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EXECUTIVE SUMMARY

I BENEFITS

Potential benefits arise from obtaining a useful surrogate for BOD and suspended solids which
can be used for continuous monitoring. This raises the possibility of a low-cost mass screening
system for sewage effluents.

I OBJECTIVES

The objectives were to develop the optimal algorithm for transforming hand-held meter data
into predictions for BOD and suspended solids for sewage effluents, and to provide an estimate
of the reliability of such predictions.

m REASONS

The Environment Agency has a requirement to identify instrumentation for the continuous
monitoring of determinands involved in discharge consents, particularly BOD, suspended solids
and ammonia. BOD and suspended solids are not compatible with continuous monitoring so
the emphasis is on identifying surrogate parameters.

v CONCLUSIONS

Non-constant variance and the presence of outliers in the data make ordinary least squares
regression methodology unreliable because the assumptions necessary for its application are no
longer satisfied. It is not clear at present which of several alternatives is the most useful. In any
case, a log-transformed model relating BOD to turbidity for sewage treatment works appears
more appropriate than a simple model. For the relationship between suspended solids and
turbidity, the simple model appears more appropriate.

The confidence limits for predictions from the fitted model are rather wide, but they can be
narrowed by restricting the model to low values of turbidity and by introducing other
explanatory variables. The fitted coefficients varied from region to region and also between
different types of STW.

\% RECOMMENDATIONS

A universal relationship between BOD and turbidity does not exist, but it may be possible to
find relationships that can be applied locally for a given type of STW. However, this report has
not examined whether the relationship is different at different single STWs nor whether the
relationship is stable over time either within a single type of works or across a region. These
possibilities should now be investigated.

VI RESUME OF CONTENTS

Data sets giving turbidity observations from hand-held meters used in the field and BOD
observations based on laboratory analysis were provided by five regions. Two other regions
provided laboratory observations for turbidity and a number of other determinands.
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The relationships between BOD and field turbidity were first investigated using the traditional
method, ordinary least squares regression. Because the variance of BOD increases with
increased turbidity, a log transformation was found to be more appropriate. Because of the log
transformation, confidence limits on predicted values of BOD are multiplicative. The upper
95% confidence limits on predicted BOD were on average about 4.3 times more than the
predicted value and the lower 95% limits were about 4.3 times less than the predicted value -
i.e. the precision factor was about 4.3. The lines of best fit were significantly different for the
different regions.

Different types of STW were also found to have different slopes. Fitting different models to
each type of STW within each region improved the precision factor to an average of 3.3.

BOD was also regressed on laboratory turbidity for the two regions. It was observed that the
goodness of fit of the regression line improved when turbidity was restricted to values less than
thirty NTU. Further improvements could be made to the model by introducing various other

determinands, specifically ammonia, suspended solids chloride, pH, phosphate and TON. The
- coefficient for TON in North West Region was not significantly different from zero.

Various other methods of line fitting were examined to overcome problems arising from
departures from the assumptions of the ordinary least squares - in particular, the presence of
outliers and the absence of constant variance. These more robust methods were considered to
be more reliable and less likely to be influenced by one or two extreme points.

Comparisons were made between a number of different turbidity instruments for a number of
sewage effluents.

KEY WORDS

BOD, turbidity, field monitoring
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1. INTRODUCTION

1.1 Background

The Environment Agency has a requirement to identify instrumentation for the continuous
monitoring of determinands, in particular BOD, suspended solids and ammonia, involved in
discharge consents. This project has concentrated on instrumentation for monitoring BOD and,
to a lesser extent, suspended solids. In practice, neither determinand is compatible with
continuous monitoring and so the emphasis has been on identifying surrogate parameters
which track BOD and suspended solids and which are also compatible for continuous
monitoring.

Phase 1 of this project established that turbidity correlated well with BOD for sewage effluents
although not for trade effluents or river water, and with suspended solids for all three types of
samples. Turbidity measurement can be provided by hand-held meters, which are used widely
in the Environment Agency, giving rise to the possibility that a low-cost mass screening system
for sewage effluent could be developed. There was also some indication that other water
quality determinands measured together with turbidity on hand-held meters (principally
ammonia) improved the correlation with effluent BOD. A considerable amount of relevant data
exists in a variety of files within the Environment Agency.

1.2 Objectives

The objective of Phase 2 was to develop the optimal algorithm for transforming hand-held
meter information into predictions for BOD and suspended solids for sewage effluents and to
provide an estimate of the reliability of such predictions in terms of confidence limits.

This was to be achieved using an in-depth knowledge of correlation and other relevant
statistical techniques and an appreciation of current advances in chemometrics. The
relationships were to be examined to determine whether they could be improved by splitting
the data into subsets, based on the type and size of sewage works.

R&D Technical Report E42 3



R&D Technical Report E42



2. EXPLORATORY DATA ANALYSIS

2.1 Source of data

Five regions - Northumbria & Yorkshire, Southern, South Western, Thames, and Welsh -
provided data sets giving turbidity observations from hand-held monitors used on-site and
BOD results based on laboratory analysis. Two further data sets, from North West and
Midland regions respectively, contained laboratory-based measurements of STW effluent
samples for turbidity, ammonia, BOD, SS, phosphate and TON. In addition, the Midland
region data set contained measurements for chloride and pH.

2.2 BOD and field turbidity

Initially, graphical methods were used to investigate the plausibility of a linear relationship
between BOD and field turbidity, and to examine whether the variance was constant
throughout the range of the data. Constant variance (otherwise known as homoscedasticity) is
required to satisfy the assumptions of ordinary least squares (OLS) linear regression analysis.
Where this condition is not justified, transformation of the data is sometimes used to stabilise
the variance before applying OLS regression. Alternatively, some other, more robust, method
can be used to fit the best straight line to the data.

Figures 2.1 to 2.5 show scatter plots of BOD against field turbidity for the five sets of data
using hand-held meters, i.e. for Northumbria & Yorkshire, Southern, South Western, Thames
and Welsh regions. In these graphs, any values of turbidity recorded as zero have been
converted to 0.1 so that they can be plotted on a logarithmic scale. Also, any BOD which was
recorded as a less-than value has been replaced by half the recorded face value, e.g. <3 has
been plotted at 1.5.

In each figure, there are four graphs, one in each quadrant of the page. In each upper left
quadrant is a simple scatter graph of all the available data. In all five figures, the graph reveals
that the mass of points is concentrated close to the origin with just a few very high values. This
means that most values of BOD and turbidity are small compared with the range, and many
points are plotted on top of others.

In each upper right quadrant, the scatter of data points is plotted on a log scale. The
logarithmic transformation has the effect of spreading out the lower values and bringing down
the higher ones. Therefore, this graph enables more of the pattern among the low values to be
discerned. In each region, the graph reveals a positive correlation between log BOD and log
turbidity. Note that in all five figures, there is a reasonably constant vertical spread of log BOD
throughout the range of log turbidity.

