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EXECUTIVE SUMMARY 

I BENEFITS 

Potential benefits arise from obtaining a useful surrogate for BOD and suspended solids which 
can be used for continuous monitoring. This raises the possibility of a low-cost mass screening 
system for sewage effluents. 

II OBJECTIVES 

The objectives were to develop the optimal algorithm for transforming hand-held meter data 
into predictions for BOD and suspended solids for sewage effluents, and to provide an estimate 
of the reliability of such predictions. 

III REASONS 

The Environment Agency has a requirement to identify instrumentation for the continuous 
monitoring of determinands involved in discharge consents, particularly BOD, suspended solids 
and ammonia. BOD and suspended solids are not compatible with continuous monitoring so 
the emphasis is on identifying surrogate parameters. 

Iv CONCLUSIONS 

Non-constant variance and the presence of outliers in the data make ordinary least squares 
regression methodology unreliable because the assumptions necessary for its application are no 
longer satisfied. It is not clear at present which of several alternatives is the most useful. In any 
case, a log-transformed model relating BOD to turbidity for sewage treatment works appears 
more appropriate than a simple model. For the relationship between suspended solids and 
turbidity, the simple model appears more appropriate. 

The confidence limits for predictions from the fitted model are rather wide, but they can be 
narrowed by restricting the model to low values of turbidity and by introducing other 
explanatory variables. The fitted coefficients varied from region to region and also between 
different types of STW. 

V RECOMMENDATIONS 

A universal relationship between BOD and turbidity does not exist, but it may be possible to 
find relationships that can be applied locally for a given type of STW. However, this report has 
not examined whether the relationship is different at different single STWs nor whether the 
relationship is stable over time either within a single type of works or across a region. These 
possibilities should now be investigated. 

VI RESUMk OF CONTENTS 

Data sets giving turbidity observations from hand-held meters used in the field and BOD 
observations based on laboratory analysis were provided by five regions. Two other regions 
provided laboratory observations for turbidity and a number of other determinands. 
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The relationships between BOD andfield turbidity were first investigated using the traditional 
method, ordinary least squares regression. Because the variance of BOD increases with 
increased turbidity, a log transformation was found to be more appropriate. Because of the log 
transformation, confidence limits on predicted values of BOD are multiplicative. The upper 
95% confidence limits on predicted BOD were on average about 4.3 times more than the 
predicted value and the lower 95% limits were about 4.3 times less than the predicted value - 
i.e. the precision factor was about 4.3. The lines of best fit were significantly different for the 
different regions. 

Different types of STW were also found to have different slopes. Fitting different models to 
each type of STW within each region improved the precision factor to an average of 3.3. 

BOD was also regressed on laboratory turbidity for the two regions. It was observed that the 
goodness of fit of the regression line improved when turbidity was restricted to values less than 
thirty NTU. Further improvements could be made to the model by introducing various other 
determinands, specifically ammonia, suspended solids chloride, pH, phosphate and TON. The 
coefficient for TON in North West Region was not significantly different from zero. 

Various other methods of line fitting were examined to overcome problems arising from 
departures from the assumptions of the ordinary least squares - in particular, the presence of 
outliers and the absence of constant variance. These more robust methods were considered to 
be more reliable and less likely to be influenced by one or two extreme points. 

Comparisons were made between a number of different turbidity instruments for a number of 
sewage effluents. 

KEY WORDS 

BOD, turbidity, field monitoring 
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1. INTRODUCTION 

1.1 Background 

The Environment Agency has a requirement to identify instrumentation for the continuous 
monitoring of determinands, in particular BOD, suspended solids and ammonia, involved in 
discharge consents. This project has concentrated on instrumentation for monitoring BOD and, 
to a lesser extent, suspended solids. In practice, neither determinand is compatible with 
continuous monitoring and so the emphasis has been on identifying surrogate parameters 
which track BOD and suspended solids and which are also compatible for continuous 
monitoring. 

Phase 1 of this project established that turbidity correlated well with BOD for sewage effluents 
although not for trade effluents or river water, and with suspended solids for all three types of 
samples. Turbidity measurement can be provided by hand-held meters, which are used widely 
in the Environment Agency, giving rise to the possibility that a low-cost mass screening system 
for sewage effluent could be developed. There was also some indication that other water 
quality determinands measured together with turbidity on hand-held meters (principally 
ammonia) improved the correlation with effluent BOD. A considerable amount of relevant data 
exists in a variety of files within the Environment Agency. 

1.2 Objectives 

The objective of Phase 2 was to develop the optimal algorithm for transforming hand-held 
meter information into predictions for BOD and suspended solids for sewage effluents and to 
provide an estimate of the reliability of such predictions in terms of confidence limits. 

This was to be achieved using an in-depth knowledge of correlation and other relevant 
statistical techniques and an appreciation of current advances in chemometrics. The 
relationships were to be examined to determine whether they could be improved by splitting 
the data into subsets, based on the type and size of sewage works. 

R&D Technical Report E42 
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2. EXPLORATORY DATA ANALYSIS 

2.1 Source of data 

Five regions - Northumbria & Yorkshire, Southern, South Western, Thames, and Welsh - 
provided data sets giving turbidity observations from hand-held monitors used on-site and 
BOD results based on laboratory analysis. Two further data sets, from North West and 
Midland regions respectively, contained laboratory-based measurements of STW effluent 
samples for turbidity, ammonia, BOD, SS, phosphate and TON. In addition, the Midland 
region data set contained measurements for chloride and pH. 

2.2 BOD and field turbidity 

Initially, graphical methods were used to investigate the plausibility of a linear relationship 
between BOD and field turbidity, and to examine whether the variance was constant 
throughout the range of the data. Constant variance (otherwise known as homoscedasticity) is 
required to satisfy the assumptions of ordinary least squares (OLS) linear regression analysis. 
Where this condition is not justified, transformation of the data is sometimes used to stabilise 
the variance before applying OLS regression. Alternatively, some other, more robust, method 
can be used to fit the best straight line to the data. 

Figures 2.1 to 2.5 show scatter plots of BOD against field turbidity for the five sets of data 
using hand-held meters, i.e. for Northumbria & Yorkshire, Southern, South Western, Thames 
and Welsh regions. In these graphs, any values of turbidity recorded as zero have been 
converted to 0.1 so that they can be plotted on a logarithmic scale. Also, any BOD which was 
recorded as a less-than value has been replaced by half the recorded face value, e.g. <3 has 
been plotted at 1.5. 

In each figure, there are four graphs, one in each quadrant of the page. In each upper left 
quadrant is a simple scatter graph of all the available data. In all five figures, the graph reveals 
that the mass of points is concentrated close to the origin with just a few very high values. This 
means that most values of BOD and turbidity are small compared with the range, and many 
points are plotted on top of others. 

In each upper right quadrant, the scatter of data points is plotted on a log scale. The 
logarithmic transformation has the effect of spreading out the lower values and bringing down 
the higher ones. Therefore, this graph enables more of the pattern among the low values to be 
discerned. In each region, the graph reveals a positive correlation between log BOD and log 
turbidity. Note that in all five figures, there is a reasonably constant vertical spread of log BOD 
throughout the range of log turbidity. 

The mass of points near zero is revealed in more detail in the graph in the lower left quadrant 
where both the BOD and the turbidity axes are once more plotted on linear scales but both 
axes have been truncated at 30 NTU. The graphs reveal a strong positive correlation between 
BOD and turbidity, but there is evidence that the variability in BOD increases with increasing 
turbidity. 
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Finally, the graph in the lower right quadrant displays all the points not plotted in the lower left 
quadrant, again on linear scales. These graphs illustrate that, occasionally, very high turbidity 
was recorded at relatively low BOD and very high BOD was recorded at relatively low 
turbidity. There were no occasions on which very high turbidity and very high BOD occurred 
together. It is conceivable that these high values were caused by lapses in recording or analysis. 
However, without confirmation of this, it was considered unsafe to discard these potential 
outliers from the statistical analysis. Instead, they were taken to be rare but valid members of 
the joint distribution of BOD and turbidity. 

