 - -	0 0.0 - -		30 0.0 0.00 0.00 0.00	31 5.5 0.18 2.50 0.00	1.77	31 255.0 8.23 23.00 0.25	Mea Max

.

.

1

-

-

-

∏ Binnie P∽DHIL	e & Partr	ners		DISSOLVED	OXYG	T. EN MEAS	ABLE	E A4 TS LESS	than 30	% (Hour	s)	DOFREE	1000
s rrey				Station r	10.	4						06-Jan	1992
				River Station N	lame	-		TIDAL R FREEBRI	IVER - DGE	OUSE			
	Level Station	type	:	ល				Grid re Authori		-	NRA ANG	LIAN	
						YEAR	1991 -	1992					
Uate	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Ju 1	Date
1 2 3 4			0.0 0.0 0.0 0.0					0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.25	1 2 3 4
5 6 7 8 9			0.0 0.0 0.0 0.0					0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.25	5 6 7 8
9 10 11 			0.0 0.0 0.0 1.0 9.8					0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		0.75 2.75 6.50 2.00 0.75	9 10 11 12 13
14 15 16 17 18 19			20.0 13.3 2.3 0.0 0.0 0.0					0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00		0.75 0.50 0.25 1.25 0.25 0.00	13 14 15 16 17 18 19
20 21 22 23 24 25			0.0 0.0 0.0 0.0 0.0 0.0					0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00	0.00 1.00 0.00 1.50 0.75 0.50	20 21 22 23 24 25
26 27 _28 29 30 31			0.0 0.0 0.0 0.0 0.0 0.0					0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 1.50 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.75	0.00 0.00 2.25 0.50 2.50	26 27, 28 29 30 31
	ly values							• • • • • • • • • •					
n ital hean Max.	0 0.0 - -		31 46.4 1.50 20.00	0 0.0 - -	0 0.0 - -	0 0 - -	0 0.0 - -	31 0.0 0.00 0.00	0.0 0.00 0.00	31 1.5 0.05 1.50	14 0.8 0.05 0.75	0.81 6.50	Max.
1_n.	-		0.00	-	- 	-	_ 	0.00	0.00	0.00	0.00	0.00	Min.
Annua] I'ian	values 0.4 (!	HRS)				Max	(20.0)) (HRS)	•	Min	0 0	(405)	

11

.

TABLE B1

				Ely Ouse flow m ³ /s	
Test No	Туре	Month	Tributaries	Denver Sluice	Tail Stuice
1	Natural flow	January	Drought	6.33	2.00
2	'n	April	Drought	7.50	00.0
3	*	July	Drought	0.60	0.70
4		October	Drought	1.43	2.25
5	n	January	Dry	13.24	0.24
6	м	April	Dry	10.82	0.14
7	-	July	Dry	2.30	1.75
8		October	Dry	0.62	4.48
9	mrf 318 tcmd	January	Drought	1.68	2.00
10	mrf 112 tcmd	January	Drought	0	1.30
11	-	April	Drought	0	1.30
12	"	October	Drought	0	1.30
13	mrf 50 tcmd	January	Drought	0	0.58
14	-	April	Drought	0	0.58
15		Juty	Drought	0	0.58
16		October	Drought	0	0.58
17	mrf 0 tcmd	January	Drought	0	0
18		April	Drought	0	0
19	-	July	Drought	0	0
20	*	October	Drought	0	0
21	Offord sensitivity	Јапцагу	Dry	6.33	2.00
22	41	April	Dry	7.50	0.00
23	*	July	Dry	0.60	0.70
24		October	Dry	1.43	2.25
25	Discharge sensitivity	April	Drought	1.30	0
26	*	July	Drought	0.58	0
27	= ? =	October	Drought	1.30	0
28	Natural	January	Average	10.9	16.5
29		April	Average	11.2	8.9
30	•	July	Average	5.1	2.0
31		October	Average	6.2	4.3
32	Kings Lynn stw sen.	January	Drought	0	1.30
33		April	Drought	0	1.30
34	•	July	Drought	0.60	0.70
35	-	October	Drought	0	1.30

GREAT OUSE ESTUARY WATER QUALITY MODEL TEST CONDITIONS

Tributary flows are based on the river flows in Table 13. Ely Ouse flows use historic division between Denver Sluice and Tail Sluice. Kirtling Green flows have been added to Denver Sluice.

Denver

1

TABLE B2

Test No	Minimum DO (% sat)	Marimum BOD (mg/l)	Maximum Ammonia (mg/l)
1	73.87	5.54	0.51
2	74.18	4.84	0.39
3	52.58	3.40	0.63
4	53.68	5.20	0.45
5	80.20	4.73	0.48
6	75.81	4.83	0.30
7	57.20	3.67	0.48
8	53.61	5.25	0.43
9	70.31	5.84	0.52
10	68.05	6.03	0.53
11	70.07	4.65	0.46
12	51.18	5.36	0.51
13	67.30	6.09	0.54
14	69.37	4.49	0.48
15	52.02	3.31	0.66
16	49.91	5.36	0.54
17	66.65	6.13	0.54
18	68.83	4.35	0.50
19	51.44	3.15	0.69
20	48.50	5.35	0.56
21	79.16	4.96	0.47
22	74.72	4.79	0.35
23	54.87	3.51	0.55
24	54.77	5.15	0.42
25	69.94	4.44	0.46
26	51.87	3.30	0.66
27	50.72	5.34	0.51

GREAT OUSE ESTUARY WATER QUALITY MODEL TEST RESULTS

Denver

MANAGEMENT AND CONTACTS:

The Environment Agency delivers a service to its customers, with the emphasis on authority and accountability at the most local level possible. It aims to be cost-effective and efficient and to offer the best service and value for money.

Head Office is responsible for overall policy and relationships with national bodies including government.

Rivers House, Waterside Drive, Aztec West, Almondsbury, Bristol BS12 4UD Tel: 01454 624 400 Fax: 01454 624 409

ENVIRONMENT AGENCY REGIONAL OFFICES

ANGLIAN Kingfisher House Goldhay Way Orton Goldhay Peterborough PE2 5ZR Tel: 01733 371 811 Fax: 01733 231 840

21 Park Square South

Tel: 0113 244 0191

Fax: 0113 246 1889

Richard Fairclough House

Warrington WA4 1HG

550 Streetsbrook Road Solihull B91 1QT

Tel: 0121 711 2324 Fax: 0121 711 5824

Tel: 01925 653 999

Fax: 01925 415 961

NORTH EAST

Rivers House

Leeds LS1 2QG

NORTH WEST

Knutsford Road

MIDLANDS

Sapphire East

SOUTHERN Guildbourne House Chatsworth Road Worthing West Sussex BN11 1LD Tel: 01903 820 692 Fax: 01903 821 832

SOUTH WEST Manley House Kestrel Way Exeter EX2 7LQ Tel: 01392 444 000 Fax: 01392 444 238

THAMES

Kings Meadow House Kings Meadow Road Reading RG1 8DQ Tel: 01734 535 000 Fax: 01734 500 388

WELSH

Rivers House/Plas-yr-Afon St. Mellons Business Park St. Mellons Cardiff CF3 0LT Tel: 01222 770 088 Fax: 01222 798 555

The 24-hour emergency hotline number for reporting all environmental incidents relating to air, land and water

ENVIRONMENT AGENCY EMERGENCY HOTLINE 0800 80 70 60

Printed on Cyclus - a 100% recycled TCF paper