The mass of points near zero is revealed in more detail in the graph in the lower left quadrant
where both the BOD and the turbidity axes are once more plotted on linear scales but both
axes have been truncated at 30 NTU. The graphs reveal a strong positive correlation between
BOD and turbidity, but there is evidence that the variability in BOD increases with increasing
turbidity.
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Finally, the graph in the lower right quadrant displays all the points not plotted in the lower left
quadrant, again on linear scales. These graphs illustrate that, occasionally, very high turbidity
was recorded at relatively low BOD and very high BOD was recorded at relatively low
turbidity. There were no occasions on which very high turbidity and very high BOD occurred
together. It is conceivable that these high values were caused by lapses in recording or analysis.
However, without confirmation of this, it was considered unsafe to discard these potential
outliers from the statistical analysis. Instead, they were taken to be rare but valid members of
the joint distribution of BOD and turbidity.

2.3 SS and field turbidity

Suspended solids data was available only for Thames Region. Figure 2.6 shows the same four
scatter graphs as used for turbidity. The great mass of SS values lie between 0 and 10 but the
range extended as far as 176 with quite a large number of values over 30. There is a strong
positive correlation between SS and turbidity but the vertical scatter does not seem to widen
with increasing turbidity when the graphs are plotted on linear scales. In fact, the graph on the
logarithmic scales appears to have greater scatter at lower turbidity.

24 Conclusions from data exploration

The BOD graphs indicate that transforming BOD and turbidity by taking logs stabilises the
variance in BOD throughout the range of turbidity. It is therefore worthwhile performing
regression analysis of log BOD on log turbidity rather than BOD on turbidity. A possible
alternative is to trim the data by removing the very high values of BOD and turbidity.
However, the graphs of the trimmed data in the lower left quadrants of Figures 2.1 to 2.5 show
that the variance is not stable even after trimming,

The SS graphs in Figure 2.6 suggest that a linear relationship exists between SS and turbidity
and that log transformation is unnecessary.
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3. USING FIELD TURBIDITY TO PREDICT BOD AND SS
BY MEANS OF OLS REGRESSION

3.1 Introduction

Using the insight gained from the exploratory data analysis described in Section 2, it was
decided to transform the data by taking logs (to base 10) when modelling the relationship
between BOD and turbidity but not to transform for SS and turbidity. Ordinary least squares
(OLS) regression was used to estimate the parameters of linear models relating:

¢ log BOD to log turbidity;
e SS to turbidity.
The results are shown in Table 3.1 and described in the following three subsections. When

performing the regression analysis, any observations with zero turbidity were excluded and any
BOD values recorded as less than the limit of detection were set to half the limit of detection.

Table 3.1- Summary statistics for seven regression models (with standard errors)

Region Slope Intercept Sam- Residual Precision Precision.
estimate estimate ples s.d. zs factor
b a n s 10**
with with
standard standard
error error

log;o BOD log;o turbidity

Northumbria & Yorkshire 0.486 0.531 88 0.315 0.617 4.14
0.078 0.081

N&Y trimmed 0.450 0.523 82 0.233 0.456 2.86
0.090 0.085

Southern 0.447 0.377 209 0.330 0.646 443
0.042 0.041

South Western 0.830 0.128 265 0.311 0.610 4.08
0.043 0.043

Thames 0.481 0.296 237 0.509 0.998 9.96
0.069 0.066

Thames excl. non-STWs 0.684 0.306 167 0.370 0.724 5.23
0.059 0.054

Welsh 0.664 0.090 61 0.320 0.627 423
0.110 0.126

SS turbidity

Thames 1.069 6.338 274 9.767 19.14 NA
0.035 0.697
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3.2 BOD in Northumbria & Yorkshire region

In this subsection, we present the regression results for Northumbria & Yorkshire Region in
some detail. The results for the other regions are summarised in the next subsection.

The coefficients relating log BOD to log turbidity for Northumbria & Yorkshire Region are
shown in Table 3.1. The fitted relationship is:

log BOD = 0.486 (log turbidity) + 0.531

This line is shown as the central line drawn through the scatter plot of log BOD versus log
turbidity in the upper graph in Figure 3.1.

The lines on either side of the central line show the 95% confidence interval for predicting
future values of log BOD. These are obtained (to a close approximation) by adding and
subtracting the precision (based on 95% confidence) z.s, where s is the residual standard
deviation about the regression line and z = 1.96, which is the value of the deviate that cuts
2.5% from each tail of the standard Normal distribution.

Let us take an example to illustrate how we might use these results. Suppose we have a field
turbidity value of 5 NTU, then our best estimate of log BOD is obtained by calculating

log BOD = 0.486 (log 5) + 0.531 = 0.871
So our estimate of BOD is 10°%"! which is 7.43.

Then, 95% confidence limits on the estimate of log BOD are given by adding and subtracting
the precision, z.s, which is 0.617. Thus, 95% confidence limits for log BOD are

0.871 £0.617 = (0.254, 1.488).

Taking antilogs of these values, we get the 95% confidence limits on BOD which are
(1.79, 30.76). Alternatively, we can obtain confidence limits directly from our estimate of BOD
(i.e. 7.43) if we divide and multiply it by the antilog of the precision (10°¢' = 4.14) to get 1.79
and 30.76, respectively. We shall call this factor (4.14 in this example) the ‘precision factor’.
Note that in Table 3.1, the precision factors are typically around 4.3.

The lower graph in Figure 3.1 provides the same information as the upper graph except that it
uses linear axes and it is drawn only for values of turbidity less than 50 NTU. Note how the
straight lines in the upper graph become curves in the lower one and how additive confidence
bands on the log scales translate into multiplicative confidence bands on the linear scales.
Although the central fitted line looks reasonable in both graphs, the confidence intervals appear
rather wider than indicated by the data at lower values of turbidity. The exaggerated width is
caused by the higher variation in the BOD values about the regression line at the higher values
of turbidity.

To try to overcome this problem, we decided to trim the data by limiting turbidity to values
less than 30 NTU and to values above zero (remember, the zero value were plotted at 0.1 on
the log scale). We also removed the high BOD reading at a turbidity of 25. The deleted points
are shown as solid circles in the upper graph in Figure 3.2, which also shows the regression line
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fitted to the trimmed data. Note that the fitted line is virtually unchanged but the confidence
intervals are considerably narrower, particularly in the central part of the graph. The precision
factor was reduced from 4.14 to 2.86.

Although trimming the data improved the width of the confidence interval, data manipulation
such as this must be justified. It is quite acceptable to restrict the use of the model for
prediction to values of turbidity less than 30 NTU. However, it is difficult to justify the
removal of any high BOD values within this limited turbidity range without corroborative
evidence explaining why the alleged outliers were atypical. For example, they may have arisen
by some mistake in the chemical analysis or in data transcription or by some unusual
occurrence in the effluent. Such corroboration would have to be based on local knowledge.