2.3 SS and field turbidity 

Suspended solids data was available only for Thames Region. Figure 2.6 shows the same four 
scatter graphs as used for turbidity. The great mass of SS values lie between 0 and 10 but the 
range extended as far as 176 with quite a large number of values over 30. There is a strong 
positive correlation between SS and turbidity but the vertical scatter does not seem to widen 
with increasing turbidity when the graphs are plotted on linear scales. In fact, the graph on the 
logarithmic scales appears to have greater scatter at lower turbidity. 

2.4 Conclusions from data exploration 

The BOD graphs indicate that transforming BOD and turbidity by taking logs stabilises the 
variance in BOD throughout the range of turbidity. It is therefore worthwhile performing 
regression analysis of log BOD on log turbidity rather than BOD on turbidity. A possible 
alternative is to trim the data by removing the very high values of BOD and turbidity. 
However, the graphs of the trimmed data in the lower left quadrants of Figures 2.1 to 2.5 show 
that the variance is not stable even after trimming. 

The SS graphs in Figure 2.6 suggest that a linear relationship exists between SS and turbidity 
and that log transformation is unnecessary. 
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Figure 2.1 Scatter plots of BOD against field turbidity - Northumbria & Yorkshire 
Region 
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Figure 2.2 Scatter plots of BOD against field turbidity - Southern Region 
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Figure 2.3 Scatter plots of BOD against field turbidity - South Western Region 
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Figure 2.4 Scatter plots of BOD against field turbidity - Thames Region 

R&D Technical Report E42 10 



Linear scales Logarithmic scales 

0 200 400 600 0.1 1 10 100 

Turbidity Turbidlty 

Linear scales, limited to values 
both less than 30 

3o I 
25 

10 20 30 0 200 400 600 

Turbidity Turbidity 

8 
m 

100 

10 

1 

0.1 

Linear scales, limited to values 
not both less than 30 

50 

40 

30 

20 

10 

0 

n 

8” 0 

Figure 2.5 Scatter plots of BOD against field turbidity - Welsh Region 

R&D Technical Report E42 11 



Linear scales Logarithmic scales 

180 
I 1 0 

160 

140 

120 

100 

60 

60 

40 

20 

0 

0 50 100 150 200 0.1 1 10 100 

Turbidity Turbidity 

Linear scales, limited to values Linear scales, limited to values 
both less than 30 not both less than 30 

30 

25 

20 

8 15 

10 

5 

0 

0 10 20 30 

Turbidity 

160 

160 

140 

120 

33 
100 

60 

60 

40 

20 

0 

0 50 100 150 200 

Turbidity 

Figure 2.6 Scatter plots of suspended solids against field turbidity - Thames Region 
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3. USING FIELD TURBIDITY TO PREDICT BOD AND SS 
BY MEANS OF OLS REGRESSION 

3.1 Introduction 

Using the insight gamed from the exploratory data analysis described in Section 2, it was 
decided to transform the data by taking logs (to base 10) when modelling the relationship 
between BOD and turbidity but not to transform for SS and turbidity. Ordinary least squares 
(OLS) regression was used to estimate the parameters of linear models relating: 

l log BOD to log turbidity; 

l SS to turbidity. 

The results are shown in Table 3.1 and described in the following three subsections. When 
performing the regression analysis, any observations with zero turbidity were excluded and any 
BOD values recorded as less than the limit of detection were set to half the limit of detection. 

Table 3.1- Summary statistics for seven regression models (with stundizrd errors) 

Region Slope 
estimate 

b 
with 

standard 
error 

Intercept Sam- 
estimate PlS 

a n 
with 

standard 
error 

Residual 
s.d. 
s 

Precision Precision. 
z.s factor 

1oL” 

IWIO BOD log10 turbidity 
Northumbria & Yorkshire 0.486 

0.078 

N&Y trimmed 0.450 
0.090 

Southern 0.447 
0.042 

South Western 0.830 
0.043 

Thames 0.48 1 
0.069 

Thames excl. non-STWs 0.684 
0.059 

Welsh 0.664 
0.110 

ss 
Thames 

turbidity 
1.069 
0.035 

0.53 1 
0.081 

0.523 
0.085 

0.377 
0.041 

0.128 
0.043 

0.296 
0.066 

0.306 
0.054 

0.090 
0.126 

6.338 
0.697 

88 0.315 0.617 4.14 

82 0.233 0.456 2.86 

209 0.330 0.646 4.43 

265 0.311 0.610 4.08 

237 0.509 0.998 9.96 

167 0.370 0.724 5.23 

61 0.320 0.627 4.23 

274 9.767 19.14 NA 
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3.2 BOD in Northumbria & Yorkshire region 

In this subsection, we present the regression results for Northumbria & Yorkshire Region in 
some detail. The results for the other regions are summarised in the next subsection. 

The coefficients relating log BOD to log turbidity for Northumbria & Yorkshire Region are 
shown in Table 3.1. The fitted relationship is: 

log BOD = 0.486 (log turbidity) + 0.531 

This line is shown as the central line drawn through the scatter plot of log BOD versus log 
turbidity in the upper graph in Figure 3.1. 

The lines on either side of the central line show the 95% confidence interval for predicting 
future values of log BOD. These are obtained (to a close approximation) by adding and 
subtracting the precision (based on 95% confidence) z.s, where s is the residual standard 
deviation about the regression line and z = 1.96, which is the value of the deviate that cuts 
2.5% from each tail of the standard Normal distribution. 

Let us take an example to illustrate how we might use these results. Suppose we have a field 
turbidity value of 5 NTU, then our best estimate of log BOD is obtained by calculating 

log BOD = 0.486 (Zog 5) + 0.531 = 0.871 

So our estimate of BOD is 1Oo*871 which is 7.43. 

Then, 95% confidence limits on the estimate of log BOD are given by adding and subtracting 
the precision, z.s, which is 0.617. Thus, 95% confidence limits for log BOD are 

0.871 III 0.617 = (0.254, 1.488). 

Taking antilogs of these values, we get the 95% confidence limits on BOD which are 
(1.79,30.76). Alternatively, we can obtain confidence limits directly from our estimate of BOD 
(i.e. 7.43) if we divide and multiply it by the antilog of the precision (1Oo*617 = 4.14) to get 1.79 
and 30.76, respectively. We shah call this factor (4.14 in this example) the ‘precision factor’. 
Note that in Table 3.1, the precision factors are typically around 4.3. 

The lower graph in Figure 3.1 provides the same information as the upper graph except that it 
uses linear axes and it is drawn only for values of turbidity less than 50 NTU. Note how the 
straight lines in the upper graph become curves in the lower one and how additive confidence 
bands on the log scales translate into multiplicative confidence bands on the linear scales. 
Although the central fitted line looks reasonable in both graphs, the confidence intervals appear 
rather wider than indicated by the data at lower values of turbidity. The exaggerated width is 
caused by the higher variation in the BOD values about the regression line at the higher values 
of turbidity. 

To try to overcome this problem, we decided to trim the data by limiting turbidity to values 
less than 30 NTU and to values above zero (remember, the zero value were plotted at 0.1 on 
the log scale). We also removed the high BOD reading at a turbidity of 25. The deleted points 
are shown as solid circles in the upper graph in Figure 3.2, which also shows the regression line 
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fitted to the trimmed data. Note that the fitted line is virtually unchanged but the confidence 
intervals are considerably narrower, particularly in the central part of the graph. The precision 
factor was reduced from 4.14 to 2.86. 