33 BOD in the other four regions

For the data from the other four regions, Table 3.1 shows that the precision factors are in the
range 4.08 to 4.43 except for Thames Region which has a factor of approximately 10. The
wide Thames interval is largely due to the presence of 63 data points not from sewage
treatment works. When these are removed from the regression, the precision factor is reduced
to a value of 5.23 and the residual standard deviation is also brought into line with the other
regions.

Figures 3.3 to 3.6 show the fitted lines (and 95% confidence limits for predicted observations)
for BOD in these four regions. The regression lines appear satisfactory, but the confidence
intervals appear to be rather too wide in the region of turbidity less than 10. Again, it would
appear that it might be worthwhile trimming the data to values of turbidity less than 30.

34 Suspended solids

For S8, the data was not log-transformed before performing the regression for reasons given in
Subsection 2.3. Therefore, in Figure 3.7, the upper graph is plotted on linear scales rather than
logarithmic ones. The lower graph shows the fitted model drawn for values of turbidity less
than 50 NTU. Again the confidence interval around the fitted model, calculated using the full
range of turbidity, appears a little too wide for turbidity values less than 10.

3.5 Assessment of the effect of subsets of the data

The next stage of the analysis was to determine whether subsets of the data provided better
predictive models. The data sets from Northumbria & Yorkshire, South Western and Thames
Regions were split into subsets according to type of STW. The data sets from Southern and
Welsh Regions contained no information on types of STW and so could not be investigated in
this way. Table 3.2 gives the breakdown of the available data into STW types.
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Table 3.2 Types of STW

Code Type of STW Size of STW No. of samples
N&Y SW Thames

PS Percolating filter Small 68 154 237
PM Percolating filter Medium - 6 12
PL Percolating filter Large 6 - 49
AS Activated sludge Small 1 66

AL Activated sludge Large 10 7 28
APL Activated sludge Percolating filter Large - - 6
APM  Activated sludge Percolating filter Medium 3 - -
BS Biodisk Small - 28 -
SS Settlement only Small - 7 -
TS Septic Tank Small - 3 -
\% Private Not specified - - 93
N Not sewage effluent Not applicable - - 63

Fitting separate lines for the different types of works invariably improves the goodness of fit
compared with a single line fitted to all types. However, the statistical significance of the
improvement can be assessed using the reduction in the sum of squares of the residuals about
the fitted model (see, for example, Davies and Goldsmith, 1972). For all three regions, the
improvement in the goodness of fit was statistically highly significant.

Table 3.3 summarises the regression models. The rows for ‘All types’ are taken from
Table 3.1. Regressions based on a greater number of samples give more reliable predictions
than those based on fewer samples. In the table, STW types with less reliable results are shown
by means of shading, using an arbitrary cut-off of 15 samples.

Among the unshaded rows of the table, it can be seen that confidence intervals are narrower
when each type of STW is treated separately than when they are all amalgamated. The average
precision factor among the unshaded rows (excluding the private STWs - code V) was 3.3.

Note that the slopes for percolating filter STWs (indicated by codes PS, PM, PL) are steeper
than for activated sludge STWs (AS, AL).

For Thames Region, the private STWSs (V) have a relatively large residual standard deviation,
and consequently a large precision factor. It may therefore be worthwhile investigating the
effect of splitting these private works further, for example by size or type, to try to obtain
better regressions. The non-sewage effluents (N) in Thames Region had a statistically
insignificant slope implying that turbidity and BOD were not related. For the STW data in

Thames Region, the intercepts for the different types of works were significantly different but
the slopes were not.
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Table 3.3  Separate regression lines for each type of STW

Type of STW Slope Intercept Samples Residual Precision Precision
b a n s.d. factor
logm BOD logm
turbidity
Northumbria &
Yorkshire
All types 0.486 0.531 0.315 0.617 4.14

South Western
All types 0.830 0.128 265 0.330 0.647 4.08
PS

BS 0.284 0.547 28 0.218 0.427 2.67
Thames
All types 0.481 0.296 237 0.509 0.998 9.95
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Figure 3.2 Fitted model to trimmed data with 95% confidence limits for predicted
observation - Northumbria & Yorkshire region
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Figure 3.3 Fitted model with 95% confidence limits for predicted observation -
Southern region
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Figure 3.4 Fitted model with 95% confidence limits for predicted observation - South
Western region
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Figure 3.5 Fitted model with 95% confidence limits for predicted observation -
Thames region

R&D Technical Report E42 22



Logarithmic scales

1000

100 +

10 +

BOD

0.1

turb>0

Linear scales, limited to values less than 50

50

45 +
40 |
35 4
30 |

25 1

BOD

20 +

15 ¢+

0 10 20 30 40 50
turb>0

Figure 3.6 Fitted model with 95% confidence limits for predicted observations- Welsh
region

R&D Technical Report E42 23



Linear scales

250

200

150 1
100 +
50 +
0 . . f + t ¢
0 20 40 60 80 100 120 140 160 180
Turbldity
Linear scales, limited to values less than 50

Turbidity

Figure 3.7 Fitted model for SS with 95% confidence limits for predicted observation -
Thames region
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4. USING LABORATORY-BASED TURBIDITY TO
PREDICT BOD BY MEANS OF OLS REGRESSION

4.1 Introduction

Sections 2 and 3 above involved field-based turbidity data. This section deals with laboratory-
based turbidity data. Two data sets were available, supplied by Midland and North West
Regions. As well as laboratory-based turbidity, these data sets contained BOD, ammonia, SS,
phosphate and TON. The data set from Midland Region also contained chloride and pH. As
well as fitting BOD to turbidity, regressions were performed to fit BOD to all the available
determinands, including turbidity, to see whether these additional determinands helped to
explain significantly more of the variability in BOD.

4.2 Turbidity alone

The regression results for turbidity alone are given in Table 4.1. Because of the general
widening of the variability with higher wrbidity, three ways of restricting the data were tried,
namely:

1.  norestriction;
2.  restricting turbidity to be less than 30 NTU;
3.  restricting turbidity to be less than 10 NTU.

The first six rows of Table 4.1 show the fitted models when no transformations were used, i.e.
BOD is regressed directly on turbidity. We shall call this the simple model. The precision term
is then additive as illustrated in the following example. Using the row, at a turbidity of five, the
estimate of BOD is given by

2.295 +0.872 x5
ie. 6.655

The precision is 7.29, so the 95% confidence limits on this estimate are given by:

6.655 - 7.29 and 6.655 +7.29
i.e. -0.635and 13.945

The last six rows in the table are for log-transformed data, where log BOD is regressed on log
turbidity (using logs to base 10). We shall call this the transformed model. The precision term
is a multiplicative precision factor as described in Section 3. Thus, for example using the last
sixth row, at a turbidity of 5, the estimate of log BOD is given by

0.364 + 0.618 x log(5)
ie. 0.796

which, by taking antilogs, transforms back to a BOD value of 6.25.
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Using the precision factor, 2.34, the 95% confidence limits on this estimate are given by:

6.25+2.34 and 6.25 x 2.34

i.e. 0.427 and 14.625

From the table it is clear that confidence limits are narrower for the North West data than for
the Midlands data. Furthermore, restricting the data to turbidity values less than 30 leads to a
considerable improvement in the precision in the simple model, and to at least a 12% reduction
in the precision factor in the transformed model.

Table 4.1  Regression results using laboratory-based turbidity

Variable Region Restriction Samples Intercept Slope Residual Precision
on with with S.D. term
turbidity standard standard 95%
error error confidence)
Simple model
BOD Turbidity
Midland none 1938 3.942 1.217 51.89 101.70
1.232 0.025
<30 1781 1.297 1.417 31.92 62.57
1.285 0.139
<10 1374 0.559 1.583 30.32 59.42
1.876 0.332
North West none 701 -10.749 2.181 22.56 4422
1.067 0.047
<30 653 2.264 0.892 5.87 11.50
0.491 0.045
<10 394 2.295 0.872 3.72 7.29
0.572 0.085
Transformed model
log,o BOD logio Turbidit
Midland none 1938 0.268 0.809 0.288 3.67
0.014 0.015
<30 1781 0.297 0.765 0.255 3.16
0.016 0.019
<10 1374 0.334 0.697 0.233 2.86
0.017 0.025
North West none 701 0.167 0.861 0.241 2.97
) 0.029 0.028
<30 653 0.319 0.688 0.211 2.60
0.031 0.033
<10 394 0.364 0.618 0.189 2.34
0.039 0.049
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4.3 All determinands

Following the regression analysis of BOD on turbidity alone, regressions were performed using
the full set of explanatory determinands:

¢ turbidity, ammonia, SS, phosphate, chloride, pH and TON from Midland region;
e turbidity, ammonia, SS, phosphate and TON from North West region.

The estimated coefficients (with their standard errors) are shown in Table 4.2, which gives the
results for (a) the simple model with BOD regressed directly on the available determinands and
then (b) the transformed model with log BOD regressed on the logged determinands - pH was
not logged because it is already logged by definition. Logs were taken to base 10. As before,
additional runs were performed with turbidity restricted to values below 30 or below 10 NTU
Where the standard error is high relative to the coefficient, this indicates that the determinand
does not make a useful contribution to the overall goodness of fit when the other variables are
present. Thus, for example, TON generally makes an insignificant contribution, except in the
Midland additive model.

The regressions were generally not very satisfactory because there were large numbers of
influential points and also many points had unacceptably high residuals.

Table 4.3 shows the residual standard deviations and the precision term (based on 95%
confidence) for these regressions in the same way as in Table 4.1.

It is clear from comparing the precision in Tables 4.1 and 4.3 that the use of additional
determinands led to smaller residual standard deviations and so helped to explain more of the
variability in BOD. As a consequence the confidence limits on predictions were considerably
reduced by using additional explanatory variables. For example, in the transformed models, the
95% precision factor was around 2.0.
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Table 4.2

Regression coefficients for BOD and log BOD with standard errors

Variable  Region Restrict  Constant Estimated coefficients for explanatory variables
Turbidity with standard errors
Simple model
BOD Turb AmmN SS Chloride pH  Phos TON
Midland none 184.149 1.311 0.188 -0.241 -0.009 -23.711 0.340 -0.406
15494 0.050 0.043 0.030 0.003 2.041 0130 0.065
<30 54.731 0.556 0.088 0.338 -0.002 -6.859 0.082 -0.159
5550 0.057 0.015 0.025 0.001 0.728 0.046 0.023
<10 63.656 0419 0261 0314 -0.003 -8.175 0.037 -0.079
6.119 0.109 0.035 0.031 0.003 0.798 0.050 0.027
North West none -3.016 0.311 0.278 0.501 0.242 0.016
0.691 0.045 0.041 0.031 0.087 0.035
<30 -1.287 0.270 0.209 0.465 0.238 0.004
0.538 0.050 0.028 0.030 0.062 0.024
<10 -0.112 0.272 0.078 0.436 0.264 -0.021
0562 0.082 0.023 0.037 0.061 0.019
Transformed model
log log log log log pH log Log
BOD Turb AmmN SS  Chloride Phos TON
Midland none 0.801 0.249 0.136 0.487 -0.043 -0.071 0.060 -0.066
0.123 0.023 0.008 0.024 0.020 0.016 0.014 0.016
<30 0.682 0.289 0.126 0472 -0.044 -0.057 0.060 -0.058
0.121 0.024 0.008 0.023 0.019 0.015 0013 0015
<10 0.820 0.294 0.122 0.445 -0.064 -0.073 0.051 -0.017
0.133 0.028 0.009 0.025 0.022 0.017 0.015 0.019
North West none 0.028 0.236 0.111 0.523 0.159 -0.023
0.036 0.037 0.013 0.039 0.022 0.021
<30 0.020 0.255 0.108 0.509 0.147 -0.008
0.036 0.039 0.012 0.038 0.022 0.021
<10 0.067 0.242 0.065 0.492 0.145 -0.014
0.046 0.050 0.014 0.043 0.026 0.023
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Table 4.3  Regression results from laboratory-based turbidity and other determinands

Region Transform- Restrict Number of Residual Precision
ation Turbidity Points S.D. term
(95%
confidence)
Simple model
Midland none none 1939 24.06 47.17
none <30 1781 8.13 15.94
none <10 1374 7.66 15.01
North West none none 701 ) 6.22 12.19
none <30 653 4.29 8.41
none <10 394 2.81 5.50
Transformed model
Midland log none 1939 0.183 2.28
log <30 1781 0.169 2.15
log <10 1374 0.158 2.04
North West log none 701 0.155 2.01
log <30 653 0.151 1.98
log <10 394 0.140 1.88
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S. ALTERNATIVES TO ORDINARY LEAST SQUARES
REGRESSION

5.1 Introduction

The work described above was performed using classical methods based on ordinary least
squares regression. However, it is well known that the least squares procedure is particularly
sensitive to outlying points. The technique also assumes that there is constant variability of the
data about the fitted line. The preliminary data analysis showed that the data sets in this project
were problematical with both these aspects. Furthermore. the OLS regressions described in
Sections 2 and 3 confirmed that the regressions were unreliable for these reasons. A number of
alternative approaches were investigated to see how they might produce better predictive
relationships.

5.2 Chemometric methods

Appendix A contains a report by Dr J M Thompson, a consultant chemometrician employed to
consider the data analysis in the light of current advances in chemometrics. He looked at two
data sets, one taken from Appendix 1 of NRA report “Application of the Grant/YSI 3800
Meter to Effluent Monitoring” by Neil Martin of Thames Region, and the other comprising
four of the sets of regional data - Northumbria & Yorkshire, South Western, Thames and
Welsh - described in Section 2 above.