Although trimming the data improved the width of the confidence interval, data manipulation 
such as this must be justified. It is quite acceptable to restrict the use of the model for 
prediction to values of turbidity less than 30 NTU. However, it is difficult to justify the 
removal of any high BOD values within this limited turbidity range without corroborative 
evidence explaining why the alleged outliers were atypical. For example, they may have arisen 
by some mistake in the chemical analysis or in data transcription or by some unusual 
occurrence in the effluent. Such corroboration would have to be based on local knowledge. 

3.3 BOD in the other four regions 

For the data from the other four regions, Table 3.1 shows that the precision factors are in the 
range 4.08 to 4.43 except for Thames Region which has a factor of approximately 10. The 
wide Thames interval is largely due to the presence of 63 data points not from sewage 
treatment works. When these are removed from the regression, the precision factor is reduced 
to a value of 5.23 and the residual standard deviation is also brought into line with the other 
regions. 

Figures 3.3 to 3.6 show the fitted lines (and 95% confidence limits for predicted observations) 
for BOD in these four regions. The regression lines appear satisfactory, but the confidence 
intervals appear to be rather too wide in the region of turbidity less than 10. Again, it would 
appear that it might be worthwhile trimming the data to values of turbidity less than 30. 

3.4 Suspended solids 

For SS, the data was not log-transformed before performing the regression for reasons given in 
Subsection 2.3. Therefore, in Figure 3.7, the upper graph is plotted on linear scales rather than 
logarithmic ones. The lower graph shows the fitted model drawn for values of turbidity less 
than 50 NTU. Again the confidence interval around the fitted model, calculated using the full 
range of turbidity, appears a little too wide for turbidity values less than 10. 

3.5 Assessment of the effect of subsets of the data 

The next stage of the analysis was to determine whether subsets of the data provided better 
predictive models. The data sets from Northumbria & Yorkshire, South Western and Thames 
Regions were split into subsets according to type of STW. The data sets from Southern and 
Welsh Regions contained no information on types of STW and so could not be investigated in 
this way. Table 3.2 gives the breakdown of the available data into STW types. 
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Table 3.2 Types of STW 

TypeofSTW size of STW No. of samples 
N&Y SW Thames 

PS Percohting filter Small 
PM Percolating filter Medium 
PL Percolating filter Large 
As Activated sludge Small 
AL Activated sludge Large 
APL Activated sludge Percolating filter Large 
APM Activated sludge Percolating filter Medium 
BS Biodisk Small 
ss Settlement only Small 
TS Septic Tank Small 
V Private Not specified 
N Not sewage effluent Not applicable 

68 

6 
1 

10 

3 

154 
6 

66 
7 

237 
12 
49 

28 
6 

93 
63 

Fitting separate lines for the different types of works invariably improves the goodness of fit 
compared with a single line fitted to all types. However, the statistical significance of the 
improvement can be assessed using the reduction in the sum of squares of the residuals about 
the fitted model (see, for example, Davies and Goldsmith, 1972). For all three regions, the 
improvement in the goodness of fit was statistically highly significant. 

Table 3.3 summari ses the regression models. The rows for ‘All types’ are taken from 
Table 3.1. Regressions based on a greater number of samples give more reliable predictions 
than those based on fewer samples. In the table, STW types with less reliable results are shown 
by means of shading, using an arbitrary cut-off of 15 samples. 

Among the unshaded rows of the table, it can be seen that confidence intervals are narrower 
when each type of STW is treated separately than when they are all amalgamated. The average 
precision factor among the unshaded rows (excluding the private STWs - code V) was 3.3. 

Note that the slopes for percolating filter STWs (indicated by codes PS, PM, PL) are steeper 
than for activated sludge STWs (AS, AL). 

For Thames Region, the private STWs (V) have a relatively large residual standard deviation, 
and consequently a large precision factor. It may therefore be worthwhile investigating the 
effect of splitting these private works further, for example by size or type, to try to obtain 
better regressions. The non-sewage effluents (N) in Thames Region had a statistically 
insignificant slope implying that turbidity and BOD were not related. For the STW data in 
Thames Region, the intercepts for the different types of works were significantly different but 
the slopes were not. 
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Table 3.3 Separate regression lines for each type of STW 

TypeofSTw Slope Intercept Samples Residual precision precision 
b a n s.d. factor 

loglo BOD 

Northumbria & 
Yorkshire 
Alltypes 

log10 

turbidity 

0.486 0.53 1 88 0.315 0.617 4.14 
PS 0.871 0.147 68 0.300 0.588 3.87 :::::., ,:::::::y.. . . . . ..~....................................,................ ~.~.:.~:.~:,‘.~:.:.:,:,~,.,.,.,.,.,~.:.:,~.:,.,~,~ ,.,...,.,.....,.,.,...,.....,...,.,., :,; .:.:.:.:.: .+:.:.:.:.:...y .:.‘,:,:.):.:.:.:.: .+:.:.:.:.:. :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:...~.:.~.~.~.~.:.:.:.:.:.:.:.:.:.~:.:.:.:.:.:.:.:.:.:.:.~.:.~~.~:.:...:.:.:.~.:.:.:.:.:.:.:.:.:.:.:.:.:.:.~.:.~.:...:.:.:.:.:.~.~.~.:.:.:.:.:.:.:.~:.~ I:I:l~i.i:i:il:iiiiiiliiii’.zi~ i;,.i;:iii’r’i.iili~~~~~~~:~:::~~~~~~~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:~~~~~:~~:~~~~~~~ :i:i:: . . . . . . . . . . . . . . . . .,. .,. ,,:,.. >>:,:,>:,:,:.::. ,:.:.:.:.:,,,:,,,,_,:,:, :,,, ;; :.:.::::::: : : z ,. ~~~~-::i:::li:~~::ii~~~~a;l~:i~;l~lii’~~~~~~al~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:‘::::.,. _,_ 

South Western 
MtypeS 0.830 0.128 265 0.330 0.647 4.08 
PS 0.724 0.277 154 0256 0.502 .:.: ;,.> .:...:. ............................. :.~;...:.:.:::...:...::...:::.:.:~: :,:,:,,.,.,.,:.:.:, ........... ... ....... ...... .3,1.!. .......... ......... i;>p&g:::i:” .:j::i~:i~~~::~~~: ii~i~:i;rii.iiiii::::~~~i!iiiil.ii:l:’lii”’i:;’il~~~~~‘ii.’:i’i:‘l’,l”;:l~~~~~~~~~~~~~~~~~~~~.~~~~~~~,~~~~~~~ .:.:. 
.......................................... 

..................................................... .......................... . ................................ . ............................................................. ?. ............................... I.. ... 
As 0.370 0.522 66 0.238 0.466 2.93 ....... ..I . . . . . . . . . . . . . . . . :.:.:.:.: .,. . . . . .:::. ‘,‘.‘.‘.‘,‘,‘,‘,‘,..‘.~.~.:,~,~ ,:,:,::::::::: :,:,: ,:,.;. . . . . . . ., ,. ., .&p:;.: :.~:~:*;i~~~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:::::.,;;......;....-...- .:: .:::::;; ::;::::;. . . . “““““““~.~.~.‘.~..‘.‘.........,......,,...,.,,,, t . . . . ...’ .,........ :.:..: . . . . . . . . . . . . . . . . . . . . ‘.,‘.,... .:: ,,,..............,..,,..,..,., :.,,:::::::::::::.:::.f . . . . . . . . . . . . ..~.............................!...:.:.:.:.~,.~ .,.,. . . . . . . . . ?... ii?-- . ...:::: . . . . . . . . . . . . .,. .,. .,...:.:. .,.,. ..:.:.:.:.::.:::.:.:.:.:...:.:.~.~.~:.:... .:.:.: . . . . . . . . . .._............ > ,.,_,.,_,.,.,. ..,.:.:.~~:.:.~~:.:.,.:.,.:.:.:.:. .:.:.:.:.>>:.:.::. .:.:.:. . ...:. 
i:ii:8~iii::.i::::.:“““” ‘::..‘......:,:~:::ii:‘:i::i’::i’i:i ‘:‘ll’,,:.l:.:,:i:::::~~:~:::~:.~~~~ . . :.~:‘1:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.:.~,~ y iii”i:‘i”‘i’I’i”‘5~~~S’i.i:.::r.i.l:. ..: ,,.,.,.,.,...,.,.....,... ::.:.::.;..:::,. ., . . . . . . . . ,.: :: :-:-:::::::.:::::::::.:::.‘:‘:‘.: ,.::::: ..:.:.:.:.: ::,j .?...:, ,, :, ::. :: .:.: . . :. ::::::. b . . . . . . . . . . . . . . . . . . ,,, : :... ~ .>>>>:.> ,.,.,: ~~~~~:iiei:i:~~l:~~~~~:~~~~~~~~~~~’:::_i,:~~ij~~~~~~~~~~~~~~~~~~ 
:z:.:... f . . . . . . ...? 