He declares that OLS methods should not be used since the data are not well-behaved because
of the presence of possible outliers and variable degrees of scatter. This is because OLS
methods lack robustness when the OLS assumptions are violated and also lack resistance to
outliers. In other words, the OLS model can easily be thrown off track by a relatively few
remote points and by non-constant variance.

To overcome this problem, three robust and resistant regression methods were considered:
1.  Tukey’s three group resistant line;
2.  Theil’s median of all possible pairwise slopes;
3. Rousseeuw’s Least Median of Squares (LMS).

A brief description of the methods is given in Appendix B.

All three methods were used in the analysis of the data relating laboratory BOD to turbidity
measured on four Grant monitors and the results are given in Table 5.1. It is clear that there
was good agreement in the slope estimates between the three robust and resistant methods. In
contrast, the OLS regression yielded considerably higher regression slopes, presumably
because of the influence of a few wild points. However, with the robust methods, there were
differences in the slope estimates between different meters and also between different series
with the same meter. Unfortunately, the data sets were not large enough to analyse possible
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contributory sources of variation with any great reliability. A more careful design of
observational study would be needed to perform a useful analysis of the sources of variation.

Table 5.1 Comparison of OLS and robust methods for Grant meters

Data set Method Slope Intercept

Grant 33 (series 1)

OLS 0.344 1.511
LMS 0.051 1.285
Grant 33 (series 2)

OLS 1.287 -4.623
Tukey 0.904 -1.715
Theil 0.833 9.000
LMS 0.867 -2.467

=7 14
OLS 1.097 1.381
LMS 0.738 2.331

Grant 38
OLS 1.655 -15.277
LMS 0.493 1.875

Tukey’s three group resistant line method was applied to the four sets of regional data -
Northumbria & Yorkshire, South Western, Thames and Welsh. Comparisons with the OLS
regressions (based on raw data rather than on log-transformations) are shown in Table 5.2. The

OLS regression slopes were clearly influenced by just one or two extreme points and are thus
unreliable.

Table 5.2  Comparison of methods for field turbidity monitors by region

Method Slope Intercept
.aumbria & Yorkshire
OLS 0.141 15.92
Tukey 0.618 NA
South Western
OLS 0.301 13.06
Tukey 0.836 1.82
Thames
OLS 0.451 5.67
Tukey 0.687 1.43
Welsh
OLS 0.254 5.39
Tukey 0. 2.30
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The Thames data set was then analysed according to various subdivisions based on STW type
(see Table 5.3). The OLS regression equations were highly influenced by just one or two
extreme points and are too unreliable for any practical purpose. Following the Tukey method,
examination of residuals to assess spread, the presence of outliers and evidence of nonlinearity
showed that the residual scatter was smaller for the larger STWSs, where there was also a
smaller slope, than for the smaller STWs. There was also some evidence of nonlinearity at the
smaller works but this may be misleading given the high scatter.

Table 5.3 Comparisons of methods for Thames subsets

Subset Method Slope Intercept
PS
OLS 0.490 5.99
Tukey 1.167 1.30
PL
OLS 0.592 1.52
Tukey 0.717 1.07
AL
OLS 0.411 4.27
Tukey 0.500 2.55
Private
OLS 0.921 7.71
Tukey 1.156 1.00
Not sewage effluent
OLS 0.0227 1.88
Tukey 0.0186 1.00
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6. COMPARISONS OF TURBIDITY MEASUREMENTS
MADE USING A RANGE OF DIFFERENT
INSTRUMENTS

Appendix C contains a report by Steve Russell of WRc describing some measurements for
comparing some field and laboratory instruments used for measuring turbidity. Three
commercial bench turbidimeters and the Grant YSI 3800 multiparameter logger were set up in
the laboratory and calibrated using formazine suspension. A test rig for scattered light
measurement was also used.

Sewage effluent samples were collected from:

1. a biological filter works with some industrial waste but predominantly a domestic
catchment;

2.  an activated sludge works with a mixed domestic and industrial catchment;

3. asmall rural works using an RBC with tertiary treatment using a reed bed;

4.  the activated sludge pilot plants at Swindon WRc.

The turbidity of each effluent sample was measured on each of the instruments and also on the

test rig. Comparisons with the Grant 3800 are shown graphically in the Appendix and
summarised in Table 6.1

Table 6.1 Turbidity instrument gradients against the Grant 3800

Instrument Gradient R squared
Hach 2100A 0.833 0.97
Hach Ratio 1.179 0.96
Hach XR ratio 1.174 0.97
880 nm 90 degree scatter 1.169 0.91
880 nm 20 degree scatter 2.550 0.91
880 nm absorbence (40 mm path) 2.433 0.93

The results can be summarised as follows:
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In a comparison between filter plant data and activated sludge plant data, the gradients
comparing Hach 2100A and Grant 3800 instruments were slightly different but probably not
significantly so.

The results agree with the theoretical result that 20 degree scatter is more sensitive to larger
particles than 90 degrees scatter.

Readings fluctuate as particles move in and out of the cell measurement volume. Instruments
with large measurement volumes (such as Hach 2100A) score over instruments with ratio
optics (such as Hach 2100N) which need to take a number of readings and then calculate the
average.

The Hach XR ratio and the 880 nm 90 degrees scatter gradients were very similar in this
exercise. this disagrees with a previous exercise carried out at WRc where similar instruments
gave a ratio of gradients of around 1.9. This discrepancy is unexplained at present. However, it
does not affect the comparison between the Grant 3800 and the Hach instruments.
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7. DISCUSSION

OLS regression is a well developed methodology which is easy to apply using any elementary
statistical package. Methods for obtaining confidence limits about the fitted line based on OLS
regression are also well-developed and understood. However, where there are outliers in the
data or where the variance in BOD is not constant over the range of turbidity the OLS
regression will give unreliable results.

In contrast to OLS regression, the more robust and resistant methods described in this report
are less affected by outliers and non-constant variance. However, they are also generally used
less frequently, partly because they are relatively unfamiliar compared with OLS regression, but
also because it is not always clear which is the most appropriate method. To quote from Davies
and Goldsmith (1972) in a slightly different context “they each have some degree of theoretical
validity, but no single method can claim to be the only correct one and unfortunately each can
lead to a different equation.” It is often difficult to know which alternative approach is the most
appropriate. Furthermore, they tend not to have methods in place for calculating confidence
limits around the fitted line.

Outliers are a nuisance when trying to predict BOD from turbidity. High BOD may be found
with low turbidity if there is soluble matter present. Low BOD at high turbidity may arise from
suspended clays and silts.

Other factors can contribute to nonlinearity or to low or high values of BOD relative to the

turbidity observed. There may be other important factors besides the ones made available for
this project.
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8.

CONCLUSIONS

This work has confirmed that OLS regression methodology can be unreliable with the
kind of data available for this project because of the presence of outliers and variable
degrees of scatter. Many alternatives to OLS regression for fitting lines to data are
available and several have been investigated in this project.

Because BOD exhibited variability which increased with increasing field turbidity, the
transformed model was more appropriate than the simple model. In other words, better
agreement with the requirements of OLS regression can be obtained by logarithmic
transformation of both BOD and turbidity. This leads to confidence intervals which have
width proportional to the BOD value, i.e. higher BOD estimates have greater absolute
uncertainty than lower ones. Transformation was not required for suspended solids.

The confidence limits about the OLS regression line based on all the data were generally
quite wide, the upper 95% confidence limit was typically about four times the estimated
BOD and the lower limit was about one quarter of the BOD estimate. Graphical
inspection showed that the confidence interval was rather too wide at the lower levels of
BOD.

Better predictions with narrower confidence limits could be obtained by limiting the
regression analysis to lower levels of turbidity, e.g. to values less than 30 NTU. This
reduced the precision factor from 4.3 to 3.3.

The introduction of other explanatory variables into the regression made a significant
improvement to the fit and reduced the precision factor to about 2.0.

The slope of the OLS regression lines for predicting BOD from field turbidity varied
from region to region.

The slope of the OLS regression lines for predicting BOD from field turbidity varied
between STW types within a region.

There was no significant correlation between BOD and turbidity for data arising from
non-STW effluents in the Thames Region.

Alternative methods of curve fitting to OLS regression overcame the problems of
outliers and non-constancy of variance and could be expected to lead to greater
consistency between results from different surveys. However, they did not provide
methods for calculating confidence limits about the line.
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9. RECOMMENDATIONS

Because of the differences found between types of STW, the equations for predicting BOD
from turbidity should be developed further by collecting appropriate data. The fitted equations
for each different type of works should then be tested against additional data not used in fitting
the models.

Additional variables that might usefully be measured in the field include PO2, temperature, pH
and redox potential.

Since there were differences in slopes between different meters and also between different
series with the same meter, possible contributory sources of variation should be investigated
using a careful design of observational study.

Further work is required on alternative robust methods to enable confidence limits to be placed

around the fitted lines and to decide which method would be the most appropriate for
predicting BOD from turbidity.
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APPENDIX A

REPORT ON THE CHEMOMETRIC EVALUATION OF DATA
BY DR J M THOMPSON
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Introduction

Two sets of data were evaluated for this report : data set 1 was from appendix 1
of the report "Application of the Grant/YSI 3800 Meter to Effluent Monitoring" by
Neil Martin, NRA Thames Region, SE Aresa Pollution Control, Guildford, Feb. 1996 and
data set 2 was supplied by Terry M. Long, EA Bristol to Peter van Dijk, WRc on
September 1996 and by the latter to me on 8th October 1996. A meeting was held at WRc
on 15th July 1996 to discuss the approach to the project which involved Terry Long of
EA Bristol, Mike Gardner, Steven Russell and Peter van Dijk of WRc and me. A second
meeting, between Peter van Dijk and me, was held on 28th Oct. 1996 to discuss

progress in data analysis and a further meeting was held today 9th Dec.1996 to
discuss this report.

As with many sets of environmental specimens analysad either in the laboratory
or in the field, the data obtained from such measurements is not well behaved and
contains what might be considered outliers, in addition to a relatively wide scatter.
It is thus not amenable to analysis by conventional least squares gaussian methods
because these lack both robustness (which enables us to assess the behaviour of the
bulk of the data) and resistance to outlier or "wild" data. The methods used have
included the robust Least Median of Squares regression methed of Rousseeuw, Tukey's
three group resistant line ragrassion and Theil's nonparametric regression method
of pairwise slopes. Attention has also been directed at szamination of the residuals
plots from such regressions, in order to assess residual spread. presence of outliers
and evidencsz of nonlinearity. Various subsets and ccmbinaticns of subsats of the data
havz been used ts examine the behaviour of individual field instruments and of various
szwage treatment plants and trades =2ffluenc sourcas.

= -

I7aluaticn of data set 2

Using the progranm PRCGRISS of ?ouSSceur and Lercy (szs ' bus, Ragression and
Cutlier Tzzaciien™ br P.J.Rousseeuvw & i.M.Lercy, 1337, ?ile1‘ crdinary lsast squares
(QLS), least median of squaras (LMS) and a r=re*~r:ed izasi sguarss (RLS) bassd on
the LHMS was rs=risrmad on subsets from the various {i21d zmecnitors usad. For one subset
Theil’'s and Tuxsv's amethods wzre also usad. This illustrates the agreement batveen
the LMS, Tulavy ané Theill netiacds which reflact the zenavicur of the bulk of the data
and the diszgrzement with th: OL3. The results of the regressions, with lab BOD as
the dependznt variable, ar2 :ntlinad Zelow

Lab BCD vs Grant 33 :2nd seriszs)

regressicn slope intarcapt R nossibls cutliers
methed
OLS 1.28713 -4.62270 0.33290
LMS 0.866587 -2.46667 0.87635 7,9,14,17,30,31
RLS 0.75063 -0.782%0 0.83044
Theil 0.32233 9.00000 T,14,27,30,31
1/2 slope ratio
Tukey
rline 0.3037 -1.7148 2.396 7,9,14,13,17,15%,30,31
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Lab BOD vs Grant 33 (1lst series)

slope intercept R2
OLS 0.34442 1.51069 0.23976
LMS 0.05102 1.28571 0.63715 5,11,14,16,18,21,24
RLS 0.04555 2.15422 0.15966

Lab BOD vs Grant no 14

OLS 1.09739 1.38120 0.85855
LMS 0.73846 2.33077 0.79472 23
RLS 0.68535 2.79742 0.60086

Lab BOD vs Grant no 38

CLS 1.65452 -15.2772 0.4319¢9
LMS 0.45286 1.87500 0.80377 2,8,13,17,22,25,27,29,30,
37,41,43,45,54
RLS 0.49042 2.07700 0.15963
There is clearly something suspect about the Grant 23 1ist serizs which differs
markadly from the second series and from data Irom Gran: ncs 14 znd 38. Grant 33 2nd
serisgs compares reasonably well with Grant 14 buf beth diffsr considarably from Grant

38. These subsets are not rezally big encugh to analvse zos
of variation with anv great r=2liability. A mors cara2iul dasi

Fe RS A A

would be needed to perfora a useiul analysis of the scurcss o

12 contributory sourcss
n of observational study
f wvariation.