BS 0.284 0.547 28 0.218 0.427 2.67 
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Figure 3.1 Fitted model with 95% confidence limits for predicted observation - 
Northumbria & Yorkshire region 
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Figure 3.2 Fitted model to trimmed data with 95% confidence limits for predicted 
observation - Northumbria & Yorkshire region 
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Figure 3.3 Fitted model with 95% confidence limits for predicted observation - 
Southern region 
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Figure 3.4 Fitted model with 95% confidence limits for predicted observation - South 
Western region 
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Figure 3.5 Fitted model with 95% confidence limits for predicted observation - 
Thames region 
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Figure 3.6 Fitted model with 95% confidence limits for predicted observations- Welsh 
region 
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Figure 3.7 Fitted model for SS with 95% confidence limits for predicted observation - 
Thames region 
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4. USING LABORATORY-BASED TURBIDITY TO 
PREDICT BOD BY MEANS OF OLS REGRESSION 

4.1 Introduction 

Sections 2 and 3 above involvedfield-based turbidity data. This section deals with laboratory- 
based turbidity data. Two data sets were available, supplied by Midland and North West 
Regions. As well as laboratory-based turbidity, these data sets contained BOD, ammonia, SS, 
phosphate and TON. The data set from Midland Region also contained chloride and pH. As 
well as fitting BOD to turbidity, regressions were performed to fit BOD to all the available 
determinands, including turbidity, to see whether these additional determinands helped to 
explain significantly more of the variability in BOD. 

4.2 Turbidity alone 

The regression results for turbidity alone are given in Table 4.1. Because of the general 
widening of the variability with higher turbidity, three ways of restricting the data were tried, 
namely: 

1. no restriction; 

2. restricting turbidity to be less than 30 NTU; 

3. restricting turbidity to be less than 10 NTU. 

The first six rows of Table 4.1 show the fitted models when no transformations were used, i.e. 
BOD is regressed directly on turbidity. We shall call this the simple model. The precision term 
is then additive as illustrated in the following example. Using the row, at a turbidity of five, the 
estimate of BOD is given by 

2.295 + 0.872 x 5 
i.e. 6.655 

The precision is 7.29, so the 95% confidence limits on this estimate are given by: 

6.655 - 7.29 and 6.655 + 7.29 
i.e. -0.635 and 13.945 

The last six rows in the table are for log-transformed data, where log BOD is regressed on log 
turbidity (using logs to base 10). We shall call this the transformed model. The precision term 
is a multiplicative precision factor as described in Section 3. Thus, for example using the last 
sixth row, at a turbidity of 5, the estimate of log BOD is given by 

0.364 +0.618 xlog(5) 
i.e. 0.796 

which, by taking antilogs, transforms back to a BOD value of 6.25. 
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Using the precision factor, 2.34, the 95% confidence limits on this estimate are given by: 

6.25 + 2.34 and 6.25 x 2.34 
i.e. 0.427 and 14.625 

From the table it is clear that confidence limits are narrower for the North West data than for 
the Midlands data. Furthermore, restricting the data to turbidity values less than 30 leads to a 
considerable improvement in the precision in the simple model, and to at least a 12% reduction 
in the precision factor in the transformed model. 

Table 4.1 Regression results using laboratory-based turbidity 

Variable Region Restriction Samples Intercept 
on with 

turbidity standard 
error 

Slope 
with 

standard 
error 

Residual precision 
S.D. 

(~~ 
COIlfidence) 

Simple model 

BOD 
Midland none 

130 

510 

North West 

130 

110 

1938 3.942 
I .232 

1781 1.297 
1.285 

1374 0.559 
I .876 

701 -10.749 
1.067 

653 2.264 
0.491 

394 2.295 
0.572 

Turbidity 
1.217 
0.025 
1.417 
0.139 
1.583 
0.332 
2.181 
0.047 
0.892 
0.045 
0.872 
0.085 

51.89 101.70 

31.92 62.57 

30.32 59.42 

22.56 44.22 

5.87 11.50 

3.72 7.29 

Transformed model 

loglo BOD log10 Turbidit 
Midland rmle 1938 0.268 0.809 0.288 3.67 

0.014 0.015 
130 1781 0.297 0.765 0.255 3.16 

0.016 0.019 
510 1374 0.334 0.697 0.233 2.86 

0.017 0.025 
North West 701 0.167 0.861 0.241 2.97 

0.029 0.028 
130 653 0.319 0.688 0.211 2.60 

0.031 0.033 
110 394 0.364 0.618 0.189 2.34 

0.039 0.049 
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4.3 All determinands 

Following the regression analysis of BOD on turbidity alone, regressions were performed using 
the full set of explanatory determinands: 

l turbidity, ammonia, SS, phosphate, chloride, pH and TON from Midland region; 

l turbidity, ammonia, SS, phosphate and TON from North West region. 

The estimated coefficients (with their standard errors) are shown in Table 4.2, which gives the 
results for (a) the simple model with BOD regressed directly on the available determinands and 
then (b) the transformed model with log BOD regressed on the logged determinands - pH was 
not logged because it is already logged by definition. Logs were taken to base 10. As before, 
additional runs were performed with turbidity restricted to values below 30 or below 10 NTU 
Where the standard error is high relative to the coefficient, this indicates that the determinand 
does not make a useful contribution to the overall goodness of fit when the other variables are 
present. Thus, for example, TON generally makes an insignificant contribution, except in the 
Midland additive model. 

The regressions were generally not very satisfactory because there were large numbers of 
influential points and also many points had unacceptably high residuals. 

Table 4.3 shows the residual standard deviations and the precision term (based on 95% 
confidence) for these regressions in the same way as in Table 4.1. 

It is clear from comparing the precision in Tables 4.1 and 4.3 that the use of additional 
determinands led to smaller residual standard deviations and so helped to explain more of the 
variability in BOD. As a consequence the confidence limits on predictions were considerably 
reduced by using additional explanatory variables. For example, in the transformed models, the 
95% precision factor was around 2.0. 
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Table 4.2 Regression coefficients for BOD and log BOD with standard errors 

Variable Region Restrict constant Estimated coefficients for explanatory variables 
Turbidity with standarderrors 

Simple model 

BOD 

Midland none 

530 

110 

North West 

Transformed model 

log 
BOD 

Midland 

North West none 

130 

110 

none 

530 

110 

130 

110 

Turb AmmN SS Chloride pH Phos TON 

184.149 1.311 0.188 -0.241 -0.009 -23.711 0.340 -0.406 

15.494 0.050 0.043 0.030 0.003 2.041 0.130 0.065 

54.731 0.556 0.088 0.338 -0.002 -6.859 0.082 -0.159 

5.550 0.057 0.015 .0.025 0.001 0.728 0.046 0.023 

63.656 0.419 0.261 0.314 -0.003 -8.175 0.037 -0.079 

6.119 0.109 0.035 0.031 0.003 0.798 0.050 0.027 

-3.016 0.311 0.278 0.501 0.242 0.016 

0.691 0.045 0.041 0.031 0.087 0.035 

-1.287 0.270 0.209 0.465 0.238 0.004 

0.538 0.050 0.028 0.030 0.062 0.024 

-0.112 0.272 0.078 0.436 0.264 -0.021 

0.562 0.082 0.023 0.037 0.061 0.019 

log 1% 1% log PH 108 w 
Turb AmmN SS Chloride Phos TON 

0.801 0.249 0.136 0.487 -0.043 -0.071 0.060 -0.066 

0.123 0.023 0.008 0.024 0.020 0.016 0.014 0.016 

0.682 0.289 0.126 0.472 -0.044 -0.057 0.060 -0.058 

0.121 0.024 0.008 0.023 0.019 0.015 0.013 0.015 

0.820 0.294 0.122 0.445 -0.064 -0.073 0.051 -0.017 

0.133 0.028 0.009 0.025 0.022 0.017 0.015 0.019 

0.028 0.236 0.111 0.523 0.159 -0.023 

0.036 0.037 0.013 0.039 0.022 0.021 

0.020 0.255 0.108 0.509 0.147 -0.008 

0.036 0.039 0.012 0.038 0.022 0.021 

0.067 0.242 0.065 0.492 0.145 -0.014 

0.046 0.050 0.014 0.043 0.026 0.023 
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Table 4.3 Regression results from laboratory-based turbidity and other determinands 

Region Transfonn- 
ation 

Restrict 
Turbidity 

Number of 
Points 

Residual 
S.D. 

Simple model 

Midland 

North West none 

none 

Transformed model 

Midland loi3 

Qt 

1% 

North West loi3 

1% 

log 

130 

510 

none 

130 

110 

1939 

1781 

1374 

701 

653 

394 

1939 0.183 2.28 

1781 0.169 2.15 

1374 0.158 2.04 

701 0.155 2.01 

653 0.151 1.98 

394 0.140 1.88 

24.06 47.17 

8.13 15.94 

7.66 15.01 

6.22 12.19 

4.29 8.41 

2.81 5.50 
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5. ALTERNATIVES TO ORDINARY LEAST SQUARES 
REGRESSION 

5.1 Introduction 

The work described above was performed using classical methods based on ordinary least 
squares regression. However, it is well known that the least squares procedure is particularly 
sensitive to outlying points. The technique also assumes that there is constant variability of the 
data about the fitted line. The preliminary data analysis showed that the data sets in this project 
were problematical with both these aspects. Furthermore. the OLS regressions described in 
Sections 2 and 3 confirmed that the regressions were unreliable for these reasons. A number of 
alternative approaches were investigated to see how they might produce better predictive 
relationships. 

5.2 Chemometric methods 

Appendix A contains a report by Dr J M Thompson, a consultant chemometrician employed to 
consider the data analysis in the light of current advances in chemometrics. He looked at two 
data sets, one taken from Appendix 1 of NRA report “Application of the Grant/YSI 3800 
Meter to Effluent Monitoring” by Neil Martin of Thames Region, and the other comprising 
four of the sets of regional data - Northumbria & Yorkshire, South Western, Thames and 
Welsh - described in Section 2 above. 

He declares that OLS methods should not be used since the data are not well-behaved because 
of the presence of possible outliers and variable degrees of scatter. This is because OLS 
methods lack robustness when the OLS assumptions are violated and also lack resistance to 
outliers. In other words, the OLS model can easily be thrown off track by a relatively few 
remote points and by non-constant variance. 

To overcome this problem, three robust and resistant regression methods were considered: 

1. Tukey’s three group resistant line; 

2. Theil’s median of all possible pairwise slopes; 

3. Rousseeuw’s Least Median of Squares (LMS). 

A brief description of the methods is given in Appendix B. 

All three methods were used in the analysis of the data relating laboratory BOD to turbidity 
measured on four Grant monitors and the results are given in Table 5.1. It is clear that there 
was good agreement in the slope estimates between the three robust and resistant methods. In 
contrast, the OLS regression yielded considerably higher regression slopes, presumably 
because of the influence of a few wild points. However, with the robust methods, there were 
differences in the slope estimates between different meters and also between different series 
with the same meter. Unfortunately, the data sets were not large enough to analyse possible 
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contributory sources of variation with any great reliability. A more careful design of 
observational study would be needed to perform a useful analysis of the sources of variation. 

Table 5.1 Comparison of OLS and robust methods for Grant meters 

Data set Method Slope Intercept 

Grant 33 (series 1) 

Grant 33 (series 2) 

:-y 14 

Grant 38 

OLS 
LMS 

OLS 
Tukey 

Theil 
LMS 

OLS 
LMS 

OLS 
LMS 

0.344 1.511 
0.05 1 1.285 

1.287 -4.623 
0.904 -1.715 
0.833 9.ooo 
0.867 -2.467 

1.097 1.381 
0.738 2.331 

1.655 15.277 
0.493 1.875 

Tulcey’s three group resistant line method was applied to the four sets of regional data - 
Northumbria & Yorkshire, South Western, Thames and Welsh. Comparisons with the OLS 
regressions (based on raw data rather than on log-transformations) are shown in Table 5.2. The 
OLS regression slopes were clearly influenced by just one or two extreme points and are thus 
unreliable. 

Table 5.2 Comparison of methods for field turbidity monitors by region 

Method Slope Intercept 
.,e 

.;mmbria & Yorkshire 

South Western 

Thames 

Welsh 

OLS 
Tukey 

OLS 
Tukey 

OLS 
Tukey 

OLS 
Tukey 

0.141 15.92 
0.618 NA 

0.301 13.06 
0.836 1.82 

0.45 1 5.67 
0.687 1.43 

0.254 5.39 
0. 2.30 
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The Thames data set was then analysed according to various subdivisions based on STW type 
(see Table 5.3). The OLS regression equations were highly influenced by just one or two 
extreme points and are too unreliable for any practical purpose. Following the Tukey method, 
examination of residuals to assess spread, the presence of outliers and evidence of nonlinearity 
showed that the residual scatter was smaller for the larger STWs, where there was also a 
smaller slope, than for the smaller STWs. There was also some evidence of nonlinearity at the 
smaller works but this may be misleading given the high scatter. 

Table 5.3 Comparisons of methods for Thames subsets 

Subset Method Slope Intercept 

PS 

PL 

AL 

Private 

Not sewage effluent 

OLS 
Tukey 

OLS 
Tukey 

OLS 
Tukey 

OLS 
Tukey 

OLS 
Tukey 

0.490 5.99 
1.167 1.30 

0.592 1.52 
0.717 1.07 

0.411 4.27 
0.500 2.55 

0.921 7.71 
1.156 1.00 

0.0227 1.88 
0.0186 1.00 
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6. COMPARISONS OF TURBIDITY MEASUREMENTS 
MADE USING A RANGE OF DIFFERENT 
INSTRUMENTS 

Appendix C contains a report by Steve Russell of WRc describing some measurements for 
comparing some field and laboratory instruments used for measuring turbidity. Three 
commercial bench turbidimeters and the Grant YSI 3800 multipammeter logger were set up in 
the laboratory and calibrated using formazin e suspension. A test rig for scattered light 
measurement was also used. 

Sewage effluent samples were collected from: 

1. a biological filter works with some industrial waste but predominantly a domestic 
catchment; 

2. an activated sludge works with a mixed domestic and industrial catchment; 

3. a small rural works using an RBC with tertiary treatment using a reed bed; 

4. the activated sludge pilot plants at Swindon WRc. 