Tata set 2

Subsets were provided from South Vestern. Jorthumbria/Yorkshirz, Welsh and
Thames. Exploratory analvsis using Tukey's thrz=s group rasistant liiez resgrassionwas
perfornmed and the results are shown below

slope intercept 1/2 slzpe ratio
South Western 0.8361 1.3250 1.412
Thames 0.6370 1.4310 0.520
Northumbria/Yorkshire 0.56176 n/a n/a
0.6000 4.0600 (Theil nmethed)
Welsh 0.25853 2.3053 1.154

The two most extansive data subsets wera Thames and South Westarn. The latter
attempted to ¢lassify STWs according to size. However, it is not clear vwhether there
was any differentiation between private and public works as in the Thames subset.
Thers was no attempt to subdivide the South Western subset at this stage.
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The Thames subset was analysed according to further subdivisions :

subset
"not"
priv
Ps

PL

AL
AL+APL

AL+APL+PL

slope

0.0186
1.1560
1.1667
0.7167
0.5000
0.5263

0.6714

intercept
1.0010
1.0000
1.3000
1.0667
2.5500
2.4974

1.5429

1/2 slope ratio
0.952
1.648
0.286
0.601
0.587
2.311

1.771

Subsets from the 1st Thames set were combined with subsets from the 2nd Thanmes
set and analysed as follows :

subset

combination slope intercapt
priv 1 & 2 1.0635 0.7730
AL+=3APL+PL 0.5750 1.7250

& that data

mar.¢sd Thanes

in lst set

Letter value analy
scatter is smallsr for the Largs STVs
than fer the private werks f(eonly abcut 50% being in a sizilar range).
smail pudblic
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or day.,

4 parrower

rxs.

nfluence of
factors as

scattar

sis

omrs

of the residuals from the last

STWs seem to have similar slopes
slope ratios of these groups are perhaps in
dire:tions.

:zg indicater and the scatter

1/2 slcpe ratio

t-ic

{(roughly 95% lving

{azcut
dicative of
dowaver, with such wide scatter the half slope ratio may
1ay be centributzd by other indewvendent
included in thess raegressions. The slope of about 0.6 for the larger
and a half slope ratio of approximately 1.0 suggests a
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Any future observational study needs both careful design and execution to enable
exploratory analysis of variance and multiple regression to yield effective algorithas
fit for the intended purpose. Greater consistency in recording data than in the
data sets used in this project is essential. In particular, consistency is needed in
the use of "less than" which varied widely. A policy on the data structure and on
data recording and auditing should be agreed, together with equipment maintenance,
calibration, checking and qualification. Staff should be adequately trained in the
project S.0.P.s and protocols to ensure consistency and traceability.
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1. Brief explanation of statistical methods used
a) Robust and resistant regression methods used
(i) Tukey's three group resistant line

In this method, the values of the independent variable, x, are sorted into
ascending order and divided into three groups of more or less equal size : a left, a
midddle and a right group. Within each group, a summary poit is formed by first
determining the median x-value and then independently the median y-value. This method
provides resistance to wild values of X, y or both. The slope is estimated from the
left and right summary points and the intercept from all three summary points. The
residuals are then used in place of the y values iteratively to determine adjustments
to the slope and intercept. The breakdown bound (see below) is 0.167.

{ii) Theil's method

This method involves computing the slopes between all the possible pairs of
points and obtaining the median of those pairwise slopes as the regression
coefficient. The median of the intercepts resulting from drawing lines with the

median slope through each point is the regression intercept. The breakdown bound is
0.29.

{iii) Rousseeuw's Least Median of Squares

This method involves minimizing the median of the squared residuals instead
of the sum. The breaxdown bound is ([n/2]-p+2)/n, wherz n 1s the number of points and
the number of independent variables.

b} Letter Value Analvsis and Box and Whisker Plots of Ragression Residuals
(1) Lattsr value analysis

t step is to rank the data in ascending order, the position of the
median iz found (its depth). The depths cf the fourths in from 2ach and of the
ordered data set are then fouad from ([depth of wmedian]+1}/2 (dropping anyv fraction
from the dapta of thz mediin,. The nedian and fourth ars termed letter values and are
given cne latter tags (M and T). Ths depth of other lattzsr wvalues is found from
([depth of pravious letter valuel+l)/2, in every case drpring any fraction from the
previous depth. Thus, the letter valuss move prograssively into the tails of the data
distribution. A letter value display shews the depth cf =sach letter value, the lower
and upper letter values, the spread between upper and lower letter values and the
mids (means of the upper and lower letter values). Using this to examine the
residuals, enables us to assess the shape of their distribution in a useful summary
form.

The firs
(1

{ii) Box and whisker plots

The box plot consists of a ractangle which has as upper and lower bounds
the uprer and lewer fourths and within the box is marked the position of the median.
The whiskers 2xtand beyond the fourths values to the furthest crderzd data pcints
within the inner fences. Points between the inner and outer fences ars marked by "*"
and those outside the outer fences with "O". Inner fences ars at lower fourth -
1.5%(fourth spread) and at upper fourth + 1.5*(fourth spread). Cuter fences are at
lower fourth - 3*{fourth spread) and upper fcurth + 3*(fourth spread). The values
beyond the outer fences ars precbable outliers, those between the inner and outer
fences are possible outliers.

c) Breakdown bounds of regression methods

This is a measure of the resistance of the regression to wild valges
affecting the estimation of the slope and intercept and is given by the ratio k/n,
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where k is the greatest number of the n data points that can be replaced while

leaving the slope and intercept bounded. The ordinary least squares regression has a
breakdown bound of zero.

2. Limitations of the current approach to evaluation of field monitoring
a) problems of only measuring turbidity, etc., downstream of sewage outfalls

With measurements being made only downstream of the outfall, there is no way of
estimating the upstream contribution to those measurements. This is a seriocus
deficiency in the current approach. Such upstream contributions probably account for

some of the scatter in the plot of turbidity vs BOD and may vary with upstrean
pollution and rainfall.

b) comments on the scatter and outliers in field turbidity vs B.0.D. plots

High lab BOD at low turbidity is possible from soluble matter. Low BOD with high

turbidity may arise from suspended clays and silts. Other factors may contribute to
low or high values or nonlinearity.

3. Recommendation on possible improved approach to field moniteor evaluation

Future studies could usefully include ©both upstream and downstream meaasurenments
and attempts to estimate BOD from the differences Dbetween thcse upstream and
downstream measurements. Additional measurements in ths field might usefully include
pO2, temperature, pH and redox potential.

4. The methods referred to are discussed i {.Thompson "Explcratory, Robust and

i J.d
Nonparametric Data Analysis”, chapter 2 in §.J.Haswell "Practiczl Guide to
Chemometrics", 1992, Marcel Dekker.
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COMPARISON OF TURBIDITY MEASUREMENTS MADE USING A RANGE OF
DIFFERENT INSTRUMENTS

Introduction. WRC is currently undertaking a study on behalf of the Environment
Agency to examine the relationship between turbidity and BODS5. Data on turbidity and
BOD is available with both field and laboratory measurements of turbidity.
Measurements of turbidity in the field are normally made using the Grant 3800
multiparameter logger, whereas laboratory measurements are made on a number of
instruments such as the Hach 2100A bench turbidimeter. Turbidity measurement is well
known as an instrument-dependent quantity and so some comparitive measurements
were needed to allow the combining of the field and laboratory data.