The turbidity of each effluent sample was measured on each of the instruments and also on the 
test rig. Comparisons with the Grant 3800 are shown graphically in the Appendix and 
summarised in Table 6.1 

Table 6.1 Turbidity instrument gradients against the Grant 3800 

Instrument Gradient R squared 

Hach 2100A 0.833 0.97 

Hach Ratio 1.179 0.96 

Hach XR ratio 1.174 0.97 

880 nm 90 degree scatter 1.169 0.91 

880 nm 20 degree scatter 2.550 0.91 

880 nm absorbence (40 mm path) 2.433 0.93 

The results can be summarised as follows: 
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In a comparison between filter plant data and activated sludge plant data, the gradients 
comparing Hach 2100A and Grant 3800 instruments were slightly different but probably not 
significantly so. 

The results agree with the theoretical result that 20 degree scatter is more sensitive to larger 
particles than 90 degrees scatter. 

Readings fluctuate as particles move in and out, of the cell measurement volume. Instruments 
with large measurement volumes (such as Hach 2100A) score over instruments with ratio 
optics (such as Hach 21OON) which need to take a number of readings and then calculate the 
average. 

The Hach XR ratio and the 880 nm 90 degrees scatter gradients were very similar in this 
exercise. this disagrees with a previous exercise carried out at WRc where similar instruments 
gave a ratio of gradients of around 1.9. This discrepancy is unexplained at present. However, it 
does not affect the comparison between the Grant 3800 and the Hach instruments. 

R&D Technical Report E42 36 



7. DISCUSSION 

OLS regression is a well developed methodology which is easy to apply using any elementary 
statistical package. Methods for obtaining confidence limits about the fitted line based on OLS 
regression are also well-developed and understood. However, where there are outliers in the 
data or where the variance in BOD is not constant over the range of turbidity the OLS 
regression will give unreliable results. 

In contrast to OLS regression, the more robust and resistant methods described in this report 
are less affected by outliers and non-constant variance. However, they are also generally used 
less frequently, partly because they are relatively unfamiliar compared with OLS regression, but 
also because it is not always clear which is the most appropriate method. To quote from Davies 
and Goldsmith (1972) in a slightly different context “they each have some degree of theoretical 
validity, but no single method can claim to be the only correct one and unfortunately each can 
lead to a different equation.” It is often difficult to know which alternative approach is the most 
appropriate. Furthermore, they tend not to have methods in place for calculating confidence 
limits around the fitted line. 

Outliers are a nuisance when trying to predict BOD from turbidity. High BOD may be found 
with low turbidity if there is soluble matter present. Low BOD at high turbidity may arise liom 
suspended clays and silts. 

Other factors can contribute to nonlinearity or to low or high values of BOD relative to the 
turbidity observed. There may be other important factors besides the ones made available for 
this project. 

R&D Technical Report E42 37 



R&D Technical Report E42 38 



8. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

CONCLUSIONS 

This work has confirmed that OLS regression methodology can be unreliable with the 
kind of data available for this project because of the presence of outliers and variable 
degrees of scatter. Many alternatives to OLS regression for fitting lines to data are 
available and several have been investigated in this project. 

Because BOD exhibited variability which increased with increasing field turbidity, the 
transformed model was more appropriate than the simple model. In other words, better 
agreement with the requirements of OLS regression can be obtained by logarithmic 
transformation of both BOD and turbidity. This leads to confidence intervals which have 
width proportional to the BOD value, i.e. higher BOD estimates have greater absolute 
uncertainty than lower ones. Transformation was not required for suspended solids. 

The confidence limits about the OLS regression line based on all the data were generally 
quite wide, the upper 95% confidence limit was typically about four times the estimated 
BOD and the lower limit was about one quarter of the BOD estimate. Graphical 
inspection showed that the confidence interval was rather too wide at the lower levels of 
BOD. 

Better predictions with narrower confidence limits could be obtained by limiting the 
regression analysis to lower levels of turbidity, e.g. to values less than 30 NTU. This 
reduced the precision factor from 4.3 to 3.3. 

The introduction of other explanatory variables into the regression tnade a significant 
improvement to the fit and reduced the precision factor to about 2.0. 

The slope of the OLS regression lines for predicting BOD from field turbidity varied 
from region to region. 

The slope of the OLS regression lines for predicting BOD from field turbidity varied 
between STW types within a region. 

There was no significant correlation between BOD and turbidity for data arising from 
non-STW effluents in the Thames Region. 

Alternative methods of curve fitting to OLS regression overcame the problems of 
outliers and non-constancy of variance and could be expected to lead to greater 
consistency between results from different surveys. However, they did not provide 
methods for calculating confidence limits about the line. 
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9. RECOMMENDATIONS 

Because of the differences found between types of STW, the equations for predicting BOD 
from turbidity should be developed further by collecting appropriate data. The fitted equations 
for each different type of works should then be tested against additional data not used in fitting 
the models. 

Additional variables that might usefully be measured in the field include P02, temperature, pH 
and redox potential. 

Since there were differences in slopes between different meters and also between different 
series with the same meter, possible contributory sources of variation should be investigated 
using a careful design of observational study. 

Further work is required on alternative robust methods to enable confidence limits to be placed 
around the fitted lines and to decide which method would be the most appropriate for 
predicting BOD from turbidity. 
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APPENDIX A 

REPORT ON THE CHEMOMETRIC EVALUATION OF DATA 
BY DR J M THOMPSON 
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Introduction 

Two sets of data were evaluated for this report : data set 1 was from appendix 1 
of the report “Application of the Grant/YSI 3800 Meter to Effluent Monitoring” by 
Neil Martin, NRA Thames Region, SE Area Pollution Control, Guildford, Feb. 1996 and 
data set 2 was supplied by Terry M. Long, EA Bristol to Peter van Dijk, WRc on 
September 1996 and by the latter to me on 8th October 1996. A meeting was held at WRc 
on 15th July 1996 to discuss the approach to the project which involved Terry Long of 
EA Bristol, Hike Gardner, Steven Russell and Peter van Dijk of WRc and me. A second 
meeting, between Peter van Dijk and me, was held on 28th Oct. 1996 to discuss 
progress in data analysis and a further meeting was held today 9th Dec.1996 to 
discuss this report. 

As with many sets of environmental specimens analysed either in the laboratory 
or in the field, the data obtained from such measurements is not well behaved and 
contains what might be considered outliers, in addition to a relatively wide scatter. 
It is thus not amenable to analysis by conventional least squares gaussian methods 
because these lack both robustness (which enables us to assess the behaviour of the 
bulk of the data) and resistance to outlier or “wild” data. The methods used have 
included the robust Least Wedian of Squares regression method of Rousseeuw, Tukey’s 
three group resistant line regression and Theil ‘s nonparametric regression method 
of pairwise slopes. Attention has also been directad at examination of the residuals 
plots from such regressions, in order to assess residual sqread: presence of outliers 
and evidence of noniinearity. irarious subsets and csmbina:ions of subsets of the data 
have been used to examine the behaviour of individual field instruments and of various 
sewage treatment plants and trade effluent sources. 