Procedure. Three commercial bench turbidimeters and the Grant YSI 3800
multiparameter logger were set up in the laboratory and calibrated using formazine
suspension. In addition a test rig for scattered light measurement was calibrated using
formazine so that it could be used to measure turbidity at 80 degrees using 880
nanometre source light, 20 degrees using 880 nanometre source light and attenuation
of 880 nanometre light.

Sewage effluent samples were collected from three sewage treatment works within half
an hour's drive of the Swindon laboratory. The works were:

iy A biological filter works with some industrial waste, but predominantly a comestic
catchment;

i) An activated sludge works with mixed comestic/industrial catchment;
i) A small rural works using an RBC with tertiary treatment using a reed bed.

It was fcund that the reed bed effiuent was so good that the Grant 38C0 instrument,
which reads integer NTU values, always read 0 NTU and so after the first 2 visits, no
more samples from this works were used. One sample each from the activated sludge
pilot plants operating at Swindon WRc were taken to supplement the main plant data.
Pilot plants normally vary very little and so there was little point in collecting multiple
samples from these plants. The turbidity of the effluent samples was measured on each
of the instruments and the test rig and recorded.

Results. The measurements from the filter plant and the activated sludge plants are
plotted separately using the Hach 2100A data against the Grant 3800 in Charts 1 and 3
respectively. It may be seen that the gradients for the data sets are slightly different.
When the data is plotted together (chart 4) the difference between the data sets
appears comparable to the variations in the individual data sets and for the purposes of
correlation with BOD it is appropriate to treat these measurement as one data set.

The measurements on all the instruments and the test rig are shown plotted against the
Grant 3800 turbidity reading in charts 5 to 10. The results are summarised in table 1.
The scaling factor which needs to be applied to convert between the Grant 3800 and
the laboratory instruments varies between about 0.8 and 1.2. The 880 nanometre test
rig scale factors range from about 1.2 to about 2.5. The difference between the 90
degree and 20 degree gradients accords with the theoretical result that the 20 degree
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scatter is more sensitive to larger particles than the 90 degree scatter, the factor being
about 2.2 compared with their sensitivity to formazine. The bulk of sewage effluent

particles are typically in the range 5 to 100 microns, whilst formazine is typically about
0.1 microns in size.

It is very noticeable when measuring sewage effluent turbidity in the laboratory that the
reading fluctuates over a large range as particles move in and out of the cell
measurement volume. The Hach 2100A scores over the more modern ratio instruments
here as it has a large measurement volume and the turbidity averaged over a large
volume can be read directly. The ratio instrument readings vary rapidly over as much as
a 2:1 range and have to be dealt with by taking a number of readings and averaging.
Hach's current offering, the 2100N, has ratio optics and an averaging function. The
Grant 3800 has a large measurement volume and produces a steady reading within 5-
10 seconds. '

Discussion. WRc has carried out some previous work which can be compared with this
exercise. In the previous work sewage effluent turbidity was measured using a Hach
ratio XR and a BTG MET3000 which uses 90 degree scatter of 860 nanometre light to
accord with ISO 7027. The ratio of slopes when correlated against suspended solids
was about 1.9 on a range of effluent types. No particular effort was made to check the
absolute value of the NTU values in this exercise as this was of secondary impertance,
however the difference in formazine calibration is unlikely to be more than 10%. The
actual turbidity range went higher in this exarcise, up to 25 NTU and this may have
affected the slopes calculated. The samples wiil have had differences, but these are
unlikely to be great compared with the diffsrence between formazine and sewage
effluent. The angle of acceptance of the BTG instrument is likely to be much larger than
the test rig instrument where cars was taken to restrict the detector aperturs. When
these factors are taken into account, the results are still not consistent with the ratio of
slopes of the Hach XR and the 880 nanometre 90 degree scattar ratio in the present
exercise, which is close to unity. No explanaiicn of this difference is apparent, and the
result for the 880 nanometre 90 degree scaiter should be treated with some caution
until the difference can be resclved. This discrepancy does not affect the comparison
between the Grant 3600 and the Hach instruments.

Instrumental measurement Gradient R squared

Hach 2100A 0.833 0.97

Hach Ratio 1.179 0.96

Hach XR ratio 1.174 0.97

880 nm 90 degree scatter 1.169 0.91

880 nm 20 degree scatter 2.58 0.91

880 nm absorbance (40mm path) 2.433 0.93

Table 1 Summary of turbidity instrument gradients against the Grant 3800.

58



GS¥8°0 = Y
xeyy80 = A

1 obed

NIN /el

(159u9G) Jeaur}——
1S9118g ¢

- 01

juanyiyje 184 - Y001 ¢ UOBH SA 008E 1uelH

LUeyd

- ¢l

11N / YoeH

59



64260 =4
X6908°0 = A

1 abed

NN / uern

g8 . 9 g

14 € 2 !

(1seu8g) JBBUI ——
|Salag ¢

Juanjyye abpnjs paleAnoy - V001Z UoeH SA 008E IuelD

cHEYD

NN / Y0012 yoey

60



19

Hach /NTU

12

10 -

Chart4

Grant 3800 vs Hach 2100A - Both effluent types

o | o Filter
’ L PRSI . N eHluent

u Aclivated

Grant / NTU

Page 1



a9

880 scatter / NTU

Chaits

Grant 3800 vs 90 degree 880nm scatter

16

14 -

12

10 -

e\

Grant / NTU

Page 1

¢ Series
~——Linear {Series1)

y = 1.1695x
R?=0.9134



1 abed

NiN /el
14 ¢l 0t 8 9 14

[9¥}

¥/06°0 = H
Xge55'g = 4

(15819g) Jesul ] —
|sauag +

63

18]je0s wuggg 9a1B9p Oz SA 0O8E uelD

- 02

- G2

- 0€

Ge

N1IN / WuQgg 1911828 aaibsp o



¥E6'0 = M
xgzey'g = A

L abed

nld /ey

(1sauss) JeauUI T —r0
|S2UaS ¢

aoueqIoSqe WuQgs SA 008E uelD

LMy

N 9

1

0t

S1

- 02

S¢

-0

Ge

N.Ld/ wuQgsg 18 sadueqlosqe



20460 =,4
Xpeeg 0 =4

{(1s8u8S) Jesut] ——

|selag ¢

14

cl

0l

| afleyq

11N / ueln

3

V00LZ UdEH SA 008E Juety

quRiD

- 01

cl

NLN /4yoeH

65



16

Grant 3800 vs Hach Ratio

14

12

10 -

99

¢ Series

Hach ratio /FTU

——Linear (Seriest)

y = 1.1791x
R? = 0.9603

Grant/ FTU

Page 1



L9

Hach Ratio XR/FTU

Grant 3800 vs Hach Ratio XR

16

Chait10

14

12

10

WerrrnoTern

)\

Grant / NTU

Page t

14

¢ Series1
——Linear (Series1)

y = 1.1742x
R?=0.9733