Using zhe ?rzgrin PRCGRISS of Rcusseeu:~ and Leroy (see “Rcbust Regression and 
Outlier D~zzc::cn!’ b;r ?.J.Ronsseeuw & .<.;f.Leroy,. 1337, ‘<Fl-ly’ srd+nazy least squares 
(OLS) , least med;an of squares (LMS! and a re:,?eigh:?d least squar& (RLS) based on 
the LXS Tr33 ptrf,srmed on subsets fr2m the -zarie:us field xcn:tors used. For one subset 
Theil’s and T,.ik<y’s methods -7ere also used. This illustrz:zs the agreement bet:rean 
the LMS: ?‘.!::a~ 2nd T3ei.l :~eth,cds which reflect :h2 bihavicur of the b?lik of th2 d&ta 
and the diss;r$ement with i:?$ SLJ. The results of the regressions, with lab EGD as 
the degen2tr.i -;ariahle, a:? ;l::lir.ed below : 

Lab BOD vs Gr3nr 33 (2nd series) 

regressicn 
methcd 

SiOF2 intersept R2 possibie cutliers - 

OLS 1.18713 -4.62270 0.83390 

LMS 0.36667 -2 -46667 0.87635 7,9,14,17,30,31 

RLS 0.76068 -0.72290 0.88041 

Theii 0.33333 9 .ooooo 7,14 ,27,30,31 

Tukey 
rline 

l/2 slope ratio 

0.3337 -1.7148 2.396 7,9,14 ,:5,17,19,30,31 
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Lab BOD vs Grant 33 (1st series) 

slope intercept 

OLS 0.34442 1.51069 

LMS 0.05102 1.28571 

RLS 0.04555 2.15422 

Lab BOD vs Grant no 14 

OLS 1.09739 1.38120 

LHS 0.73846 2.33077 

RLS 0.68535 2.79742 

Lab BOD vs Grant no 38 

oils 1.65452 -15.2772 

LXS 0.49286 1.87500 

RLS 0.49042 2.07700 

R2 

0.23976 

0.63715 5,11,14,16,18,21,24 

0.15966 

0.85855 

0.79472 23 

0.60086 

0.43199 

0.80377 2,3,13,17,22,25,27,29,30, 
37,41,43,45,5A 

0.15966 

There is clearly something suspect about ?:?z *Grant 23 1st series :?hich differs 
markedly from the second series and from data from C-ran: 3;s 14 2;: 33. ,Grant 33 2nd 
series compares reasonably veil ait:rl Grant 14 but bcch differ considerably from Grant 
38. These subsets are not r2aily big encugh to analyse ;cssISia contributory sources 
of variation with any great reliability. A mar? :zr,zf?:1 design ‘of 3bser?;atio:lai study 
:rould be needed to perform a usefIll analysis of the sources of variation. 

Data set 2 

Subsets sere provided from South Vestzrn. :Jor’humjri~/Yor~~s:~l~~, -ieish and 
Thames. Exploratory analysis using Tukey's three grou; resistant. li:e regrassicnsas 
performed and the results are she-?n below : 

Slop? intercept l/2 slope ratio 

South Uestern 0.8361 1.3250 1.412 

Thames 0.6870 1.4310 0.520 

Northumbria/Yorkshire 0.6176 n/a n/a 
0.5000 4.0000 (Theil methcd) 

Welsh 0.3658 2.3053 1.154 

The tao most extensi-:e data subsets were Thames ~1.d South TJest?rn. The latter 
attempted to classify STls according to siz2. Xowe-Jar. it is not cisar whether there 
vas any differentiation between pri*?ate and public xorks as in the Thames subset. 
There was no attempt to subdivide the South Western subset at this stage. 
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The Thames subset was analysed according to further subdivisions : 

subset slope intercept l/2 slope ratio 

“not” 0.0186 1.0010 0.952 

priv 1.1560 1.0000 1.648 

PS 1.1667 1.3000 0.286 

PL 0.7167 1.0667 0.601 

AL 0.5000 2.5500 0.587 

ALtAPL 0.5263 2.4974 2.371 

BLtAPLtPL 0.6714 1.5429 1.771 

Subsets from the 1st Thames set were combined with subsets from the 2nd Thames 
set and analysed as follows : 

subset 
combination slope intercept l/2 slcpe ratio 

pri-r I. & 2 1.0635 0.7730 1.490 

XL”.?IPL+-PL 
& that dat.2 
mar&d Thames 
in is: sei 

0.5750 1.7250 1.030 

Letter .value analysis of the residuals from the last tvo regressions suggests 
:kzt scatter is smaller for the Larg? STYs (roughly 35% 1yixc bei?reeE about -6.7 to 
6.1) than fcr the private ~crks !only abcut 50% being in a similar range). The 
,-s,ate and small public ..,“A -- STXs sdem to have similar slopes iakct 1.1-l .2) and a wide 
scattar. Th? half slope ratios of these groups are perhaps i::~dicati;re of nonlinearity 
>1; i in diffsront directions. iioxever, with such xide scatter the haif slope ratio may 
be a misieariing indicatcr and the scatter may be ccntributad by other ind??endent 
varlabies not included in these regressions. The slope of atcut 0.6 for tha larger 
STlJs :qith a narrower sc-t CA ter and a half slope ratio of approximately I.9 suggests a 
reascnably lizear relationship, less influenced by other variables than for the 
smiler works. The differences between the large STWs and small (t private) STVs may 

L 

be more apparent :han real because the confidence bands probably overlap. 

The influence of ether :3ctors cannot be adequately disentangled in these data 
sets. Such factors as geographical zone, hydrolwy and underlying geology, time of 
year or day, climatic influences such as whether there pas heavy rain or a lack of 
rlin prior to the specimen beir.g taken, the influence of suspended par:lcle shape 
,:1 n d size distributions on the turbidity and various chemical/biochemical influences 
,2n S.0.d. and sample stability should gerha?s be looked at i.;l any subsequeat study 
-- determine :qhether fher2 3rz any other significantly infiz?ntiai s;arizbl?s :rhich _u 
- L :Jould be cost effec,ci-re -b to include in any field monitoring estimate of b-0.2. Iqafly 
r-i these may oniy be cf xarginal influence but- it is probably desirable to estabiish . . L 
:he significance of their influence. Sufficient account of instrument and cperator 
-variability also needs to be made in estimating the uncertainty budget. 
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Any future observational study needs both careful design and execution to enable 
exploratory analysis of variance and multipie regression to yield effsctivz algorithms 
fit for the intended purpose. Greater consistency in recording data than in the 
data sets used in this project is essential. In particular, consistency is needed in 
the use of “less than” which varied widely. A policy on the data structure and on 
data recording and auditing should be agreed, together with equipment maintenance, 
calibration, checking and qualification. Staff should be adequately trained in the 
project S.0.P.s and protocols to ensure consistency and traceability. 
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1. Brief explanation of statistical methods used 

a) Robust and resistant regression methods used 

(i) Tukey’s three group resistant line 

In this method, the values of the independent variable, x, are sorted into 
ascending order and divided into three groups of more or less equal size : a left, a 
midddle and a right group. Within each group, a summary poit is formed by first 
determining the median x-value and then independently the median y-value. This method 
provides resistance to wild values of x, y or both. The slope is estimated from the 
left and right summary points and the intercept from all three summary points. The 
residuals are then used in place of the y values iteratively to determine adjustments 
to the slope and intercept. The breakdown bound (see below) is 0.167. 

(ii) Theil’s method 

This method involves computing the slopes between all the possible pairs of 
points and obtaining the median of those pairwise slopes as the regression 
coefficient. The median of the intercepts resulting from drawing lines with the 
median slope through each point is the regression intercept. The breakdown bound is 
0.29. 

(iii) Rousseeuw’s Least Xedian of Squares 

This method involv- - F5 ninimizing the median of the squared residuals instead 
of the sum. The breakdorJn bound is ([n/2]-p+2)/n, :qhere n is the number of points and ‘r 
the number of independent variables. 

b) &ttzr Value Anal ysis and Box and Whisker ?lots of Regression Residuals 

ii; Letter value analysis 

The first step is to rank the data in <ascending order, the position of the 
median is foun,l (its depth!. The depths cf the fourths in from each end of the 
ordered data set are then fc;1nd from ( [depth of median]+!.) :2 (dropping any fraction 
from the dapt:? of the medi:n;. The median and fourth are termed letter values and are 
given cne 12tter tags (:I ani ?). The dapth of other letter ~73132s is found from 
( [depth of previous letter value] tl) /2, in every casa drgping any fraction from the 
previous depth. Thus, the latter -:alu2s move progressive1 y into the tails of the data 
distribution. X letter value display shcws the depth of each letter value, the lower 
and upper letter values, the spread between upper and lower letter values and the 
mids (means of the upper and lower letter values). Using this to examine the 
residuals, enables us to assess the shape of their distribution in a useful summary 
form. 

(ii.1 80x and whisker plots 

The box plot consists of a rectangle which has as upper and lower bounds 
the upper and lcwer fourths and nithin the box is marked the position of the median. 
The whiskers e:<tend beyond the fourths values to the furthest ordergd data points 
within the inner fences. Points bet:qeen the inner and outer fences are marked by M*” 
and those outside the outer fences with “0”. Inner fences are at lower fourth - 
1.5*(fourth spread) and at upper fourth t l.S*(fourth spread). Cutar fences are at 
lower fourth - 3*ifourth spread) and upper fcurth c 3*(fourth spread). The values 
beyond the outer fences are prcbable outliers, those between the inner and outer 
fences are possible outliers. 

cl Breakdown bounds of regression methods 

This is a measure of the resistance of the regression to wild values 
affecting the estimation o f the slope and intercept and is given by the ratio k/n, 

53 



where k is the greatest number of the n data points that can be replaced while 
leaving the slope and intercept bounded. The ordinary least squares regression has a 
breakdown bound of zero. 

2. Limitations of the current approach to evaluation of field monitoring 

a) problems of only measuring turbidity, etc., downstream of sewage outfalls 

Uith measurements being made only downstream of the outfall, there is no way of 
estimating the upstream contribution to those measurements. This is a serious 
deficiency in the current approach. Such upstream contributions probably account for 
some of the scatter in the plot of turbidity vs BOD and may vary with upstream 
pollution and rainfall. 

b) comments on the scatter and outliers in field turbidity vs B.O.D. plots 

High lab BOD at low turbidity is possible from soluble matter. Low BOD with high 
turbidity may arise from suspended clays and silts. Other factors may contribute to 
low or high values or nonlinearity. 

3. Recommendation on possible improved approach to field monitor evaluation 

Future studies could usefully include both upstream and downstream measurements 
and attempts to estimate BOD from the differences between these upstream and 
downstream measurements. Additional measurements in the field might usefully include 
p00, temperature, pH and redox potential. 

d 0. The methods referred to are discussed in J.X.Thompsoc “Exploratcry, Robust and 
Zonparametric Data Analysis”, chapter 3 in S.J.Hasxell “?racticai Guide to 
Chsmometrics” , 1992, Xarcel Dekker . 
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COMPARISON OF TURBIDIT/ MEASUREMENTS MADE USING A RANGE OF 
DIFFERENT INSTRUMENTS 

Introduction. WRC is currently undertaking a study on behalf of the Environment 
Agency to examine the relationship between turbidity and BOD5. Data on turbidity and 
BOD is available with both field and laboratory measurements of turbidity. 
Measurements of turbidity in the field are normally made using the Grant 3800 
multiparameter logger, whereas laboratory measurements are made on a number of 
instruments such as the Hach 2100A bench turbidimeter. Turbidity measurement is well 
known as an instrument-dependent quantity and so some comparitive measurements 
were needed to allow the combining of the field and laboratory data. 

Procedure. Three commercial bench turbidimeters and the Grant YSI 3800 
multiparameter logger were set up in the laboratory and calibrated using formazine 
suspension. In addition a test rig for scattered light measurement was calibrated using 
formazine so that it could be used to measure turbidity at 90 degrees using 880 
nanometre source light, 20 degrees using 880 nanometre source light and attenuation 
of 880 nanometre light. 

Sewage effluent samples were collected from three sewage treatment works within half 
an hour’s drive of the Swindon laboratory. The works were: 

0 A biological filter works with some industrial waste, but predominantly a domestic 
catchment; 

ii) An activated sludge works with mixed domestichndustrial catchment; 

iii) A small rural works using an RBC with tertia,ry treatment using a reed bed. 

It was fcund that the reed bed effluent was so good that the Grant 38C0 instrument, 
which reads integer NTU values, always read 0 NT*U and so after the first 2 visits, no 
more samples from this works were used. One sample each from the activated sludge 
pilot plants operating at Swindon ‘J/Tic were taken to supplement the main plant data. 
Pilot plants normally vary very little and so there was little point in collecting multiple 
samples from these plants. The turbidity of the effluent samples was measured on each 
of the instruments and the test rig and recorded. I 

Results. The measurements from the filter plant and the activated sludge plants are 
plotted separately using the Hach 2100A data against the Grant 3800 in Charts 1 and 3 
respectively. It may be seen that the gradients for the data sets are slightly different. 
When the data is plotted together (chart 4) the difference between the data sets 
appears comparable to the variations in the individual data sets and for the purposes of 
correlation with BOD it is appropriate to treat these measurement as one data set. 

The measurements on all the instruments and the test rig are shown plotted against the 
Grant 3800 turbidity reading in charts 5 to 10. The results are summarised in table 1. 
The scaling factor which needs to be applied to convert between the Grant 3800 and 
the laboratory instruments varies between about 0.8 and 1.2. The 880 nanometre test 
rig scale factors range from about 1.2 to about 2.5. The difference between the 90 
degree and 20 degree gradients accords with the theoretical result that the 20 degree 
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scatter is more sensitive to larger particles than the 90 degree scatter, the factor being 
about 2.2 compared with their sensitivity to formazine. The bulk of sewage effluent 
particles are typically in the range 5 to 100 microns, whilst formazine is typically about 
0.1 microns in size. 

It is very noticeable when measuring sewage effluent turbidity in the laboratory that the 
reading fluctuates over a large range as particles move in and out of the cell 
measurement volume. The Hach 2100A scores over the more modern ratio instruments 
here as it has a large measurement volume and the turbidity averaged over a large 
volume can be read directly. The ratio instrument readings vary rapidly over as much as 
a 2:l range and have to be dealt with by taking a number of readings and averaging. 
Hach’s current offering, the 2100N, has ratio optics and an averaging function. The 
Grant 3800 has a large measurement volume and produces a steady reading within 5 
10 seconds. 

Discussion. WRc has carried out some previous work which can be compared with this 
exercise. In the previous work sewage effluent turbidity was measured using a Hach 
ratio XX and a BTG MET3000 which uses 90 degree scatter of 860 nanometre light to 
accord with IS0 7027. The ratio of slopes when correlated against suspended solids 
was about 1.9 on a range of effluent types. No particular effort was made to check the 
absolute value of the NTU values in this exercise as this was of secondary importance, 
however the difference in formazine calibration is unlikely to be more than 10%. The 
actual turbidity range went high er in this exercise, up to 25 NTU and this may have 
affected the slopes calculated. The samples wiil have had differences, but these are 
unlikely to be great compared with the diii erence between formazine and sewage 
effluent. The angle of acceptance of the BTG instrument is !ikely to be much larger than 
the test rig instrument where care was taken to restrict the detector aperture. When 
these factors are taken into account, the results are still not consistent with the ratio of 
slopes of the Hach XR and the 880 nanometre 90 degree scatter ratio in the present 
exercise, which is close to unitl/. No explanaticn of this difference is apparent, and the 
result for the 880 nanometre 90 degree scatter should be treated with some caution 
until the difference can be resolved. This disc reoancy does not affect the comparison 
between the Grant 3600 and the Hach instruments. 

Instrumental measurement Gradient R squared 

Hach 21 OOA 0.833 0.97 
Hach Ratio 1.179 0.96 
Hach XR ratio 1.174 0.97 
880 nm 90 degree scatter 1.169 0.91 
880 nm 20 degree scatter 2.55 0.91 
880 nm absorbance (40mm path) 2.433 0.93 

Table 1 Summary of turbidity instrument gradients against the Grant 3800. 
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Chart4 

Grant 3800 vs t-lath 2100A - Both effluent types 
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Grant 3800 vs 90 degree 880nm scatter 
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Char19 

Grant 3800 vs Hach Ratio 
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CtlarllO 

Grant 3800 vs Hach Ratio XR 
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